EL2620 Nonlinear Control

Lecture 3

- Stability definitions
- Linearization
- Phase-plane analysis
- Periodic solutions

Today's Goal

You should be able to

- Explain local and global stability
- Linearize around equilibria and trajectories
- Sketch phase portraits for two-dimensional systems
- Classify equilibria into nodes, focuses, saddle points, and center points
- Analyze stability of periodic solutions through Poincaré maps

Asymptotic Stability

Definition: The equilibrium $x=0$ is asymptotically stable if it is stable and δ can be chosen such that

$$
\|x(0)\|<\delta \Rightarrow \lim _{t \rightarrow \infty} x(t)=0
$$

The equilibrium is globally asymptotically stable if it is stable and $\lim _{t \rightarrow \infty} x(t)=0$ for all $x(0)$.

If $x^{*}=0$ is not stable it is called unstable.

Linearization Around a Trajectory

Let $\left(x_{0}(t), u_{0}(t)\right)$ denote a solution to $\dot{x}=f(x, u)$ and consider another solution $(x(t), u(t))=\left(x_{0}(t)+\tilde{x}(t), u_{0}(t)+\tilde{u}(t)\right)$:

$$
\begin{aligned}
\dot{x}(t)= & f\left(x_{0}(t)+\tilde{x}(t), u_{0}(t)+\tilde{u}(t)\right) \\
= & f\left(x_{0}(t), u_{0}(t)\right)+\frac{\partial f}{\partial x}\left(x_{0}(t), u_{0}(t)\right) \tilde{x}(t) \\
& +\frac{\partial f}{\partial u}\left(x_{0}(t), u_{0}(t)\right) \tilde{u}(t)+\mathcal{O}\left(\|\tilde{x}, \tilde{u}\|^{2}\right) \\
& \left(x_{0}(t), u_{0}(t)\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \dot{h}(t)=v(t) \\
& \dot{v}(t)=-g+v_{e} u(t) / m(t) \\
& \dot{m}(t)=-u(t)
\end{aligned}
$$

Let $x_{0}(t)=\left(h_{0}(t), v_{0}(t), m_{0}(t)\right)^{T}, u_{0}(t) \equiv u_{0}>0$, be a solution. Then,

$$
\dot{\tilde{x}}(t)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -\frac{v_{e} u_{0}}{\left(m_{0}-u_{0} t\right)^{2}} \\
0 & 0 & 0
\end{array}\right) \tilde{x}(t)+\left(\begin{array}{c}
0 \\
\frac{v_{e}}{m_{0}-u_{0} t} \\
1
\end{array}\right) \tilde{u}(t)
$$

Hence, for small (\tilde{x}, \tilde{u}), approximately

$$
\dot{\tilde{x}}(t)=A\left(x_{0}(t), u_{0}(t)\right) \tilde{x}(t)+B\left(x_{0}(t), u_{0}(t)\right) \tilde{u}(t)
$$

where

$$
\begin{aligned}
A\left(x_{0}(t), u_{0}(t)\right) & =\frac{\partial f}{\partial x}\left(x_{0}(t), u_{0}(t)\right) \\
B\left(x_{0}(t), u_{0}(t)\right) & =\frac{\partial f}{\partial u}\left(x_{0}(t), u_{0}(t)\right)
\end{aligned}
$$

Note that A and B are time dependent. However, if $\left(x_{0}(t), u_{0}(t)\right) \equiv\left(x_{0}, u_{0}\right)$ then A and B are constant.

Lecture 3

Pointwise Left Half-Plane Eigenvalues of $A(t)$ Do Not Impose Stability

$$
A(t)=\left(\begin{array}{cc}
-1+\alpha \cos ^{2} t & 1-\alpha \sin t \cos t \\
-1-\alpha \sin t \cos t & -1+\alpha \sin ^{2} t
\end{array}\right), \quad \alpha>0
$$

Pointwise eigenvalues are given by

$$
\lambda(t)=\lambda=\frac{\alpha-2 \pm \sqrt{\alpha^{2}-4}}{2}
$$

which are stable for $0<\alpha<2$. However,

$$
x(t)=\left(\begin{array}{cc}
e^{(\alpha-1) t} \cos t & e^{-t} \sin t \\
-e^{(\alpha-1) t} \sin t & e^{-t} \cos t
\end{array}\right) x(0),
$$

is unbounded solution for $\alpha>1$.

Lyapunov's Linearization Method

Theorem: Let x_{0} be an equilibrium of $\dot{x}=f(x)$ with $f \in \mathbb{C}^{1}$.
Denote $A=\frac{\partial f}{\partial x}\left(x_{0}\right)$ and $\alpha(A)=\max \operatorname{Re}(\lambda(A))$.

- If $\alpha(A)<0$, then x_{0} is asymptotically stable
- If $\alpha(A)>0$, then x_{0} is unstable

The fundamental result for linear systems theory!
The case $\alpha(A)=0$ needs further investigation.
The theorem is also called Lyapunov's Indirect Method. A proof is given next lecture.

Lecture 3
9

EL2620

Linear Systems Revival

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Analytic solution: $\quad x(t)=e^{A t} x(0), t \geq 0$.
If A is diagonalizable, then

$$
e^{A t}=V e^{\Lambda t} V^{-1}=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]^{-1}
$$

where v_{1}, v_{2} are the eigenvectors of $A\left(A v_{1}=\lambda_{1} v_{1}\right.$ etc).
This implies that

$$
x(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

where the constants c_{1} and c_{2} are given by the initial conditions

Example

The linearization of

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}^{2}+x_{1}+\sin x_{2} \\
& \dot{x}_{2}=\cos x_{2}-x_{1}^{3}-5 x_{2}
\end{aligned}
$$

at the equilibrium $x_{0}=(1,0)^{T}$ is given by

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
-3 & -5
\end{array}\right), \quad \lambda(A)=\{-2,-4\}
$$

x_{0} is thus an asymptotically stable equilibrium for the nonlinear system.

Lecture 3

Example: Two real negative eigenvalues

Given the eigenvalues $\lambda_{1}<\lambda_{2}<0$, with corresponding eigenvectors v_{1} and v_{2}, respectively.
Solution: $x(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$

Slow eigenvalue/vector: $x(t) \approx c_{2} e^{\lambda_{2} t} v_{2}$ for large t.
Moves along the slow eigenvector towards $x=0$ for large t

Fast eigenvalue/vector: $x(t) \approx c_{1} e^{\lambda_{1} t} v_{1}+c_{2} v_{2}$ for small t.
Moves along the fast eigenvector for small t

Phase-Plane Analysis for Linear Systems

The location of the eigenvalues $\lambda(A)$ determines the characteristics of the trajectories.

Six cases:
\(\left.$$
\begin{array}{llll} & \text { stable node } & \text { unstable node } & \text { saddle point } \\
\operatorname{Im} \lambda_{i}=0: & \lambda_{1}, \lambda_{2}<0 & \lambda_{1}, \lambda_{2}>0\end{array}
$$ \quad \begin{array}{lll}

\lambda_{1}<0<\lambda_{2}\end{array}\right]\)| $\operatorname{Im} \lambda_{i} \neq 0:$ | $\operatorname{Re} \lambda_{i}<0$ |
| :--- | :--- |
| stable focus $\lambda_{i}=0$ | |
| se $\lambda_{i}>0$ | |
| unstable focus | |\quad| center point |
| :--- |

Example-Unstable Focus

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{cc}
\sigma & -\omega \\
\omega & \sigma
\end{array}\right] x, \quad \sigma, \omega>0, \quad \lambda_{1,2}=\sigma \pm i \omega \\
x(t)=e^{A t} x(0)=\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right]\left[\begin{array}{cc}
e^{\sigma t} e^{i \omega t} & 0 \\
0 & e^{\sigma t} e^{-i \omega t}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right]^{-1} x(0)
\end{gathered}
$$

In polar coordinates $r=\sqrt{x_{1}^{2}+x_{2}^{2}}, \theta=\arctan x_{2} / x_{1}$ $\left(x_{1}=r \cos \theta, x_{2}=r \sin \theta\right)$:

$$
\begin{aligned}
& \dot{r}=\sigma r \\
& \dot{\theta}=\omega
\end{aligned}
$$

Equilibrium Points for Linear Systems

Lecture 3
14

El2620

How to Draw Phase Portraits

By hand:

1. Find equilibria
2. Sketch local behavior around equilibria
3. Sketch $\left(\dot{x}_{1}, \dot{x}_{2}\right)$ for some other points. Notice that

$$
\frac{d x_{2}}{d x_{1}}=\frac{\dot{x}_{1}}{\dot{x}_{2}}
$$

4. Try to find possible periodic orbits
5. Guess solutions

By computer:

1. Matlab: dee or pplane

Phase-Plane Analysis of PLL

Let $\left(x_{1}, x_{2}\right)=\left(\theta_{\text {out }}, \dot{\theta}_{\text {out }}\right), K, T>0$, and $\theta_{\text {in }}(t) \equiv \theta_{\text {in }}$.

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}(t)=-T^{-1} x_{2}(t)+K T^{-1} \sin \left(\theta_{\mathrm{in}}-x_{1}(t)\right)
\end{aligned}
$$

Equilibria are $\left(\theta_{\text {in }}+n \pi, 0\right)$ since

$$
\begin{aligned}
& \dot{x}_{1}=0 \Rightarrow x_{2}=0 \\
& \dot{x}_{2}=0 \Rightarrow \sin \left(\theta_{\text {in }}-x_{1}\right)=0 \Rightarrow x_{1}=\theta_{\text {in }}+n \pi
\end{aligned}
$$

Phase-Locked Loop
A PLL tracks phase $\theta_{\text {in }}(t)$ of a signal $s_{\text {in }}(t)=A \sin \left[\omega t+\theta_{\text {in }}(t)\right]$.

Lecture 3

Classification of Equilibria

Linearization gives the following characteristic equations:
n even:

$$
\lambda^{2}+T^{-1} \lambda+K T^{-1}=0
$$

$K>(4 T)^{-1}$ gives stable focus
$0<K<(4 T)^{-1}$ gives stable node
\underline{n} odd:

$$
\lambda^{2}+T^{-1} \lambda-K T^{-1}=0
$$

Saddle points for all $K, T>0$

Phase-Plane for PLL
$(K, T)=(1 / 2,1)$: focuses $(2 k \pi, 0)$, saddle points $((2 k+1) \pi, 0)$

Periodic solution: Polar coordinates.

$$
\begin{aligned}
& x_{1}=r \cos \theta \quad \Rightarrow \quad \dot{x}_{1}=\cos \theta \dot{r}-r \sin \theta \dot{\theta} \\
& x_{2}=r \sin \theta \quad \Rightarrow \quad \dot{x}_{2}=\sin \theta \dot{r}+r \cos \theta \dot{\theta}
\end{aligned}
$$

implies

$$
\binom{\dot{r}}{\dot{\theta}}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & r \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\dot{x}_{1}}{\dot{x}_{2}}
$$

Now

$$
\begin{aligned}
& \dot{x}_{1}=r\left(1-r^{2}\right) \cos \theta-r \sin \theta \\
& \dot{x}_{2}=r\left(1-r^{2}\right) \sin \theta+r \cos \theta
\end{aligned}
$$

gives

$$
\begin{aligned}
& \dot{r}=r\left(1-r^{2}\right) \\
& \dot{\theta}=1
\end{aligned}
$$

Only $r=1$ is a stable equilibrium!

Periodic Solutions

Example of an asymptotically stable periodic solution:

$$
\begin{align*}
& \dot{x}_{1}=x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \dot{x}_{2}=x_{1}+x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right) \tag{1}
\end{align*}
$$

Lecture 3

EL2620

A system has a periodic solution if for some $T>0$

$$
x(t+T)=x(t), \quad \forall t \geq 0
$$

A periodic orbit is the image of x in the phase portrait.

- When does there exist a periodic solution?
- When is it stable?

Note that $x(t) \equiv$ const is by convention not regarded periodic

Poincaré Map

Flow

Assume $\phi_{t}\left(x_{0}\right)$ is a periodic solution with period T
Let $\Sigma \subset \mathbb{R}^{n}$ be an $n-1$-dim hyperplane transverse to f at x_{0}.
Definition: The Poincaré map $P: \Sigma \rightarrow \Sigma$ is

$$
P(x)=\phi_{\tau(x)}(x)
$$

where $\tau(x)$ is the time of first return.

Existence of Periodic Orbits

A point x^{*} such that $P\left(x^{*}\right)=x^{*}$ corresponds to a periodic orbit.

x^{*} is called a fixed point of P

1 minute exercise: What does a fixed point of P^{k} corresponds to?

Stable Periodic Orbit

The linearization of P around x^{*} gives a matrix W such that

$$
P(x) \approx W x
$$

if x is close to x^{*}

- $\lambda_{j}(W)=1$ for some j
- If $\left|\lambda_{i}(W)\right|<1$ for all $i \neq j$, then the corresponding periodic orbit is asymptotically stable
- If $\left|\lambda_{i}(W)\right|>1$ for some i, then the periodic orbit is unstable.

The Poincaré map is

$$
P\left(r_{0}, \theta_{0}\right)=\binom{\left[1+\left(r_{0}^{-2}-1\right) e^{-2 \cdot 2 \pi}\right]^{-1 / 2}}{\theta_{0}+2 \pi}
$$

$\left(r_{0}, \theta_{0}\right)=(1,2 \pi k)$ is a fixed point.
The periodic solution that corresponds to $(r(t), \theta(t))=(1, t)$ is asymptotically stable because

$$
W=\frac{d P}{d\left(r_{0}, \theta_{0}\right)}(1,2 \pi k)=\left(\begin{array}{cc}
e^{-4 \pi} & 0 \\
0 & 1
\end{array}\right)
$$

\Rightarrow Stable periodic orbit (as we already knew for this example)

Example-Stable Unit Circle

Rewrite (1) in polar coordinates:

$$
\begin{aligned}
& \dot{r}=r\left(1-r^{2}\right) \\
& \dot{\theta}=1
\end{aligned}
$$

Choose $\Sigma=\{(r, \theta): r>0, \theta=2 \pi k\}$.
The solution is

$$
\phi_{t}\left(r_{0}, \theta_{0}\right)=\left(\left[1+\left(r_{0}^{-2}-1\right) e^{-2 t}\right]^{-1 / 2}, t+\theta_{0}\right)
$$

First return time from any point $\left(r_{0}, \theta_{0}\right) \in \Sigma$ is

$$
\tau\left(r_{0}, \theta_{0}\right)=2 \pi
$$

