2010

Today's Goal EL2620 Nonlinear Control You should be able to Lecture 3 Explain local and global stability Linearize around equilibria and trajectories Stability definitions • Sketch phase portraits for two-dimensional systems Linearization · Classify equilibria into nodes, focuses, saddle points, and • Phase-plane analysis center points • Periodic solutions • Analyze stability of periodic solutions through Poincaré maps 2 Lecture 3 1 Lecture 3 EL2620 2010 EL2620 2010 **Local Stability** Consider $\dot{x} = f(x)$ with f(0) = 0**Definition:** The equilibrium $x^* = 0$ is stable if for all $\epsilon > 0$ there **Asymptotic Stability** exists $\delta = \delta(\epsilon) > 0$ such that **Definition:** The equilibrium x = 0 is asymptotically stable if it is $||x(0)|| < \delta \quad \Rightarrow \quad ||x(t)|| < \epsilon, \quad \forall t \ge 0$ stable and δ can be chosen such that $\|x(0)\| < \delta \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0$ xThe equilibrium is globally asymptotically stable if it is stable and $\lim_{t\to\infty} x(t) = 0 \text{ for all } x(0).$ If $x^* = 0$ is not stable it is called **unstable**.

2010

EL2620

2010

Linearization Around a Trajectory

Let $(x_0(t), u_0(t))$ denote a solution to $\dot{x} = f(x, u)$ and consider another solution $(x(t), u(t)) = (x_0(t) + \tilde{x}(t), u_0(t) + \tilde{u}(t))$:

$$\dot{x}(t) = f(x_0(t) + \tilde{x}(t), u_0(t) + \tilde{u}(t))$$

= $f(x_0(t), u_0(t)) + \frac{\partial f}{\partial x}(x_0(t), u_0(t))\tilde{x}(t)$
+ $\frac{\partial f}{\partial u}(x_0(t), u_0(t))\tilde{u}(t) + \mathcal{O}(||\tilde{x}, \tilde{u}||^2)$

$$(x_0(t), u_0(t)) \\ (x_0(t) + \tilde{x}(t), u_0(t) + \tilde{u}(t))$$

Hence, for small (\tilde{x}, \tilde{u}) , approximately

$$\dot{\tilde{x}}(t) = A(x_0(t), u_0(t))\tilde{x}(t) + B(x_0(t), u_0(t))\tilde{u}(t)$$

~ ~

where

$$A(x_0(t), u_0(t)) = \frac{\partial f}{\partial x}(x_0(t), u_0(t))$$
$$B(x_0(t), u_0(t)) = \frac{\partial f}{\partial u}(x_0(t), u_0(t))$$

Note that A and B are time dependent. However, if $(x_0(t), u_0(t)) \equiv (x_0, u_0)$ then A and B are constant.

5	Lecture 3	6
2010	EL2620	2010

7

Lecture 3

EL2620

$$\dot{h}(t) = v(t)$$

$$\dot{v}(t) = -g + v_e u(t)/m(t)$$

$$\dot{m}(t) = -u(t)$$

Let $x_0(t) = (h_0(t), v_0(t), m_0(t))^T$, $u_0(t) \equiv u_0 > 0$, be a solution. Then.

Example

$$\dot{\tilde{x}}(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -\frac{v_e u_0}{(m_0 - u_0 t)^2} \\ 0 & 0 & 0 \end{pmatrix} \tilde{x}(t) + \begin{pmatrix} 0 \\ \frac{v_e}{m_0 - u_0 t} \\ 1 \end{pmatrix} \tilde{u}(t)$$

Pointwise Left Half-Plane Eigenvalues of A(t) Do *Not* Impose Stability

$$A(t) = \begin{pmatrix} -1 + \alpha \cos^2 t & 1 - \alpha \sin t \cos t \\ -1 - \alpha \sin t \cos t & -1 + \alpha \sin^2 t \end{pmatrix}, \quad \alpha > 0$$

Pointwise eigenvalues are given by

$$\lambda(t) = \lambda = \frac{\alpha - 2 \pm \sqrt{\alpha^2 - 4}}{2}$$

which are stable for $0 < \alpha < 2$. However,

$$x(t) = \begin{pmatrix} e^{(\alpha-1)t}\cos t & e^{-t}\sin t\\ -e^{(\alpha-1)t}\sin t & e^{-t}\cos t \end{pmatrix} x(0),$$

is unbounded solution for $\alpha > 1$.

2010

The linearization of

$$\dot{x}_1 = -x_1^2 + x_1 + \sin x_2$$
$$\dot{x}_2 = \cos x_2 - x_1^3 - 5x_2$$

Example

at the equilibrium $x_0 = (1, 0)^T$ is given by

$$A = \begin{pmatrix} -1 & 1 \\ -3 & -5 \end{pmatrix}, \qquad \lambda(A) = \{-2, -4\}$$

 x_0 is thus an asymptotically stable equilibrium for the *nonlinear* system.

Linear Systems Revival

Lyapunov's Linearization Method

Theorem: Let x_0 be an equilibrium of $\dot{x} = f(x)$ with $f \in \mathbb{C}^1$.

Denote $A = \frac{\partial f}{\partial x}(x_0)$ and $\alpha(A) = \max \operatorname{Re}(\lambda(A))$.

The fundamental result for linear systems theory!

The theorem is also called Lyapunov's Indirect Method.

The case $\alpha(A) = 0$ needs further investigation.

• If $\alpha(A) < 0$, then x_0 is asymptotically stable

• If $\alpha(A) > 0$, then x_0 is unstable

A proof is given next lecture.

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Analytic solution: $x(t) = e^{At}x(0), t \ge 0.$

If A is diagonalizable, then

$$e^{At} = V e^{\Lambda t} V^{-1} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{-1}$$

where v_1, v_2 are the eigenvectors of A ($Av_1 = \lambda_1 v_1$ etc). This implies that

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2,$$

where the constants c_1 and c_2 are given by the initial conditions

Example: Two real negative eigenvalues

Given the eigenvalues $\lambda_1 < \lambda_2 < 0$, with corresponding eigenvectors v_1 and v_2 , respectively.

Solution: $x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$

Slow eigenvalue/vector: $x(t) \approx c_2 e^{\lambda_2 t} v_2$ for large t. Moves along the slow eigenvector towards x = 0 for large t

Fast eigenvalue/vector: $x(t) \approx c_1 e^{\lambda_1 t} v_1 + c_2 v_2$ for small t. Moves along the fast eigenvector for small t

2010

Equilibrium Points for Linear Systems

-0.4

-0.6

-0.8

-1

-0.5

0.5

In polar coordinates $r = \sqrt{x_1^2 + x_2^2}$, $\theta = \arctan x_2/x_1$ $(x_1 = r \cos \theta, x_2 = r \sin \theta)$:

Lecture 3

15

-0.4

-0.6

-0.8

-1

-0.5

0.5

2010

2010

Example—Stable Node $\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} x$ $(\lambda_1, \lambda_2) = (-1, -2) \text{ and } \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ v_1 is the slow direction and v_2 is the fast.	Fast: $x_2 = -x_1 + c_3$ Slow: $x_2 = 0$
Lecture 3 17	Lecture 3 18
EL2620 2010	EL2620 2010
5 minute exercise : What is the phase portrait if $\lambda_1 = \lambda_2$?	Phase-Plane Analysis for Nonlinear Systems Close to equilibrium points "nonlinear system" \approx "linear system" Theorem: Assume

Hint: Two cases; only one linear independent eigenvector or all vectors are eigenvectors

 $\dot{x} = f(x) = Ax + g(x),$

with $\lim_{\|x\|\to 0}\|g(x)\|/\|x\|=0.$ If $\dot{z}=Az$ has a focus, node, or saddle point, then $\dot{x}=f(x)$ has the same type of equilibrium at the origin.

Remark: If the linearized system has a center, then the nonlinear system has either a center or a focus.

Lecture 3

2010

How to Draw Phase Portraits

By hand:

- 1. Find equilibria
- 2. Sketch local behavior around equilibria
- 3. Sketch (\dot{x}_1,\dot{x}_2) for some other points. Notice that

$$\frac{dx_2}{dx_1} = \frac{\dot{x}_1}{\dot{x}_2}$$

- 4. Try to find possible periodic orbits
- 5. Guess solutions

By computer:

1. Matlab: dee or pplane

Lecture 3

EL2620

2010

21

Phase-Plane Analysis of PLL

Let
$$(x_1, x_2) = (\theta_{\text{out}}, \dot{\theta}_{\text{out}}), K, T > 0$$
, and $\theta_{\text{in}}(t) \equiv \theta_{\text{in}}$.
 $\dot{x}_1(t) = x_2(t)$
 $\dot{x}_2(t) = -T^{-1}x_2(t) + KT^{-1}\sin(\theta_{\text{in}} - x_1(t))$

Equilibria are $(\theta_{in} + n\pi, 0)$ since

$$\begin{split} \dot{x}_1 &= 0 \Rightarrow x_2 = 0 \\ \dot{x}_2 &= 0 \Rightarrow \sin(\theta_{in} - x_1) = 0 \Rightarrow x_1 = \theta_{\text{in}} + n\pi \end{split}$$

Phase-Locked Loop

A PLL tracks phase $\theta_{in}(t)$ of a signal $s_{in}(t) = A \sin[\omega t + \theta_{in}(t)]$.

Lecture 3		22

EL2620

2010

Classification of Equilibria

Linearization gives the following characteristic equations:

n even:

$$\lambda^2 + T^{-1}\lambda + KT^{-1} = 0$$

 $K > (4T)^{-1}$ gives stable focus $0 < K < (4T)^{-1}$ gives stable node

 $\underline{n} \text{ odd:}$

$$\lambda^2 + T^{-1}\lambda - KT^{-1} = 0$$

Saddle points for all K, T > 0

EL2620

Periodic Solutions

Example of an asymptotically stable periodic solution:

A **periodic orbit** is the image of x in the phase portrait.

Note that $x(t) \equiv \text{const}$ is by convention not regarded periodic

• When does there exist a periodic solution?

2010

Phase-Plane for PLL

Now

$$\dot{x}_1 = r(1 - r^2)\cos\theta - r\sin\theta$$
$$\dot{x}_2 = r(1 - r^2)\sin\theta + r\cos\theta$$

gives

 $\dot{r} = r(1 - r^2)$ $\dot{\theta} = 1$

Only r = 1 is a stable equilibrium!

Lecture 3

• When is it stable?

Poincaré Map

Assume $\phi_t(x_0)$ is a periodic solution with period T. Let $\Sigma \subset \mathbb{R}^n$ be an n-1-dim hyperplane transverse to f at x_0 . Definition: The Poincaré map $P: \Sigma \to \Sigma$ is

$$P(x) = \phi_{\tau(x)}(x)$$

where $\tau(x)$ is the time of first return.

1 minute exercise: What does a fixed point of P^k corresponds to?

Existence of Periodic Orbits

Flow

 $\phi_t(x_0)$

to emphasize the dependence on the initial point $x_0 \in \mathbb{R}^n$

The solution of $\dot{x} = f(x)$ is sometimes denoted

 $\phi_t(\cdot)$ is called the **flow**.

A point x^* such that $P(x^*) = x^*$ corresponds to a periodic orbit.

 x^* is called a **fixed point** of *P*.

Lecture 5	Lecture	3
-----------	---------	---

2010

Lecture 3

34

Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

$$\dot{r} = r(1 - r^2)$$
$$\dot{\theta} = 1$$

Choose $\Sigma = \{(r, \theta) : r > 0, \theta = 2\pi k\}.$ The solution is

$$\phi_t(r_0, \theta_0) = \left([1 + (r_0^{-2} - 1)e^{-2t}]^{-1/2}, t + \theta_0 \right)$$

First return time from any point $(r_0, \theta_0) \in \Sigma$ is

$$\tau(r_0,\theta_0)=2\pi.$$

Lecture 3			

EL2620

2010

33

The Poincaré map is

if x is close to x^* .

• $\lambda_i(W) = 1$ for some j

orbit is asymptotically stable

$$P(r_0, \theta_0) = \begin{pmatrix} [1 + (r_0^{-2} - 1)e^{-2 \cdot 2\pi}]^{-1/2} \\ \theta_0 + 2\pi \end{pmatrix}$$

Stable Periodic Orbit

 $P(x) \approx Wx$

• If $|\lambda_i(W)| < 1$ for all $i \neq j$, then the corresponding periodic

• If $|\lambda_i(W)| > 1$ for some *i*, then the periodic orbit is **unstable**.

The linearization of P around x^* gives a matrix W such that

 $(r_0, \theta_0) = (1, 2\pi k)$ is a fixed point.

The periodic solution that corresponds to $(r(t),\theta(t))=(1,t)$ is asymptotically stable because

$$W = \frac{dP}{d(r_0, \theta_0)}(1, 2\pi k) = \begin{pmatrix} e^{-4\pi} & 0\\ 0 & 1 \end{pmatrix}$$

 \Rightarrow Stable periodic orbit (as we already knew for this example) !