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EL2620 Nonlinear Control

Lecture 3

• Stability definitions

• Linearization

• Phase-plane analysis

• Periodic solutions
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Today’s Goal

You should be able to

• Explain local and global stability

• Linearize around equilibria and trajectories

• Sketch phase portraits for two-dimensional systems

• Classify equilibria into nodes, focuses, saddle points, and
center points

• Analyze stability of periodic solutions through Poincaré maps
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Local Stability
Consider ẋ = f(x) with f(0) = 0

Definition: The equilibrium x∗ = 0 is stable if for all ǫ > 0 there
exists δ = δ(ǫ) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0

x(t)

δ

ǫ

If x∗ = 0 is not stable it is called unstable .
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Asymptotic Stability

Definition: The equilibrium x = 0 is asymptotically stable if it is
stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

The equilibrium is globally asymptotically stable if it is stable and
limt→∞ x(t) = 0 for all x(0).
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Linearization Around a Trajectory

Let (x0(t), u0(t)) denote a solution to ẋ = f(x, u) and consider
another solution (x(t), u(t)) = (x0(t) + x̃(t), u0(t) + ũ(t)):

ẋ(t) = f(x0(t) + x̃(t), u0(t) + ũ(t))

= f(x0(t), u0(t)) +
∂f

∂x
(x0(t), u0(t))x̃(t)

+
∂f

∂u
(x0(t), u0(t))ũ(t) + O(‖x̃, ũ‖2)

(x0(t), u0(t))

(x0(t) + x̃(t), u0(t) + ũ(t))
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Hence, for small (x̃, ũ), approximately

˙̃x(t) = A(x0(t), u0(t))x̃(t) + B(x0(t), u0(t))ũ(t)

where

A(x0(t), u0(t)) =
∂f

∂x
(x0(t), u0(t))

B(x0(t), u0(t)) =
∂f

∂u
(x0(t), u0(t))

Note that A and B are time dependent. However, if
(x0(t), u0(t)) ≡ (x0, u0) then A and B are constant.
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Example

h(t)

m(t)

ḣ(t) = v(t)

v̇(t) = −g + veu(t)/m(t)

ṁ(t) = −u(t)

Let x0(t) = (h0(t), v0(t),m0(t))
T , u0(t) ≡ u0 > 0, be a solution.

Then,

˙̃x(t) =







0 1 0

0 0 − veu0

(m0−u0t)2

0 0 0






x̃(t) +





0
ve

m0−u0t

1



 ũ(t)
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Pointwise Left Half-Plane Eigenvalues of
A(t) Do Not Impose Stability

A(t) =

(

−1 + α cos2 t 1 − α sin t cos t

−1 − α sin t cos t −1 + α sin2 t

)

, α > 0

Pointwise eigenvalues are given by

λ(t) = λ =
α − 2 ±

√
α2 − 4

2

which are stable for 0 < α < 2. However,

x(t) =

(

e(α−1)t cos t e−t sin t

−e(α−1)t sin t e−t cos t

)

x(0),

is unbounded solution for α > 1.
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Lyapunov’s Linearization Method

Theorem: Let x0 be an equilibrium of ẋ = f(x) with f ∈ C
1.

Denote A = ∂f
∂x

(x0) and α(A) = max Re(λ(A)).

• If α(A) < 0, then x0 is asymptotically stable

• If α(A) > 0, then x0 is unstable

The fundamental result for linear systems theory!

The case α(A) = 0 needs further investigation.

The theorem is also called Lyapunov’s Indirect Method.

A proof is given next lecture.
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Example

The linearization of

ẋ1 = −x2
1 + x1 + sin x2

ẋ2 = cos x2 − x3
1 − 5x2

at the equilibrium x0 = (1, 0)T is given by

A =

(

−1 1

−3 −5

)

, λ(A) = {−2,−4}

x0 is thus an asymptotically stable equilibrium for the nonlinear
system.
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Linear Systems Revival

d

dt

[

x1

x2

]

= A

[

x1

x2

]

Analytic solution: x(t) = eAtx(0), t ≥ 0.

If A is diagonalizable, then

eAt = V eΛtV −1 =
[

v1 v2

]

[

eλ1t 0

0 eλ2t

]

[

v1 v2

]−1

where v1, v2 are the eigenvectors of A (Av1 = λ1v1 etc).

This implies that

x(t) = c1e
λ1tv1 + c2e

λ2tv2,

where the constants c1 and c2 are given by the initial conditions
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Example: Two real negative eigenvalues

Given the eigenvalues λ1 < λ2 < 0, with corresponding
eigenvectors v1 and v2, respectively.

Solution: x(t) = c1e
λ1tv1 + c2e

λ2tv2

Slow eigenvalue/vector: x(t) ≈ c2e
λ2tv2 for large t.

Moves along the slow eigenvector towards x = 0 for large t

Fast eigenvalue/vector: x(t) ≈ c1e
λ1tv1 + c2v2 for small t.

Moves along the fast eigenvector for small t
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Phase-Plane Analysis for Linear Systems

The location of the eigenvalues λ(A) determines the characteristics
of the trajectories.

Six cases:

stable node unstable node saddle point

Im λi = 0 : λ1, λ2 < 0 λ1, λ2 > 0 λ1 < 0 < λ2

Im λi 6= 0 : Reλi < 0 Reλi > 0 Re λi = 0

stable focus unstable focus center point
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Equilibrium Points for Linear Systems

Re λ

Im λ

x1

x2
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Example—Unstable Focus

ẋ =

[

σ −ω

ω σ

]

x, σ, ω > 0, λ1,2 = σ ± iω

x(t) = eAtx(0) =

[

1 1

−i i

] [

eσteiωt 0

0 eσte−iωt

] [

1 1

−i i

]−1

x(0)

In polar coordinates r =
√

x2
1 + x2

2, θ = arctan x2/x1

(x1 = r cos θ, x2 = r sin θ):

ṙ = σr

θ̇ = ω
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λ1,2 = 1 ± i λ1,2 = 0.3 ± i
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Example—Stable Node

ẋ =

[

−1 1

0 −2

]

x

(λ1, λ2) = (−1,−2) and
[

v1 v2

]

=

[

1 −1

0 1

]

v1 is the slow direction and v2 is the fast.
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Fast: x2 = −x1 + c3

Slow: x2 = 0
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5 minute exercise: What is the phase portrait if λ1 = λ2?

Hint: Two cases; only one linear independent eigenvector or all
vectors are eigenvectors
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Phase-Plane Analysis for Nonlinear Systems

Close to equilibrium points “nonlinear system” ≈ “linear system”

Theorem: Assume

ẋ = f(x) = Ax + g(x),

with lim‖x‖→0 ‖g(x)‖/‖x‖ = 0. If ż = Az has a focus, node, or
saddle point, then ẋ = f(x) has the same type of equilibrium at the
origin.

Remark: If the linearized system has a center, then the nonlinear
system has either a center or a focus.
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How to Draw Phase Portraits

By hand:

1. Find equilibria

2. Sketch local behavior around equilibria

3. Sketch (ẋ1, ẋ2) for some other points. Notice that

dx2

dx1

=
ẋ1

ẋ2

4. Try to find possible periodic orbits

5. Guess solutions

By computer:

1. Matlab: dee or pplane
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Phase-Locked Loop

A PLL tracks phase θin(t) of a signal sin(t) = A sin[ωt + θin(t)].

Phase
Detector Filter VCO

sin “θout”

sin(·)
−

e K

1 + sT

1

s

θin θoutθ̇out
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Phase-Plane Analysis of PLL

Let (x1, x2) = (θout, θ̇out), K,T > 0, and θin(t) ≡ θin.

ẋ1(t) = x2(t)

ẋ2(t) = −T−1x2(t) + KT−1 sin(θin − x1(t))

Equilibria are (θin + nπ, 0) since

ẋ1 = 0 ⇒ x2 = 0

ẋ2 = 0 ⇒ sin(θin − x1) = 0 ⇒ x1 = θin + nπ

Lecture 3 23

EL2620 2010

Classification of Equilibria

Linearization gives the following characteristic equations:

n even:

λ2 + T−1λ + KT−1 = 0

K > (4T )−1 gives stable focus
0 < K < (4T )−1 gives stable node

n odd:

λ2 + T−1λ − KT−1 = 0

Saddle points for all K,T > 0
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Phase-Plane for PLL

(K,T ) = (1/2, 1): focuses
(

2kπ, 0
)

, saddle points
(

(2k + 1)π, 0
)

Lecture 3 25

EL2620 2010

Periodic Solutions

Example of an asymptotically stable periodic solution:

ẋ1 = x1 − x2 − x1(x
2
1 + x2

2)

ẋ2 = x1 + x2 − x2(x
2
1 + x2

2)
(1)
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Periodic solution: Polar coordinates.
x1 = r cos θ ⇒ ẋ1 = cos θṙ − r sin θθ̇

x2 = r sin θ ⇒ ẋ2 = sin θṙ + r cos θθ̇

implies
(

ṙ

θ̇

)

=
1

r

(

r cos θ r sin θ

− sin θ cos θ

)(

ẋ1

ẋ2

)

Now
ẋ1 = r(1 − r2) cos θ − r sin θ

ẋ2 = r(1 − r2) sin θ + r cos θ

gives
ṙ = r(1 − r2)

θ̇ = 1

Only r = 1 is a stable equilibrium!
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A system has a periodic solution if for some T > 0

x(t + T ) = x(t), ∀t ≥ 0

A periodic orbit is the image of x in the phase portrait.

• When does there exist a periodic solution?

• When is it stable?

Note that x(t) ≡ const is by convention not regarded periodic
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Flow

The solution of ẋ = f(x) is sometimes denoted

φt(x0)

to emphasize the dependence on the initial point x0 ∈ R
n

φt(·) is called the flow .
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Poincar é Map

Assume φt(x0) is a periodic solution with period T .

Let Σ ⊂ R
n be an n − 1-dim hyperplane transverse to f at x0.

Definition: The Poincaré map P : Σ → Σ is

P (x) = φτ(x)(x)

where τ(x) is the time of first return.

x φt(x)

Σ

P (x)
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Existence of Periodic Orbits

A point x∗ such that P (x∗) = x∗ corresponds to a periodic orbit.

P (x∗) = x∗

x∗ is called a fixed point of P .
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1 minute exercise: What does a fixed point of P k corresponds to?
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Stable Periodic Orbit

The linearization of P around x∗ gives a matrix W such that

P (x) ≈ Wx

if x is close to x∗.

• λj(W ) = 1 for some j

• If |λi(W )| < 1 for all i 6= j, then the corresponding periodic
orbit is asymptotically stable

• If |λi(W )| > 1 for some i, then the periodic orbit is unstable .
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Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

ṙ = r(1 − r2)

θ̇ = 1

Choose Σ = {(r, θ) : r > 0, θ = 2πk}.

The solution is

φt(r0, θ0) =

(

[1 + (r−2
0 − 1)e−2t]−1/2, t + θ0

)

First return time from any point (r0, θ0) ∈ Σ is

τ(r0, θ0) = 2π.
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The Poincaré map is

P (r0, θ0) =

(

[1 + (r−2
0 − 1)e−2·2π]−1/2

θ0 + 2π

)

(r0, θ0) = (1, 2πk) is a fixed point.

The periodic solution that corresponds to (r(t), θ(t)) = (1, t) is
asymptotically stable because

W =
dP

d(r0, θ0)
(1, 2πk) =

(

e−4π 0

0 1

)

⇒ Stable periodic orbit (as we already knew for this example) !
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