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EL2620 Nonlinear Control

Lecture 3

e Stability definitions
e Linearization

e Phase-plane analysis
e Periodic solutions
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Today’s Goal

You should be able to
e Explain local and global stability
e Linearize around equilibria and trajectories
e Sketch phase portraits for two-dimensional systems

e Classify equilibria into nodes, focuses, saddle points, and
center points

e Analyze stability of periodic solutions through Poincaré maps
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Local Stability
Consider & = f(z) with f(0) =0

Definition: The equilibrium 2™ = 0 is stable if for all ¢ > 0 there
exists 0 = d(€) > 0 such that

lz(O)| <0 = [le®)ll <e Vi=0

x(t

If £* = 0 is not stable it is called unstable .
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Asymptotic Stability

Definition: The equilibrium x = 0 is asymptotically stable if it is
stable and 9 can be chosen such that

[=(O) <8 = lima(t) =0

The equilibrium is globally asymptotically stable if it is stable and
lim o 2(t) = 0 for all z(0).
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Linearization Around a Trajectory
Let (h (t)l (t)() (EI i ote( a;)solut(lon Eo):z: = s gx, u() ?nd co(n?)der Hence, for small (, @), approximately
another solution (x(t), u(t . ~ -
B(t) = flxo(t) + (t), uo(t) +alt)) here A= A0 ol Bl ot
= Fln(t), uolt)) + S (wolt), wo()a(0) ) o
(o(t), uo(t)) = 57 (wo(t), uo(t))
Blao(t), uo(t)) = 92 (xo(t), uo(1)

Note that A and B are time dependent. However, if
(x0(t),uo(t)) = (x0,up) then A and B are constant.

Lecture 3 5 Lecture 3
EL2620 2010 EL2620 2010
Example Pointwise Left Half-Plane Eigenvalues of
A(t) Do Not Impose Stability
h(t) =) —1+ acos?t 1 — «asintcost
(t) = —g + vou(t)/m(t) A = ( . ) s
‘ l m(t) = —u(t) —1 —asintcost —1+4+ asin“t
h(t) l Pointwise eigenvalues are given by
. _ S22 —
Let zo(t) = (ho(t), vo(t), mo(t))", ug(t) = ug > 0, be a solution At) =\ = a—2+va—4
Then, 2
0 1 0 0 which are stable for 0 < a < 2. However,
zt)=[0 0 — ety | 2(t) + e | a(t) el Dicost e tsint
00 0 N z(t) e Viging eteost ) V1O

is unbounded solution for ov > 1.
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Lyapunov’s Linearization Method
Theorem: Let 7 be an equilibrium of & = f(z) with f € CL.
Denote A = %(xo) and a(A) = max Re(A(A4)).

o [f a(A) < 0, then x( is asymptotically stable

e if a(A) > 0, then x is unstable

The fundamental result for linear systems theory!
The case a(A) = 0 needs further investigation.
The theorem is also called Lyapunov’s Indirect Method.

A proof is given next lecture.
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Example

The linearization of

= —x% + 21 + sin o

T9 = COS Toy — :U? — b1y

at the equilibrium zo = (1,0)7 is given by

A:(ié _15> MA) = {—2, —4}

xq is thus an asymptotically stable equilibrium for the nonlinear
system.
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Linear Systems Revival

d |z T

- A

dt [352] L’fz]
Analytic solution:  z(t) = ex(0), ¢ > 0.

If A is diagonalizable, then

At O -~
et = VeMy Tl = [vl UQ] [eo e’\ﬂ} [vl vg] !

where v1, v are the eigenvectors of A (Av; = Ajv; etc).
This implies that

A Aot

2(t) = creMuy + ey,

where the constants ¢; and ¢, are given by the initial conditions
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Example: Two real negative eigenvalues

Given the eigenvalues \; < Ay < 0, with corresponding
eigenvectors v and vg, respectively.

Solution: z(t) = creMtv; + cpe??tv,

Slow eigenvalue/vector: x(t) ~ coe?2tv, for large t.

Moves along the slow eigenvector towards © = 0 for large ©

Fast eigenvalue/vector: () ~ cie*tv; + covy for small .

Moves along the fast eigenvector for small ¢
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Phase-Plane Analysis for Linear Systems

The location of the eigenvalues A(A) determines the characteristics
of the trajectories.

EL2620 2010

Equilibrium Points for Linear Systems

T2
5w N NN F
& .
Six cases: fmA
sl Red R e
stable node unstable node saddle point
ImA=0: A, <0 A, A9 >0 AL <0< A
= =N ey
Im)\ #0: Re); <0 Re); >0 ReX; =0 \&:/ \&i/ &//
stable focus unstable focus center point
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Example—Unstable Focus
)\1’2:1:|:’i )\1,220.3:|:Z'

. o —w .
x—[ ]x, o,w >0, Ao =0 Tiw
g

() = etz (0) = {1 1} {eatgm (,to_w] {_12 1} _lx(O)

—7 1 ele 1

In polar coordinates r = /27 + 23, 6 = arctan x /2,
(r1 =rcosf, xo = rsinb):
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Fhase Flane
Phase Plang
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Example—Stable Node

i = [_01 _12}95
(A, Ae) = (=1,-2) and [v; vy = [(1) —11]

v is the slow direction and vs is the fast.
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Phase Plane

#2
o

-1 -0.5 o ns 1

Fast: to = —x1 + c3
Slow: 9 = 0

Lecture 3 18

EL2620

5 minute exercise: What is the phase portrait if A\; = A\y?

Hint: Two cases; only one linear independent eigenvector or all
vectors are eigenvectors
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Phase-Plane Analysis for Nonlinear Systems

Close to equilibrium points “nonlinear system” = “linear system”

Theorem: Assume
&= f(x) = Az + g(z),

with limy o ||g(@)||/||z|| = 0. If £ = Az has a focus, node, or

saddle point, then z = f(x) has the same type of equilibrium at the
origin.

Remark: If the linearized system has a center, then the nonlinear
system has either a center or a focus.
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How to Draw Phase Portraits

By hand:
1. Find equilibria
2. Sketch local behavior around equilibria

3. Sketch (&1, @5) for some other points. Notice that

dl’z jjl

dry iy
4. Try to find possible periodic orbits
5. Guess solutions
By computer:

1. Matlab: dee or ppl ane

Lecture 3
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Phase-Locked Loop

A PLL tracks phase 6,,() of a signal si,(t) = Asin[wt + 0;,(t)].

S0 o\ B
—~| Phase Filter VCO >

Detector

K 90Ut 1 HOUI

. 6 .
—QO{sin0) 1+ 5T s
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Phase-Plane Analysis of PLL

Let (z1,22) = (Gou, éout), K, T >0, and 6,(t) = 6,.

do(t) = =T 'ay(t) + KT 'sin(f, — z1(t))

Equilibria are (6,, + n,0) since

T1=0=>2=0
.Z.'2:0:>Siﬂ(9m—x1):0:>x1:¢9in_|_nﬂ-

Lecture 3
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Classification of Equilibria

Linearization gives the following characteristic equations:

7, even.
N4+T N+ KT '=0

K > (4T)7! gives stable focus
0 < K < (4T)! gives stable node

1 odd:
/\2+T*1)\—KT*1 =0

Saddle points for all K,T" > 0
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Phase-Plane for PLL

(K,T) = (1/2,1): focuses (2km,0), saddle points ((2k + 1), 0)
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Periodic Solutions
Example of an asymptotically stable periodic solution:

i1 =1 — 29 — 21(2] + 23)

Fhase Flane

4 . . 9 9 Q)

. To = x1 + 12 — x2(x] + x3)

o I g I SR ] iz

-4 i i i
-4 -2 i} 2 4
Eal
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Periodic solution: Polar coordinates.
ry =rcos = 1, =cosbr — 7 sin 69

To=rsinfd = Ig9= sin 07 + r cos 00

implies
7 _1 rcosf rsind 1
0 ) r\ —sinf cosf To
Now
i1 =7r(1 —7r?)cosd —rsinf
iy =r(1—7r?)sind +rcosb
gives
7=7r(l-7r?%
0=1

Only 7 = 1 is a stable equilibrium!
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A system has a periodic solution if for some T" > 0
z(t+T) = x(t), vVt >0

A periodic orbit is the image of x in the phase portrait.

e When does there exist a periodic solution?

e When is it stable?

Note that (%) = const is by convention not regarded periodic
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Flow

The solution of & = f(x) is sometimes denoted

¢+(70)
to emphasize the dependence on the initial point xy € R"
¢ (+) is called the flow .
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Poincar € Map

Assume ¢, () is a periodic solution with period 7".

Let > C R™ be an n — 1-dim hyperplane transverse to f at x.
Definition: The Poincaré map P : X — XY is

where 7 () is the time of first return.

oN (f/U

Lecture 3 30

EL2620 2010

Existence of Periodic Orbits

A point x* such that P(x*) = * corresponds to a periodic orbit.

Plz*) ==z

x* is called a fixed point of P.
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1 minute exercise: What does a fixed point of P corresponds to?
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Stable Periodic Orbit

The linearization of P around z* gives a matrix W/ such that
P(x) = Wz
if x is close to x*.
e )\;(W) =1 for some j

o If [X\;(W)| < Lforalli # j, then the corresponding periodic
orbit is asymptotically stable

e If |\;(1W)| > 1 for some i, then the periodic orbit is unstable .
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Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

Choose ¥ = {(r,0) : r > 0,0 = 27k}

The solution is
¢e(ro, b)) = ([1 +(rg2 = De 712t + 0())

First return time from any point (7"0, 90) € Xis

7(ro,6p) = 2.

Lecture 3 34

EL2620 2010

The Poincaré map is

P(ro,00) = ([1 +(rg” = 1)62'27"]1/2)

00 + 27
(ro,00) = (1, 27k) is a fixed point.

The periodic solution that corresponds to (7 (), 0(t)) = (1,¢) is
asymptotically stable because

dP e 0
=—(1,27k) =
W d(?"o,eo)( » 470 ) ( 0 1)

= Stable periodic orbit (as we already knew for this example) !
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