2E1262 Nonlinear Control

Lecture 2

- Wrap-up of Lecture 1: Nonlinear systems and phenomena
- Modeling and simulation in Simulink
- Introduction to phase-plane analysis

Lecture 2

2011

Lecture 2

2

EL2620 2011

Wrap-up of Lecture 1

Nonlinear Systems:

$$\dot{x} = f(t, x, u); \quad x \in \mathbf{R}^n, u \in \mathbf{R}^m$$

 $y(t) = h(t, x, u); \quad y \in \mathbf{R}^p$

- No closed-form solution in the general case
- Multiple equilibria, i.e., $f(t, x^*, u^*) = 0$ can have several solutions, hence local stability does not imply global stability
- Periodic solutions $x(t) = x(t+T), T > 0, \dot{x} \neq 0$
- Also aperiodic and chaotic solutions
- Harmonic distortion: single frequency in yields multiple frequencies out

Wrap-up of Lecture 1

• Linear Systems:

$$\dot{x}(t) = Ax(t) + Bu(t); \quad x \in \mathbf{R}^n, \ u \in \mathbf{R}^m$$

 $y(t) = Cx(t) + Du(t); \quad y \in \mathbf{R}^p$

- Closed-form solution
- Superposition
- Stability = global stability (unique equilibrium)
- $-u(t) = sin(\omega t)$ yields $y(t) = A_1 sin(\omega t + \phi)$

EL2620 2011

Exsistence and Uniqueness

Definition: A solution to

$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0$$
 (1)

over an interval [0,T] is a ${\bf C}^1$ function $x:[0,T]\to \mathbb{R}^n$ such that (1) is fulfilled.

- When does there exists a solution?
- When is the solution unique?

Example: $\dot{x} = Ax$, $x(0) = x_0$, gives $x(t) = \exp(At)x_0$

2011

7

Existence Problems

Example: The differential equation $\dot{x} = x^2$, $x(0) = x_0$

has solution
$$x(t) = \frac{x_0}{1 - x_0 t}, \qquad 0 \le t < \frac{1}{x_0}$$

Solution not defined for $t_f = \frac{1}{x_0}$

Solution interval depends on initial condition!

Recall the trick:
$$\dot{x}=x^2 \ \Rightarrow \ \frac{dx}{x^2}=dt$$

Integrate
$$\Rightarrow \frac{-1}{x(t)} - \frac{-1}{x(0)} = t \Rightarrow x(t) = \frac{x_0}{1 - x_0 t}$$

Lecture 2 5

Uniqueness Problems

Example: $\dot{x} = \sqrt{x}$, x(0) = 0, has many solutions:

$$x(t) = \begin{cases} (t - C)^2/4 & t > C \\ 0 & t \le C \end{cases}$$

Finite Escape Time

Simulation for various initial conditions x_{0}

Lecture 2

EL2620

EL2620 2011

Physical Interpretation

Consider the reverse example, i.e., the water tank lab process with

$$\dot{x} = -\sqrt{x}, \qquad x(T) = 0$$

where x is the water level. It is then impossible to know at what time t < T the level was $x(t) = x_0 > 0$.

Hint: Reverse time $s = T - t \Rightarrow ds = -dt$ and thus

$$\frac{dx}{ds} = -\frac{dx}{dt}$$

EL2620

2011

6

Lipschitz Continuity

Definition: $f:\mathbb{R}^n\to\mathbb{R}^n$ is Lipschitz continuous if there exists L,r>0 such that for all

$$x, y \in B_r(x_0) = \{ z \in \mathbb{R}^n : ||z - x_0|| < r \},$$

$$||f(x) - f(y)|| \le L||x - y||$$

Euclidean norm is given by

$$||x||^2 = x_1^2 + \dots + x_n^2$$

Lecture 2

EL2620 2011

Today's Goal

You should be able to

- Model and simulate in Simulink
- Linearize using Simulink
- Do phase-plane analysis using pplane (or other tool)

Local Existence and Uniqueness

Theorem:

EL2620

If f is Lipschitz continuous, then there exists $\delta>0$ such that

$$\dot{x}(t) = f(x(t)), \qquad x(0) = x_0$$

has a unique solution in $B_r(x_0)$ over $[0, \delta]$.

Proof: See Khalil, Appendix C.1. Based on the contraction mapping theorem

Remarks

- $\delta = \delta(r, L)$
- f being C^0 is not sufficient (cf., tank example)
- f being C^1 implies Lipschitz continuity $(L = \max_{x \in B_r(x_0)} f'(x))$

Lecture 2 10

EL2620 2011

Analysis Through Simulation

Simulation tools:

ODE's $\dot{x} = f(t, x, u)$

• ACSL, Simnon, Simulink

Omsim, Dymola, Modelica

http://www.modelica.org

Special purpose simulation tools

• Spice, EMTP, ADAMS, gPROMS

Simulink

Lecture 2

An Example in Simulink

File -> New -> Model
Double click on Continous
Transfer Fcn
Step (in Sources)
Scope (in Sinks)
Connect (mouse-left)
Simulation -> Parameters

Lecture 2

EL2620 2011

Choose Simulation Parameters

Don't forget "Apply"

EL2620 2011

Save Results to Workspace

stepmodel.mdl

Check "Save format" of output blocks ("Array" instead of "Structure")

>> plot(t,y)

Lecture 2

15

13

Lecture 2

16

How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration method Refine adds interpolation points:

Lecture 2 17

Lecture 2

EL2620

18

2011

EL2620 2011

Nonlinear Control System

Example: Control system with valve characteristic $f(u) = u^2$

Simulink block diagram:

Use Scripts to Document Simulations

If the block-diagram is saved to stepmodel.mdl, the following Script-file simstepmodel.m simulates the system:


```
open_system('stepmodel')
set_param('stepmodel','RelTol','1e-3')
set_param('stepmodel','AbsTol','1e-6')
set_param('stepmodel','Refine','1')
tic
sim('stepmodel',6)
toc
subplot(2,1,1),plot(t,y),title('y')
subplot(2,1,2),plot(t,u),title('u')
```

Example: Two-Tank System

The system consists of two identical tank models:

$$\dot{h} = (u - q)/A$$
$$q = a\sqrt{2g}\sqrt{h}$$

Lecture 2

19

Lecture 2

20

Linearization in Simulink

Linearize about equilibrium (x_0, u_0, y_0) :

Lecture 2 21

EL2620 2011

Phase-Plane Analysis

Download ICTools from

http://www.control.lth.se/~ictools

Down load DFIELD and PPLANE from

http://math.rice.edu/~dfield

This was the preferred tool last year!

Differential Equation Editor

dee is a Simulink-based differential equation editor

>> dee

EL2620

Differential Equation Editor DEE

deedemo1

deedemo2

deedemo3

deedemo4

Run the demonstrations

Lecture 2

22

EL2620

2011

Homework 1

• Use your favorite phase-plane analysis tool

- Follow instructions in Exercise Compendium on how to write the report
- See the course homepage for a report example
- The report should be short and include only necessary plots. Write in English.

