• Disposition

Instructors

7.5 credits, period 2

jacobsen@kth.se

2011

Exam

- Exam is planned to January 10, 2012
- Proposal: move exam to December 19 (NOTE: only a proposal for now!)
- Objections? Send an email with motivation to jacobsen@kth.se no later than Friday October 28.

 Lecture 1
 Lecture 1
 2

 EL2620
 2011
 EL2620
 2011

Course Goal

EL2620 Nonlinear Control Automatic Control Lab, KTH

28h lectures, 28h exercises, 3 home-works

Elling W. Jacobsen, lectures and course responsible

STEX (entrance floor, Osquldasv. 10), course material,

Per Hägg, Farhad Farokhi, teaching assistants

pehagg@kth.se, farokhi@ee.kth.se

Hanna Holmqvist, course administration hanna.holmqvist@ee.kth.se

homework, exam stex@s3.kth.se

To provide participants with a solid theoretical foundation of nonlinear control systems combined with a good engineering understanding

You should after the course be able to

- understand common nonlinear control phenomena
- apply the most powerful nonlinear analysis methods
- use some practical nonlinear control design methods

EL2620 Nonlinear Control

Lecture 1

- Practical information
- Course outline
- Linear vs Nonlinear Systems
- Nonlinear differential equations

Today's Goal

You should be able to

- Describe distinctive phenomena in nonlinear dynamic systems
- Mathematically describe common nonlinearities in control systems
- Transform differential equations to first-order form
- Derive equilibrium points

Course Information

All info and handouts are available at

http://www.ee.kth.se/control/courses/EL2620

- · Homeworks are compulsory and have to be handed in on time
- Everyone will receive the homework of another group for review (compulsory).

Course Outline

• Introduction: nonlinear models and phenomena, computer

• Feedback analysis: linearization, stability theory, describing

Control design: compensation, high-gain design, Lyapunov

• Alternatives: gain scheduling, optimal control, neural networks,

Lecture 1	5	Lecture 1	6
EL2620	2011	EL2620	2011

Course Material

- **Textbook:** Khalil, *Nonlinear Systems*, Prentice Hall, 3rd ed., 2002. Optional but highly recommended.
- Lecture notes: Copies of transparencies (from previous year)
- Exercises: Class room and home exercises
- Homeworks: 3 computer exercises to hand in (and review)
- Software: Matlab

Alternative textbooks (decreasing mathematical brilliance): Sastry, Nonlinear Systems: Analysis, Stability and Control; Vidyasagar, Nonlinear Systems Analysis; Slotine & Li, Applied Nonlinear Control; Glad & Ljung, Reglerteori, flervariabla och olinjära metoder. Only references to Khalil will be given.

Two course compendia sold by STEX.

simulation (L1-L2)

function (L3-L6)

methods (L7-L10)

• Summary (L14)

fuzzy control (L11-L13)

2011

so that

10

Linear Models may be too Crude **Approximations**

Example: Positioning of a ball on a beam

Nonlinear model: $m\ddot{x}(t) = mg\sin\phi(t)$, Linear model: $\ddot{x}(t) = g\phi(t)$

Lecture 1	9	Lecture 1	10
EL2620	2011	EL2620	2011

Stability Can Depend on Reference Signal

Can the ball move 0.1 meter in 0.1 seconds from steady state?

 $x(t) \approx 10 \frac{t^2}{2} \phi_0 \approx 0.05 \phi_0$

 $\phi_0\approx \frac{0.1}{0.05}=2~\mathrm{rad}=114^\circ$

Unrealistic answer. Clearly outside linear region! Linear model valid only if $\sin \phi \approx \phi$

Linear model (step response with $\phi = \phi_0$) gives

Example: Control system with valve characteristic $f(u) = u^2$

Must consider nonlinear model. Possibly also include other

nonlinearities such as centripetal force, saturation, friction etc.

Simulink block diagram:

Linear Models are not Rich Enough

Linear models can not describe many phenomena seen in nonlinear systems

2011

2011

Stability depends on amplitude of the reference signal!

(The linearized gain of the valve increases with increasing amplitude)

Lecture 1	13	Lecture 1
EL2620	2011	EL2620

Stable Periodic Solutions

Example: Position control of motor with back-lash

Existence of multiple stable equilibria for the same input gives hysteresis effect

Lecture 1	14
EL2620	2011

Back-lash induces an oscillation

Period and amplitude independent of initial conditions:

How predict and avoid oscillations?

2011

17

19

Harmonic Distortion

Example: Sinusoidal response of saturation

Subharmonics

Example: Duffing's equation $\ddot{y} + \dot{y} + y - y^3 = a \sin(\omega t)$

Example: Electrical power distribution

Nonlinearities such as rectifiers, switched electronics, and transformers give rise to harmonic distortion

Total Harmonic Distortion =
$$\frac{\sum_{k=2}^{\infty} \text{ Energy in tone } k}{\text{ Energy in tone 1}}$$

Example: Electrical amplifiers

Effective amplifiers work in nonlinear region

Introduces spectrum leakage, which is a problem in cellular systems Trade-off between effectivity and linearity

Lecture 1	18

EL2620

2011

Some Common Nonlinearities in Control Systems

e^u

Math

Function

Sign

Coulomb & Viscous Friction

Lecture 1

2011

When do we need Nonlinear Analysis & Design?

- When the system is strongly nonlinear
- When the range of operation is large
- When distinctive nonlinear phenomena are relevant
- When we want to push performance to the limit

Next Lecture

- Simulation in Matlab
- Linearization
- Phase plane analysis

Lecture 1

21

Lecture 1

22