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Course Goal

To provide participants with a solid theoretical foundation of nonlinear
control systems combined with a good engineering understanding

You should after the course be able to
e understand common nonlinear control phenomena
e apply the most powerful nonlinear analysis methods

e use some practical nonlinear control design methods
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e Practical information

e Course outline

e Linear vs Nonlinear Systems

e Nonlinear differential equations
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Today’s Goal

You should be able to
e Describe distinctive phenomena in nonlinear dynamic systems

e Mathematically describe common nonlinearities in control
systems

e Transform differential equations to first-order form

e Derive equilibrium points

Lecture 1 4




EL2620 2010

Course Information

e Allinfo and handouts are available at
http://ww. ee. kt h. se/ control /courses/ EL2620

e Homeworks are compulsory and have to be handed in on time

e Everyone will receive the homework of another student for review
(compulsory).
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Material

Textbook: Khalil, Nonlinear Systems, Prentice Hall, 3rd ed.,
2002. Optional but highly recommended.

e Lecture notes: Copies of transparencies (from previous year)
e Exercises: Class room and home exercises

e Homeworks: 3 computer exercises to hand in (and review)

e Software: Matlab

Alternative textbooks (decreasing mathematical brilliance):

Sastry, Nonlinear Systems: Analysis, Stability and Control; Vidyasagar,
Nonlinear Systems Analysis; Slotine & Li, Applied Nonlinear Control; Glad &
Ljung, Reglerteori, flervariabla och olinjara metoder.

Only references to Khalil will be given.

Two course compendia sold by STEX.
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Course Outline
e Introduction: nonlinear models and phenomena, computer
simulation (L1-L2)

e Feedback analysis: linearization, stability theory, describing
functions (L3-L6)

e Control design: compensation, high-gain design, Lyapunov
methods (L7-L10)

e Alternatives: gain scheduling, optimal control, neural networks,
fuzzy control (L11-L13)

e Summary (L14)
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Linear Systems

Definition: Let M be a signal space. The system S : M — M is
linear if forall u, v € M and o € R

S(au) = aS(u) scaling
S(u+v) =S(u)+ S(v)  superposition

Example: Linear time-invariant systems
i(#) = Ax(t) + Bu(t), y(t) = Ca(t), 2(0)=0
o(0) = 6) ) = [ g(rIute — 7)ir
¥(s) = G(s)U(s)

Notice the importance to have zero initial conditions
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Linear Systems Have Nice Properties

Local stability=global stability Stability if all eigenvalues of A (or
poles of GG(s)) are in the left half-plane

Superposition Enough to know a step (or impulse) response

Frequency analysis possible  Sinusoidal inputs give sinusoidal
outputs: Y (iw) = G(iw)U (iw)
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Linear Models may be too Crude
Approximations

Example: Positioning of a ball on a beam

Nonlinear model: mi(t) = mgsin ¢(t), Linear model: Z(t) = go(t)
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Can the ball move 0.1 meter in 0.1 seconds from steady state?

Linear model (step response with ¢ = ¢) gives

t2
x(t) ~ 105% ~ 0.05¢y
so that 01
bo ~ m = 2rad = 114°

Unrealistic answer. Clearly outside linear region!

Linear model valid only if sin ¢ ~ ¢

Must consider nonlinear model. Possibly also include other
nonlinearities such as centripetal force, saturation, friction etc.
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Linear Models are not Rich Enough

Linear models can not describe many phenomena seen in
nonlinear systems
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Stability Can Depend on Reference Signal STEP RESPONSES
Example: Control system with valve characteristic f(u) = u? 04
Motor Valve  Process r = 0.2 Boz
- 1 \ / N { 0 ‘
S (S+1)2 4o 5 10 Ti;ﬂse[ 2‘0 25 30
r = 1.68
1] R
Time t
Simulink block diagram: r=1.72
[y 0 5 10 T‘1‘5[ 20 2 30
Stability depends on amplitude of the reference signal!
(The linearized gain of the valve increases with increasing amplitude)
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Multiple Equilibria
Stable Periodic Solutions
Example: chemical reactor
imput Example: Position control of motor with back-lash
£ 15 E'—V*' 1
R S
T2 © 10 Sum P-controller Motor Backlash
9'52 _ wyemp (_i) B ef(xz B ac,‘) 0 50 100 150 200
2 i Output
f = 07,¢=04 gw izz;\ﬁ il
=0 . 1
0 50 132‘3[51 150 200 MOtor G(S> - m
Existence of multiple stable equilibria for the same input gives Controller: K =5
hysteresis effect
16
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Back-lash induces an oscillation Automatic Tuning of PID Controllers
Period and amplitude independent of initial conditions: Relay induces a desired oscillation whose frequency and amplitude
05 ‘ ‘ ‘ ‘ are used to choose PID parameters
© PID
% 10 20 30 20 50 A l u y
0s ‘ _ Timet ‘ 4TT/_> Process
: AVAVAVAVAVAVA -
g of
3
0 ‘ -1
1 U
X 0
Time t
-1
How predict and avoid oscillations? 0 5 10 o
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Harmonic Distortion

Example: Sinusoidal response of saturation
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Example: Electrical power distribution

Nonlinearities such as rectifiers, switched electronics, and
transformers give rise to harmonic distortion

> 7o, Energy intone k

Total Harmonic Distortion = -
Energy in tone 1

Example: Electrical amplifiers
Effective amplifiers work in nonlinear region
Introduces spectrum leakage, which is a problem in cellular systems

Trade-off between effectivity and linearity
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Subharmonics

Example: Duffing’s equation jj + 4 +vy — y> = a sin(wt)
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Nonlinear Differential Equations

Definition: A solution to

0.5
= 0 i(t) = f(x(t), x(0) =0 (1)
over an interval [0, T'] is a C! function z : [0, 7] — R™ such that (1)
08 : 0 15 >0 > 2 is fulfilled.
Time ¢
1 e \When does there exists a solution?
Fos
2 . e \When is the solution unique?
go.s . .
Example: & = Ax, 2(0) = xo, gives z(t) = exp(At)x
= 5 0 15 20 25 30
Time ¢
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Existence Problems
Example: The differential equation # = 2%, z(0) = x

x 1
has solution z(t) = ° . 0<t<—
1-— CUot o

1
Solution not defined for 1y = —
To

Solution interval depends on initial condition!

o 5 dx
Recall the trick: & = 2° = — = dt
x
Integrate = —— — —~ —¢ = (t) 10
ntegrate _— = T =
J x(t)  x(0) 1 — ot
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Finite Escape Time

Simulation for various initial conditions

Finite escape time of dx/dt = X2
5 T T
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Uniqueness Problems

Example: & = /z, x(0) = 0, has many solutions:

(t—C)2/4 t>C
{ 0 t<C

x(t) =
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Physical Interpretation

Consider the reverse example, i.e., the water tank lab process with
i=—vr, x(T)=0

where x is the water level. It is then impossible to know at what time
t < T the level was x(t) = xo > 0.

Hint: Reverse time s = T — t = ds = —dt and thus
dx dx

ds dt
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Lipschitz Continuity

Definition: f : R™ — R™ is Lipschitz continuous if there exists
L,r > 0 such that for all

z,y € By(xg) ={z € R": ||z — ]| <1},

If () = FW)Il < Lllz =yl

. o Slope L
Euclidean norm is given by
2 2 2
lal? = o + - + 22
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Local Existence and Uniqueness

Theorem:
If f is Lipschitz continuous, then there exists > 0 such that

#(t) = f(x(®),  =(0) = o
has a unique solution in B,.(x) over [0, §]. Proof: See Khalil,

Appendix C.1. Based on the contraction mapping theorem

Remarks
e §=0(rL)
e f being O is not sufficient (cf., tank example)
e f being Ct implies Lipschitz continuity
(L = maxX,ep, (z0) /()
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State-Space Models

State x, input u, output y
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Transformation to Autonomous System

A nonautonomous system

General: flzyu,y, 2, 0,9,...) =0 = f(a.t)
Explicit: T = f(a:, u) Yy = h(x) is always possible to transform to an autonomous system by
introducing 41 = t:
Affine in u: = f(x)+g(x)u, y=h(x) &= f(x, Tpe1)
j:n+1 =1

Linear: t=Ax+ Bu, y=Cx
Lecture 1 29 Lecture 1 30
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Transformation to First-Order System I
Equilibria

Given a differential equation in y with highest derivative

express the equation in x = <y

Pendulum

dy

dtm’
dy a1y T E le:
PR o Xxample :

MR?*) + kO + MgRsinf = 0

xr = (0 Q)T gives

.i'l ER)
k
M R?

i’zz—

Lecture 1

g .
T9 — = sin

R
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Definition: A point (z*, u*, y*) is an equilibrium, if a solution starting
in (z*, u*, y*) stays there forever.

Corresponds to putting all derivatives to zero:

General: fla* u*,y*,0,0,...) =0

Explicit: 0= f(z*u*), y*=h(z*)

Affine in w: 0= f(z*) + g(z*)u*, y* = h(z")
Linear: 0= Ax*+ Bu*, y"=Cz"

Often the equilibrium is defined only through the state x*
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Multiple Equilibria
Example: Pendulum
MR*G + k6 + MgRsind =0

6=0= 0 gives sin § = 0 and thus 6* = k7

Alternatively in first-order form:
.fl = T2

k g .
To — — SIN T

 MR? R

i1 = &9 = 0 gives x5 = 0 and sin(z}) = 0

To =
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Some Common Nonlinearities in Control

Systems
u
S |ul P d e N s
Abs Math Saturation
Function
> :.: > > 7—~—Z ’ j[ d
- Look-Up
Sign Dead Zone Table
_$_ > > ﬁ > ;F >
Relay Backlash Coulomb &

Viscous Friction
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When do we need Nonlinear Analysis &
Design?

e When the system is strongly nonlinear
e \When the range of operation is large
e \When distinctive nonlinear phenomena are relevant

e \When we want to push performance to the limit
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Next Lecture

e Simulation in Matlab
e Linearization

e Phase plane analysis
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