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Course Goal

To provide participants with a solid theoretical foundation of nonlinear
control systems combined with a good engineering understanding

You should after the course be able to

• understand common nonlinear control phenomena

• apply the most powerful nonlinear analysis methods

• use some practical nonlinear control design methods
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EL2620 Nonlinear Control

Lecture 1

• Practical information

• Course outline

• Linear vs Nonlinear Systems

• Nonlinear differential equations
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Today’s Goal

You should be able to

• Describe distinctive phenomena in nonlinear dynamic systems

• Mathematically describe common nonlinearities in control
systems

• Transform differential equations to first-order form

• Derive equilibrium points
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Course Information

• All info and handouts are available at

http://www.ee.kth.se/control/courses/EL2620

• Homeworks are compulsory and have to be handed in on time

• Everyone will receive the homework of another student for review
(compulsory).
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Material

• Textbook: Khalil, Nonlinear Systems, Prentice Hall, 3rd ed.,
2002. Optional but highly recommended.

• Lecture notes: Copies of transparencies (from previous year)

• Exercises: Class room and home exercises

• Homeworks: 3 computer exercises to hand in (and review)

• Software: Matlab

Alternative textbooks (decreasing mathematical brilliance):
Sastry, Nonlinear Systems: Analysis, Stability and Control; Vidyasagar,
Nonlinear Systems Analysis; Slotine & Li, Applied Nonlinear Control; Glad &
Ljung, Reglerteori, flervariabla och olinjära metoder.
Only references to Khalil will be given.

Two course compendia sold by STEX.
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Course Outline

• Introduction: nonlinear models and phenomena, computer
simulation (L1-L2)

• Feedback analysis: linearization, stability theory, describing
functions (L3-L6)

• Control design: compensation, high-gain design, Lyapunov
methods (L7-L10)

• Alternatives: gain scheduling, optimal control, neural networks,
fuzzy control (L11-L13)

• Summary (L14)
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Linear Systems

Definition: Let M be a signal space. The system S : M → M is
linear if for all u, v ∈ M and α ∈ R

S(αu) = αS(u) scaling

S(u + v) = S(u) + S(v) superposition

Example: Linear time-invariant systems

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = 0

y(t) = g(t) ⋆ u(t) =

∫ t

0

g(τ)u(t − τ)dτ

Y (s) = G(s)U(s)

Notice the importance to have zero initial conditions
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Linear Systems Have Nice Properties

Local stability=global stability Stability if all eigenvalues of A (or
poles of G(s)) are in the left half-plane

Superposition Enough to know a step (or impulse) response

Frequency analysis possible Sinusoidal inputs give sinusoidal
outputs: Y (iω) = G(iω)U(iω)
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Linear Models may be too Crude
Approximations

Example: Positioning of a ball on a beam

φ x

Nonlinear model: mẍ(t) = mg sin φ(t), Linear model: ẍ(t) = gφ(t)
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Can the ball move 0.1 meter in 0.1 seconds from steady state?

Linear model (step response with φ = φ0) gives

x(t) ≈ 10
t2

2
φ0 ≈ 0.05φ0

so that

φ0 ≈
0.1

0.05
= 2 rad = 114◦

Unrealistic answer. Clearly outside linear region!

Linear model valid only if sinφ ≈ φ

Must consider nonlinear model. Possibly also include other
nonlinearities such as centripetal force, saturation, friction etc.
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Linear Models are not Rich Enough

Linear models can not describe many phenomena seen in
nonlinear systems
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Stability Can Depend on Reference Signal
Example: Control system with valve characteristic f(u) = u2
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STEP RESPONSES
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Stability depends on amplitude of the reference signal!

(The linearized gain of the valve increases with increasing amplitude)
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Multiple Equilibria

Example: chemical reactor
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„

−

1

x2

«

+ f(1 − x1)
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Existence of multiple stable equilibria for the same input gives
hysteresis effect
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Stable Periodic Solutions

Example: Position control of motor with back-lash

y

Sum
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P−controller
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Backlash

−1

Motor: G(s) = 1
s(1+5s)

Controller: K = 5
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Back-lash induces an oscillation

Period and amplitude independent of initial conditions:
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How predict and avoid oscillations?
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Automatic Tuning of PID Controllers
Relay induces a desired oscillation whose frequency and amplitude
are used to choose PID parameters
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Harmonic Distortion

Example: Sinusoidal response of saturation

a sin t y(t) =
∑

∞

k=1 Ak sin(kt)
Saturation
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Example: Electrical power distribution

Nonlinearities such as rectifiers, switched electronics, and
transformers give rise to harmonic distortion

Total Harmonic Distortion =

∑

∞

k=2 Energy in tone k

Energy in tone 1

Example: Electrical amplifiers

Effective amplifiers work in nonlinear region

Introduces spectrum leakage, which is a problem in cellular systems

Trade-off between effectivity and linearity
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Subharmonics

Example: Duffing’s equation ÿ + ẏ + y − y3 = a sin(ωt)
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Nonlinear Differential Equations

Definition: A solution to

ẋ(t) = f(x(t)), x(0) = x0 (1)

over an interval [0, T ] is a C
1 function x : [0, T ] → R

n such that (1)
is fulfilled.

• When does there exists a solution?

• When is the solution unique?

Example: ẋ = Ax, x(0) = x0, gives x(t) = exp(At)x0
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Existence Problems

Example: The differential equation ẋ = x2, x(0) = x0

has solution x(t) =
x0

1 − x0t
, 0 ≤ t <

1

x0

Solution not defined for tf =
1

x0

Solution interval depends on initial condition!

Recall the trick: ẋ = x2 ⇒ dx

x2
= dt

Integrate ⇒ −1

x(t)
− −1

x(0)
= t ⇒ x(t) =

x0

1 − x0t
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Finite Escape Time

Simulation for various initial conditions x0
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Finite escape time of dx/dt = x2
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Uniqueness Problems

Example: ẋ =
√

x, x(0) = 0, has many solutions:

x(t) =

{

(t − C)2/4 t > C

0 t ≤ C
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Physical Interpretation

Consider the reverse example, i.e., the water tank lab process with

ẋ = −
√

x, x(T ) = 0

where x is the water level. It is then impossible to know at what time
t < T the level was x(t) = x0 > 0.

Hint: Reverse time s = T − t ⇒ ds = −dt and thus

dx

ds
= −dx

dt
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Lipschitz Continuity

Definition: f : R
n → R

n is Lipschitz continuous if there exists
L, r > 0 such that for all
x, y ∈ Br(x0) = {z ∈ R

n : ‖z − x0‖ < r},

‖f(x) − f(y)‖ ≤ L‖x − y‖

Euclidean norm is given by

‖x‖2 = x2
1 + · · · + x2

n

Slope L
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Local Existence and Uniqueness

Theorem:
If f is Lipschitz continuous, then there exists δ > 0 such that

ẋ(t) = f(x(t)), x(0) = x0

has a unique solution in Br(x0) over [0, δ]. Proof: See Khalil,

Appendix C.1. Based on the contraction mapping theorem

Remarks

• δ = δ(r, L)

• f being C0 is not sufficient (cf., tank example)

• f being C1 implies Lipschitz continuity
(L = maxx∈Br(x0) f ′(x))
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State-Space Models

State x, input u, output y

General: f(x, u, y, ẋ, u̇, ẏ, . . .) = 0

Explicit: ẋ = f(x, u), y = h(x)

Affine in u: ẋ = f(x) + g(x)u, y = h(x)

Linear: ẋ = Ax + Bu, y = Cx

Lecture 1 29

EL2620 2010

Transformation to Autonomous System

A nonautonomous system

ẋ = f(x, t)

is always possible to transform to an autonomous system by
introducing xn+1 = t:

ẋ = f(x, xn+1)

ẋn+1 = 1
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Transformation to First-Order System

Given a differential equation in y with highest derivative dny

dtn
,

express the equation in x =
(

y dy

dt
. . . dn−1y

dtn−1

)T

Example :

Pendulum
MR2θ̈ + kθ̇ + MgR sin θ = 0

x =
(

θ θ̇
)T

gives

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

g

R
sin x1
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Equilibria

Definition: A point (x∗, u∗, y∗) is an equilibrium, if a solution starting
in (x∗, u∗, y∗) stays there forever.

Corresponds to putting all derivatives to zero:

General: f(x∗, u∗, y∗, 0, 0, . . .) = 0

Explicit: 0 = f(x∗, u∗), y∗ = h(x∗)

Affine in u: 0 = f(x∗) + g(x∗)u∗, y∗ = h(x∗)

Linear: 0 = Ax∗ + Bu∗, y∗ = Cx∗

Often the equilibrium is defined only through the state x∗
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Multiple Equilibria

Example: Pendulum

MR2θ̈ + kθ̇ + MgR sin θ = 0

θ̈ = θ̇ = 0 gives sin θ = 0 and thus θ∗ = kπ

Alternatively in first-order form:

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

g

R
sin x1

ẋ1 = ẋ2 = 0 gives x∗

2 = 0 and sin(x∗

1) = 0
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Some Common Nonlinearities in Control
Systems

Sign

Saturation

Relay

eu

Math
Function

Look−Up
Table

Dead Zone

Coulomb &
Viscous Friction

Backlash

|u|

Abs
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When do we need Nonlinear Analysis &
Design?

• When the system is strongly nonlinear

• When the range of operation is large

• When distinctive nonlinear phenomena are relevant

• When we want to push performance to the limit
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Next Lecture

• Simulation in Matlab

• Linearization

• Phase plane analysis
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