• Disposition

Instructors

7.5 credits, *lp* 2

jacobsen@kth.se

stex@s3.kth.se

Course Goal

To provide participants with a solid theoretical foundation of nonlinear control systems combined with a good engineering understanding

You should after the course be able to

- understand common nonlinear control phenomena
- apply the most powerful nonlinear analysis methods
- use some practical nonlinear control design methods

Mathematically describe common nonlinearities in control

• Transform differential equations to first-order form

 Lecture 1
 1
 Lecture 1
 2

 EL2620
 2010
 EL2620
 2010

 EL2620 Nonlinear Control
 Today's Goal

 Lecture 1
 You should be able to

 • Describe distinctive phenomena in nonlinear dynamic systems

(KTH)

- Practical information
- Course outline
- Linear vs Nonlinear Systems
- Nonlinear differential equations

EL2620 Nonlinear Control Automatic Control Lab, KTH

Elling W. Jacobsen, lectures and course responsible

Anneli Ström, Hanna Holmqvist, course administration

Per Hägg, Farhad Farokhi, teaching assistants pehagg@kth.se, farokhi@ee.kth.se

annelist@ee.kth.se, hhaglun@kth.se
STEX (entrance floor, Osquldasv. 10), course material

28h lectures, 28h exercises, 3 home-works

Lecture 1

3

systems

Derive equilibrium points

Material

- Textbook: Khalil, Nonlinear Systems, Prentice Hall, 3rd ed., 2002. Optional but highly recommended.
- Lecture notes: Copies of transparencies (from previous year)
- Exercises: Class room and home exercises
- Homeworks: 3 computer exercises to hand in (and review)
- Software: Matlab

Alternative textbooks (decreasing mathematical brilliance): Sastry, Nonlinear Systems: Analysis, Stability and Control; Vidyasagar, Nonlinear Systems Analysis; Slotine & Li, Applied Nonlinear Control; Glad & Ljung, Reglerteori, flervariabla och olinjära metoder. Only references to Khalil will be given.

Two course compendia sold by STEX.

Lecture 1	5	Lecture 1	6
EL2620	2010	EL2620	2010

Course Outline

Course Information

http://www.ee.kth.se/control/courses/EL2620

• Homeworks are compulsory and have to be handed in on time

• Everyone will receive the homework of another student for review

All info and handouts are available at

(compulsory).

- Introduction: nonlinear models and phenomena, computer simulation (L1-L2)
- Feedback analysis: linearization, stability theory, describing functions (L3-L6)
- Control design: compensation, high-gain design, Lyapunov methods (L7-L10)
- Alternatives: gain scheduling, optimal control, neural networks, fuzzy control (L11-L13)
- Summary (L14)

Lecture 1

7

Linear Systems

Definition: Let M be a signal space. The system $S: M \to M$ is linear if for all $u, v \in M$ and $\alpha \in \mathbb{R}$

$$S(\alpha u) = \alpha S(u)$$
 scaling
 $S(u+v) = S(u) + S(v)$ superposition

Example: Linear time-invariant systems

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0$$
$$y(t) = g(t) \star u(t) = \int_0^t g(\tau)u(t-\tau)d\tau$$
$$Y(s) = G(s)U(s)$$

Notice the importance to have zero initial conditions

2010

8

Linear Models may be too Crude Approximations

Example: Positioning of a ball on a beam

Nonlinear model: $m\ddot{x}(t) = mg\sin\phi(t)$, Linear model: $\ddot{x}(t) = g\phi(t)$

Linear Models are not Rich Enough

Linear models can not describe many phenomena seen in nonlinear systems

Can the ball move 0.1 meter in 0.1 seconds from steady state?

Linear Systems Have Nice Properties

Local stability=global stability Stability if all eigenvalues of A (or

Superposition Enough to know a step (or impulse) response

Frequency analysis possible Sinusoidal inputs give sinusoidal

poles of G(s)) are in the left half-plane

outputs: $Y(i\omega) = G(i\omega)U(i\omega)$

Linear model (step response with $\phi = \phi_0$) gives

$$x(t) \approx 10 \frac{t^2}{2} \phi_0 \approx 0.05 \phi_0$$

so that

$$\phi_0 \approx \frac{0.1}{0.05} = 2 \text{ rad} = 114^\circ$$

Unrealistic answer. Clearly outside linear region!

Linear model valid only if $\sin \phi \approx \phi$

Must consider nonlinear model. Possibly also include other nonlinearities such as centripetal force, saturation, friction etc.

Lecture 1

12

EL2620

Stability Can Depend on Reference Signal

Example: Control system with valve characteristic $f(u) = u^2$

Simulink block diagram:

Lecture 1		13
EL2620		2010

Multiple Equilibria

Example: chemical reactor

Existence of multiple stable equilibria for the same input gives hysteresis effect

Stability depends on amplitude of the reference signal!

(The linearized gain of the valve increases with increasing amplitude)

Stable Periodic Solutions

Example: Position control of motor with back-lash

Motor: $G(s) = \frac{1}{s(1+5s)}$ Controller: K = 5 2010

Back-lash induces an oscillation

Period and amplitude independent of initial conditions:

How predict and avoid oscillations?

Lecture 1	17	Lecture 1
EL2620	2010	EL2620

Harmonic Distortion

Example: Sinusoidal response of saturation

Automatic Tuning of PID Controllers

Relay induces a desired oscillation whose frequency and amplitude are used to choose PID parameters

Example: Electrical power distribution

Nonlinearities such as rectifiers, switched electronics, and transformers give rise to harmonic distortion

Total Harmonic Distortion =
$$\frac{\sum_{k=2}^{\infty} \text{Energy in tone } k}{\text{Energy in tone 1}}$$

Example: Electrical amplifiers

Effective amplifiers work in nonlinear region

Introduces spectrum leakage, which is a problem in cellular systems Trade-off between effectivity and linearity

Lecture 1

EL2620

2010

2010

Subharmonics

Example: Duffing's equation $\ddot{y} + \dot{y} + y - y^3 = a \sin(\omega t)$

Nonlinear Differential Equations

Definition: A solution to

EL2620

$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0$$
 (1)

over an interval [0,T] is a ${\bf C}^1$ function $x:[0,T]\to \mathbb{R}^n$ such that (1) is fulfilled.

- When does there exists a solution?
- When is the solution unique?

Example: $\dot{x} = Ax$, $x(0) = x_0$, gives $x(t) = \exp(At)x_0$

21	Lecture 1	22
2010	EL2620	2010

Finite Escape Time

Simulation for various initial conditions x_0

Existence Problems

Example: The differential equation $\dot{x} = x^2$, $x(0) = x_0$

has solution
$$x(t) = \frac{x_0}{1 - x_0 t}, \qquad 0 \le t < \frac{1}{x_0}$$

Solution not defined for
$$t_f =$$

Solution interval depends on initial condition!

 $\frac{1}{x_0}$

Recall the trick:
$$\dot{x} = x^2 \Rightarrow \frac{dx}{x^2} = dt$$

Integrate $\Rightarrow \frac{-1}{x(t)} - \frac{-1}{x(0)} = t \Rightarrow x(t) = \frac{x_0}{1 - x_0 t}$

2010

EL2620

2010

Uniqueness Problems

$x(t) = \begin{cases} (t - C)^2/4 & t > C \\ 0 & t \le C \end{cases}$

2 Time t

Lecture 1	25	Lecture
EL2620	2010	EL2620

Lipschitz Continuity

Definition: $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous if there exists L, r > 0 such that for all $x, y \in B_r(x_0) = \{ z \in \mathbb{R}^n : ||z - x_0|| < r \},\$

Euclidean norm is given by

$$||x||^2 = x_1^2 + \dots + x_n^2$$

Physical Interpretation

Consider the reverse example, i.e., the water tank lab process with

 $\dot{x} = -\sqrt{x}, \qquad x(T) = 0$

where x is the water level. It is then impossible to know at what time t < T the level was $x(t) = x_0 > 0$.

Hint: Reverse time $s = T - t \Rightarrow ds = -dt$ and thus

$$\frac{dx}{ds} = -\frac{dx}{dt}$$

Lecture	1	

2010

26

Local Existence and Uniqueness

Theorem:

If f is Lipschitz continuous, then there exists $\delta > 0$ such that

$$\dot{x}(t) = f(x(t)), \qquad x(0) = x_0$$

has a unique solution in $B_r(x_0)$ over $[0, \delta]$. **Proof:** See Khalil, Appendix C.1. Based on the contraction mapping theorem

Remarks

- $\delta = \delta(r, L)$
- f being C^0 is not sufficient (cf., tank example)
- f being C^1 implies Lipschitz continuity $(L = \max_{x \in B_r(x_0)} f'(x))$

2010

EL2620

State-Space Models

State x, input u, output y

General:

 $\dot{x} = f(x, u), \quad y = h(x)$ Explicit:

 $\dot{x} = f(x) + q(x)u, \quad y = h(x)$ Affine in *u*:

Linear: $\dot{x} = Ax + Bu, \quad y = Cx$

 $f(x, u, y, \dot{x}, \dot{u}, \dot{y}, \ldots) = 0$

Transformation to Autonomous System

A nonautonomous system

 $\dot{x} = f(x,t)$

is always possible to transform to an autonomous system by introducing $x_{n+1} = t$:

$$\dot{x} = f(x, x_{n+1})$$
$$\dot{x}_{n+1} = 1$$

Transformation to First-Order System

Given a differential equation in y with highest derivative $\frac{d^n y}{dt^n}$, express the equation in $x = \begin{pmatrix} y & \frac{dy}{dt} & \dots & \frac{d^{n-1}y}{dt^{n-1}} \end{pmatrix}^T$ Example:

Pendulum

$$MR^2\ddot{\theta} + k\dot{\theta} + MgR\sin\theta = 0$$

 $x = (\theta \ \theta)^{T}$ gives

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = -\frac{k}{MR^2}x_2 - \frac{g}{R}\sin x_1$$

Equilibria

Definition: A point (x^*, u^*, y^*) is an equilibrium, if a solution starting in (x^*, u^*, y^*) stays there forever.

Corresponds to putting all derivatives to zero:

General:	$f(x^*, u^*, y^*, 0, 0, \ldots) = 0$
Explicit:	$0 = f(x^*, u^*), y^* = h(x^*)$
Affine in u:	$0=f(x^*)+g(x^*)u^*, y^*=h(x^*)$
Linear:	$0 = Ax^* + Bu^*, y^* = Cx^*$

Often the equilibrium is defined only through the state x^*

Lecture 1

36

Some Common Nonlinearities in Control **Multiple Equilibria Systems** Example: Pendulum e^u |u| $MR^2\ddot{\theta} + k\dot{\theta} + MqR\sin\theta = 0$ Abs Math Saturation $\ddot{\theta} = \dot{\theta} = 0$ gives $\sin \theta = 0$ and thus $\theta^* = k\pi$ Function Alternatively in first-order form: _ook_Ur Dead Zone Sign Table $\dot{x}_1 = x_2$ $\dot{x}_2 = -\frac{k}{MB^2}x_2 - \frac{g}{B}\sin x_1$ $\dot{x}_1 = \dot{x}_2 = 0$ gives $x_2^* = 0$ and $\sin(x_1^*) = 0$ Relay Backlash Coulomb & Viscous Friction 33 34 Lecture 1 Lecture 1 EL2620 2010 EL2620 2010 When do we need Nonlinear Analysis & **Design? Next Lecture** • When the system is strongly nonlinear Simulation in Matlab • When the range of operation is large Linearization • When distinctive nonlinear phenomena are relevant • Phase plane analysis • When we want to push performance to the limit

35

Lecture 1