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Abstract—Dictionary code compression is a technique which
has been studied as a method to reduce the energy consumed in
the instruction fetch path of processors. Instructions or
instruction sequences in the code are replaced with short code
words. These code words are later used to index a dictionary
which contains the original uncompressed instruction or an
entire sequence. In this paper, we present a new method which
improves on code density compared to previously published
dictionary methods. It uses a two-level dictionary design and is
capable of handling compression of both individual instructions
and code sequences of 2-16 instructions. The two dictionaries
are in separate pipeline stages and work together to decompress
sequences and instructions. The impact on storage size for the
dictionaries is rather small as the sequences in the dictionary
are stored as individually compressed instructions, instead of
normal instructions. Compared to previous dictionary code
compression methods we achieve improved dynamic
compression rate, potential for better performance with
reasonable static compression rate and with still small
dictionary size suitable for context switching. 

Keywords-Dictionary code compression, code density- 
optimization, code generation.

I.  INTRODUCTION

Efficient use of chip real-estate and low energy con-
sumption are important design considerations for any com-
puter system, but even more so for embedded systems with
their various constraint. Any optimization in code genera-
tion, architecture or otherwise that can improve on these
factors without compromising performance is worthwhile
consideration. One place to look at because of its high activ-
ity grade, is the instruction fetch path in a processor. It
involves fetching instructions from memory – including
from the instruction cache or the main memory – perform-
ing branch prediction and finally decoding instructions
before they can be issued for execution. 

Dictionary code compression is the collective name for a
class of compression schemes where instructions, or
sequences of instructions are replaced with a shorter code
word expanded in run-time through a dictionary look-up [2,
4, 11]. Different schemes have been proposed for different
purposes. In our case, we are interested in being able to
reduce the instruction fetch path energy and to reduce the
instruction cache size, without compromising performance
or expressability.

Dictionary code compression is based on execution pro-
files of the applications, which are used to decide the dictio-
nary contents. One way to improve the effectiveness of the
scheme is to increase the size of the dictionary. This has
important drawbacks such as the need for longer code-
words, making them difficult to integrate in the normal
instruction set architecture. Another drawback appears if we
want to add the dictionary contents to the context of an
application in order to better match the dictionary to the pro-
gram. A larger dictionary then adds significantly to the
overhead of context switches. Furthermore, larger code
words reduces the effect of the compression.

In our work presented here, we have instead opted for
the possibility to increase the density of the dictionary con-
tents by means of a two-level approach. The method is
based on compression of code sequences using two disjoint
dictionaries located in separate pipeline stages. With dis-
joint dictionaries where the code sequences are constructed
from individually compressed instructions, it is possible to
fetch up to 16 instructions on a single cache access. We
achieve this without increasing the size of the code words
used and with only a moderate increase in total dictionary
size. 

The focus of this paper is to describe the idea behind the
2-level dictionary compression method, its fundament and
the actual method used to achieve compression of sequences
using individually compressed instructions. We contribute
to the state-of-the-art in the following ways: 
• We present an innovative disjoint dictionary scheme and

the use of two different code word types. The result is
improved code density with up to 16 instructions in a
single fetch word making it possible in many cases to
achieve one basic block — one instruction cache fetch.

• Flexible, reusable, and storage efficient representation
of sequences. Sequences are represented using code
words corresponding to already compressed instruc-
tions.

• Code transformations for sequence enlargement. We use
instruction scheduling in a new way to increase the
sequences of compressible instructions. 

We evaluate the proposed 2-level method using simula-
tion of a representative architecture and a set of Media-
Bench applications [10]. We find that ideally we can reduce
the number of bytes fetched from the instruction cache with
80% and 35% with an average of 59%. In a real system with
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dynamic branch-prediction, these numbers are slightly com-
promised because of branch mis-predictions, but it typically
results in 20% to 50% energy reduction in the instruction
fetch path or 15% to 35% of the total processor/memory
energy consumption. 

The remainder of the paper is organized as follows: In
Section II., we present a dense description of some of the
related work in the field, which then is followed by an intro-
duction to the proposed 2-level method. In Section IV. we
introduce the compression code architecture of our design.
The details of the actual compression method is then pre-
sented in section V followed by experiments and results in
section VI. The paper is then concluded in section VII.

II.  RELATED WORK

Over the years several researchers have performed stud-
ies of dictionary compression where instructions or
sequences of instructions in the code are replaced by a short
code word. Enlisted below are a few approaches with spe-
cial interest to us and the 2-level approach.

Lefurgy et al., proposed a dictionary compression tech-
nique where frequently occurring code sequences are
replaced with variable length macro instructions [11]. The
primary objective of their method is to reduce the static
code size and no emphasis at all is put on dynamic issues.
Their approach is based on identifying code sequences up to
four instructions in length and place the whole sequence
consisting of native instructions in a 16 byte wide dictionary
with 256 entries. Depending on the native ISA, they use
macro instructions of 8, 12, or 16 bits and achieve a static
compression ratio between 0.61 to 0.74 for a set of SPEC
CPU INT95 applications. In their paper, they conclude that
independently of the ISA used or code word length, the
most important factor for high compression ratio is the dic-
tionary size in number of entries. Although with larger
macro instructions the static code size increases.

A dictionary code compression scheme that significantly
trades off static code size for dynamic code compression is
presented by Benini et al. [2]. On average, a dynamic com-
pression ratio of 0.35 is possible that corresponds to 0.40 in
fetch path energy ratio. However, this comes with a price of
27% increase in code size. The technique is based on a sin-
gle dictionary holding the 255 most frequently executed
instructions and two disjoint address spaces. The first sec-
tion contains the compressed parts of the program in form of
code words, and the second contains the entire uncom-
pressed original program. The majority of the instructions
are fetched from the compressed area. Only upon a miss
there will lead to a fetch from the uncompressesd code sec-
tion.

The presented two-level method has evolved from our
one-level dictionary approach, which we also use in our
comparisons [4]. The 1-level method is competitive on
static compression ratio, although the main purpose is to
improve on the dynamic fetch rate to reduce the energy con-

sumption. The solution, however, is based on profile infor-
mation of individual instructions and therefore not able to
optimize the contents of the dictionary when the aim is to
compress entire basic blocks.

Hines et al., has presented a compiler-directed code
transformation scheme to increase the compressibility of the
code [7]. The scheme is presented in the context of their,
Instruction Register File (IRF) code compression architec-
ture. The technology is based on having a set of dictionaries
or Instruction Register Files containing 32 instructions each.
The IRFs are used in a register window fashion where an
IRF is selected corresponding to the code currently execut-
ing. In addition to the IRF, the architecture utilizes a 32-
entry storage that contains the most frequently used imme-
diate values. In the code up to five instructions can be
packed into an IRF-instruction which later during decom-
pression is replaced with the original instructions. To
enhance the compressibility, increasing the probability to fit
as many instructions as possible in the IRF instruction, code
transformations are performed. Based on dependence analy-
sis, instructions are re-scheduled both within a basic block
as well as between different blocks.

Another technique based on sequences is presented by
Lau et al. [9]. Although the primary focus is on static code
size, the means to achieve compression is by sequence sub-
stitution. The instruction stream is being scanned to identify
re-occurring identical code sequences. When a set of identi-
cal sequences has been detected, only the first is kept in its
original state, the remaining copies of the sequence can then
be replaced with an “echo” instruction. This echo instruc-
tion act as a reference pointing out the location to the first
occurrence of the code sequence. They use register renam-
ing and instruction re-ordering to create larger sequences
increasing the number of instructions possible to substitute.
They show that the static code size can be reduced with 15-
25%, and performance improved by 5-10% depending on
the code optimizations used.

Studies of instruction scheduling involving re-ordering
of instructions in an effort to minimize the switching activ-
ity in between the instructions in a code sequence, has been
presented by Parikh,. et al.[12], and by Sinevriotis and Stou-
ratis [13]. Also, Tomiyama, et al. [14], have explored
instruction re-ordering with the objective to minimize
switching on the bus between off-chip memory and the
instruction cache.

Two approaches that significantly can reduce instruction
cache energy are instruction buffering [1] and the filter
cache [8]. These techniques are orthogonal to code com-
pression and could both be used in conjunction with code
compression. 

The method presented in this paper is focused on
address access profiling and entire basic block compression
using a storage-efficient disjoint two-level dictionary archi-
tecture. Compression of sequences is used as a method to
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increase code density, and instruction re-ordering to enlarge
or create longer compressible sequences.

III.  TWO-LEVEL DICTIONARY COMPRESSION

This section describes the general idea and techniques
that distinguishes the two-level dictionary compression to
previously proposed dictionary techniques.

A. General idea
In most dictionary code compression schemes the code

after compression consists of a mixture of un-compressed
instructions and code words that each corresponds to an
individual instruction [2, 4, 7]. A different approach is to let
the code word correspond to a finite sequence of instruc-
tions [11].

In our two-level approach the idea is to combine the two
different methods. After compression the code consists of a
mixture of uncompressed instructions and code words.
There are two types of code words: instruction code words
(ICW), or sequence code words (SCW). The idea is then to
extend a traditional dictionary compression architecture
with an additional dictionary and sequence de-compression.
Although we are inspired by the work of Lefurgy et al.[11],
the sequence construction, code word usage, and storage of
sequences are rather different to their approach. 

A schematic view of the 2-level method, fetch word
types and usage of SCWs and ICWs, is shown in figure 1.
Whenever the instruction cache is accessed, we assume that
a fetch word (FW) of 32 bits is fetched. Depending on the
compressed code, one of three cases happens. A fetch word
can contain up to four sequence words (case I in figure 1),
up to three instruction code words (case II) or one uncom-
pressed instruction (case III).

Case I: Here, data fetched from memory corresponds to
four SCWs, which each require a complete decompression.
One by one the individual SCWs are used to index the
sequence dictionary retrieving a sequence word (SW) that
contains a sequence of instruction code words. In this exam-
ple the retrieved SW contains four ICWs that each is used to
index the instruction dictionary, finally retrieving the origi-
nal instruction.

Case II: The second compressed format is an ICW only
format, which corresponds to 2-3 compressed instructions
represented as an instruction code word. Since no sequence
word is involved here, we can bypass the sequence dictio-

nary and directly index the instruction dictionary using the
ICWs.

Case III: In the third and last case, the fetch word con-
tains only an uncompressed instruction. Since the instruc-
tion is not compressed the instruction fetch unit can bypass
both dictionaries. 

B. Address access profiling
With the possibility to compress sequences of up to 16

instructions in one fetch word, we may be able to fetch one
entire basic block in a single instruction cache access. How-
ever, the largest basic blocks may not be the largest contrib-
utors to the dynamic number of instruction cache accesses
as this is also a function of the execution frequency as well
as the size of a block. 

The two-level compression method is therefore focused
on minimizing the number of fetches needed to fetch entire
basic blocks, with the goal of: one basic block, one cache
access. When we have achieved this goal, the number of
fetches from a basic block then only depends on the actual
number of times the block is executed. It is therefore neces-
sary during the pre-compression profiling to gather informa-
tion that can be used later during compression to identify
which blocks are the most frequently executed. This is done
in an off-line functional profile execution, counting the
number of times each address is accessed. Later, in the first
compression pass, each basic block is assigned a frequency
value which in combination with basic block length infor-
mation is used to decide which block to prioritize for com-
pression and which to leave unprocessed in the first stage.
Section VI contains information about basic block sizes and
frequencies for the applications used in this study.

C. Properties of two-level compression
In comparison to previous approaches, the 2-level

approach improves on code density and usability in the fol-
lowing manner:

A relatively small increase in the total memory space is
needed for dictionaries, going from 1 kB to 2.1 kB. Since
we use two disjoint dictionaries, we do not need to increase
the size of the code words in order to gain access to all
entries as in a larger monolithic dictionary. As all sequences
in the dictionary are represented by compressed instruction
codes instead of full length instructions, the potential over-

Figure 1. The code generation process, compilation and the four pass compression engine.
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head of unused space when a sequence entry is not fully uti-
lized is kept rather small: 1-2 bytes.

Also, the flexibility is improved due to the design of the
sequence code word. As the building blocks of the
sequences consist of instruction code words, the same code
word can be used to construct several sequences. Also, inde-
pendently if an ICW is used as a component in a sequence
the ICW can always be used to represent an individual
instruction.

IV.  COMPRESSION CODE ARCHITECTURE

In analogy with an Instruction Set Architecture (ISA),
we define the Compression Code Architecture (CCA) to be
the way we encode uncompressed instructions that can co-
exist with instruction and sequence code words. It is impor-
tant that uncompressed instructions may co-exist with com-
pressed instructions as only a small fraction of all the
instructions constituting the entire program are possible to
encode in a compressed state. 

We have extended and modified the MIPS IV ISA
binary format to accommodate the use of sequence and
instruction code words. Below we define some terms used
in the description of the Compression Code Architecture:
• Uncompressed instructions: Normal full-length instruc-

tions.
• Code words (CW): A generic term for the small values

that are used to substitute instructions, or code
sequences in the binary. The two-level method uses two
different types of code words:

1 Sequence code words (SCW): A SCW corresponds to a com-
pressed instruction sequence. During decompression the scw 
is used to index the sequence dictionary retrieving a 
sequence word containing instruction code words.

2 Instruction code words (ICW): In all compressed sequences 
each individual instruction is represented by an instruction 
code word. During decompression the ICW is used to index 
the instruction dictionary where the original uncompressed 
instruction is stored. 

• Sequence word (SW): From an architectural point of
view the SW is the 35-bit sequence dictionary entry. In
respect to the compression method the contents of each
SW corresponds to a sequence of instruction code words.

• Fetch word (FW): A fetch word is the four byte wide
entity fetched from the instruction (cache) memory. Each
FW either contains a compressed code sequence or an
uncompressed instruction.

A general view of the different CCA components and
how they work and produces compressed code can be seen
in Figure 1. 

A. Fetch word layout 
As mentioned before, the fetch word contains either an

uncompressed instruction or a sequence of compressed
instructions. This is indicated by bit 31 in our Code Com-
pression Architecture, see Figure 2. When the fetch word is
a sequence of compressed instructions, they are all from the
same basic block, which is an important property from a
memory system design point of view. 

Defined by the most significant bit, compression status,
the remaining 31 bits either represent a compressed instruc-
tion sequence or one uncompressed instruction. In the case
the compression status bit indicates that the data contents
correspond to compressed instructions, three additional con-
figuration code bits, cfg_code, are allocated from the avail-
able data bits to describe the configuration, number and type
of code words, used to compress the original instructions as
shown in Table I. 

Independent of the length of the original code sequences
and how many fetch words are required to compress the
sequence, the compressed data field of any given FW is con-

1

0 cfg_code

31 bit uncompressed (U-class) instruction

Compressed code representation

compression status bit
Figure 2: Fetch word layout.

31 0

31 027

TABLE I. FETCH WORD, COMPRESSED CODE CONFIGURATIONS.

cfg-
code Configuration description  CW-dict 

index
#Inst/
FW

 Branch 
possible Compressed code layout

0 4 x 7-bit sequence code words 0-127 8-16 Yes

1 3 x 8-bit sequence code words 0-255 6-12 Yes

2 2 x 8-bit sequence code words 0-255 4-8 Yes

3 1 single 8-bit sequence code word 0-255 2-4a Yes

4 3 x 8-bit instruction code words n/a 3 No

5 2 x 8-bit instruction code words n/a 2 No

6 2 x 8-bit ICW + one 8 bit disp-value n/a 2 Yes
7 Not used

a. Notice that using configuration 3 to for sequences less than 4 instructions only is efficient if the sequence match the layout of ICW-config 1
or 5 described in Table II.

scw scw scw scw

scw scw scw

scwscw

scw

icw icw icw

icwicw

icw icw imm
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fined only to contain code words of the same category. In
practice, this implies that the data field either exclusively is
composed out of sequence code words (SCW), configura-
tions 0-3 in Table I, or only instruction code words (ICW),
corresponding to configurations 4-7 in Table I. We do not
support mixing SCW and ICW within a single FW. 

B. Sequence code words (SCW)
Compression of long sequences, 3-16 instructions, are

made in a two-phase fashion, where individually com-
pressed instructions are compressed into sequences. A
sequence of 3-16 compressed instructions is substituted by
one to four sequence code word(s) (SCW) used to index the
sequence dictionary. As illustrated and described in Table I,
sequence code words can be either seven or eight bits long.
With seven bit code words, we can only index half of the
available entries in a 256-entry large dictionary. For full
usage of the dictionary, configuration 1-3 must be used. 

The sequence dictionary entry is a 35-bit wide sequence
word (SW) with a layout shown in Figure 3. While the fetch
word was limited in size to be the same as an uncompressed
instruction, we do not have this restriction on the sequence
word. Table II shows the layout of the different sequence
word configurations. The design of the instruction code
words that constitute the sequence words are described
below.

C. Instruction code words (ICW)
Instruction code words (ICW) constitute the core of the

two-level dictionary code compression method. The instruc-
tion code word can be defined as a plain 8-bit value used
only to index the instruction dictionary located inside the
decompression stage in the processor. The resulting dictio-

nary entry is an uncompressed instruction which will be
inserted into the processor in place of the code word.

As described above, the purpose of the 8-bit ICW is to
index the dictionary. However, as described later, instruc-
tion code words corresponding to branches are used in con-
junction with an immediate displacement value. We
therefore divide and classify the instruction code words as
two different classes, the G- and the R-class.
G-class: The Generic-class corresponds to the definition of the ICW,

simply comprising of an 8-bit value possible to substitute
for all types of instructions except for relative branches. 

R-class: The Relative-class, is explicit for compression of relative
branch instructions as compression of these instructions is
a more complex task. The complexity involved is related
to target address generation and the correlation between
compressed and uncompressed address space. A low com-
plexity approach to the problem, is to separate the uncom-
pressed displacement value from the compressed op-code
and register fields. This simple approach is employed here
using two different subclasses of the R-class differentiated
by the size and number of bits used in the displacement
component.
R8: The R8 represents a 16-bit wide compressed encoding

of any branch instruction where the branch distance
can be expressed using only 8-bits. The 8-bit code used
for dictionary lookup is concatenated with an eight bit
two’s-complement displacement value. 

R16: Not all branch distances can be reached using 8-bits.
Therefore, to handle longer distances a second R-class
ICW using a 16-bit displacement value is introduced.

In the next section we will show how the dictionary con-
tents is constructed based on an address access profile and
our fitness-based instruction and sequence word allocation
algorithms.

V.  COMPRESSION METHOD

A. The Two-level Compression Engine
The compression engine of our technique will in a pro-

duction system be embedded in the compiler. However, in
this study, it is applied as a separate phase on the binary
code already compiled. We thus lose the possibility to let
our compression engine influence the instruction scheduler
which becomes necessary to do as a separate stage now. 

The compression engine takes a stream of basic blocks,
each containing a stream of instructions. It consists of four
distinct passes, Instruction code word allocation, Sequence
enlargement, Sequence construction, and finally Code gen-
eration that step by step transform the instruction stream
into compressed code. A small schematic of the process is
shown in Figure 4.

B. Instruction code word allocation
The first stage, Instruction code word allocation, consti-

tutes the backbone of the proposed method as all compres-
sion possible to achieve originates from the use of
instruction code words.

branch indication bit
Figure 3: Layout of the 35-bit wide sequence dictionary entry, also 

referred to as sequence word(s) (sw). 

34 0
cfg code

31
Instruction code words & immediate value combinations

icw icw icw imm

icw icw icw icw

TABLE II. SEQUENCE WORD CONFIGURATIONS.

Code Code word configuration Branch Data layout

0 4 plain instruction code words No

1 3 instruction code words + one 8 
bit immediate displacement value Yes

2 3 plain instruction code words No

3 2 instruction code words + one 8-
bit immediate displacement value Yes

4 2 plain instruction code words No

5 2 instr. code words + one 16-bit 
immediate displacement value Yes

6 1 instruction code word + one 16-
bit immediate displacement value Yes

icw icw icw

icw icw imm

icw icw

icw imm

icw icw imm
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From the compiler the compression engine receives a
stream of basic blocks that each contains a stream of
instructions. Using the address access frequency informa-
tion gathered during the preceding profiling session, each
basic block is assigned an access value corresponding to the
number of times each block was accessed during execution.
This access information and other properties of the blocks
such as instruction count and instruction types are used to
calculate a compression fitness for the block.

The fitness of a block is then used to decide which block
has the best potential to contribute the most to an overall
best yield in dynamic compression ratio. The
calculate_fitness() function is hereby based on a gain per
cost principle, where gain and cost are defined accordingly:

Gain: Gain is a measure on how large effect on the total
compression in number of reduced fetches it is possible to
achieve if that block were compressed to smallest possible
size. With the intention, one basic block, one fetch word, a
compression of a basic block of nine instructions that are
being access 10 times during execution, to fit in a single FW
will reduce the number fetches needed for that block from
90 down to 10.

Cost: Compression does not come without a cost. Here,
the cost consists of the number if unique ICWs that are
required in order to entirely compress the block. Initially the
cost to completely compress a block, substitute all its
instructions with ICWs, is equal to the number of instruc-
tions in the block. However, during the CW-allocation pro-
cess, the cost is gradually reduced for some blocks as more

and more instructions are already present in the dictionary
and therefore already have ICWs allocated. 

After the initial fitness calculation the stream of basic
blocks is sorted in descending order according to their fit-
ness value and the process of allocating entries in the code
word dictionary begins. As an instruction becomes allocated
in the code word dictionary, all basic blocks that contain
that particular instruction must be re-processed. The instruc-
tion must be linked to the corresponding code word entry
which in turn requires a re-calculation of the fitness for
these blocks, as the usage of that code word is now for free.
All affected blocks are then re-inserted into the steam of
basic blocks in the right fitness order and the process contin-
ues until no vacant CW-entries exist. Figure 5 (a) shows the
general algorithm of instruction code word assignment.

C. Properties of the fitness policy
The adopted fitness policy will promote the compression

of a set of small blocks that each individually contributes
less than a larger single block contributes to the total, given
that the accumulated gain is larger and that the accumulated
cost for compressing all the smaller blocks are lower com-
pared to if the larger block was compressed. 

Another effect is that blocks that are rather specific in
their instruction composition gets a low fitness value, even
though they might be frequently accessed. This is because
these blocks do not have many instruction patterns in com-
mon with other blocks and therefore have a high cost for
compression. Blocks with an instruction composition much
more similar to other blocks will on the other hand have the

Figure 4. The code generation process, compilation and the four pass compression engine.
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Fitness_fx()

Address access
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dict
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Sequence construction

FW
assembly

Code generation

ICW

SCW

NON

address
encode

Instruction
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Sequence enlargement

code

Figure 5: ICW allocation (a) and SCW allocation (b) algorithms. 

(a)
procedure allocate_cw_entries(BB_stream, access_profile)

calculate_fitness(access_profile)
sort_BB_stream(fitness)
while (vacant entries in CW-dict) do

pick first unprocessed BB
for each unique instruction pattern

allocate_cw_entry(pattern)
end
for each affected BB

associate instructions to CW-dict entries
re_calculate_fitness()
re_install_BB (fitness)

end
end

end

(b)
procedure allocate_sw_entries(sequence)
len=length_of(sequence)
do

base=CEIL(len/4)
nof_icw=(len/base)
allocate_sw_config(nof_icw, instruction types)
len=len-nof_icw

while (len>4)
if (len)

allocate_sw_config(len, instruction types)
end
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cost for compression substantially reduced and hence a high
fitness value. 

D. Sequence enlargement 
After the initial ICW allocation phase, the basic blocks

are divided into three different sets based on the number of
instructions in the block that can be substituted for instruc-
tion code words. Set 1 contains the basic blocks where all
instructions in the block are in the instruction dictionary. Set
2 contains the basic blocks with two or more instructions
that are present in the instruction dictionary and set 3 con-
tain the basic blocks with at most one instruction in the
instruction dictionary. This division can be seen in Figure 6.
All blocks belonging to set 3 are marked as non-compress-
ible and left unprocessed until the final code generation
stage. This is because the block contains too few substitut-
able instructions. Also, all blocks belonging to set 1 are
passed on unprocessed, here because the entire block consti-
tutes a compressible sequence.

In order to achieve any reduction in the number of cache
accesses required to fetch the entire basic block, at least two
instructions in sequence must be substituted for code words.
The instruction code word assignment algorithm, however,
does not guarantee that blocks in set 2 have their compress-
ible instructions adjacent. Therefore, we have developed an
instruction scheduling algorithm with the purpose of finding
compressible instructions so as to create as large sequences
of compressible instructions as possible. The process is
based on detection and analysis of the three possible cases
below.

Dependency analysis. The instruction scheduler depends on a
dependence analysis to investigate the possibility to create
larger sequences of compressible instructions. Figure 7
shows an example where the objective is to analyze the pos-
sibility to merge the two compressible subsequences, {bc}
& {fgh}, present in the instruction sequence {a-j} to create
a single large compressible sequence {bcfgh}.

The instruction scheduler performs a data dependence
analysis on register dependencies only. Although it is possi-
ble to some extent detect memory accesses that could pre-

cede each other, for simplicity we have chosen to preserve
the original load/store order since the improvement in com-
pression ratio because of load/store reordering is insignifi-
cant1. On average, for the 15 MediaBench applications used
in our evaluation, static code size is increased with 0.31%,
and the dynamic compression ratio is on average 0.19%
lower when strict load/store order scheme is used compared
to a test when all possible reordering of load/store-instruc-
tions were allowed given that no register interdependences
exist between them.

The analysis begins by building a Data Dependency
Graph (DDG), where the nodes represent individual
instructions, see Figure 7. Then, a second DDG is created
where each node represents a sequence, uncompressible
instructions are here regarded as a single instruction
sequence. Any sequence of two or more instructions in
length inherit the dependence properties of its contributing
instructions as found during generation of the DDGinstruc-
tions. 

Safe, semantically correct, transformations can now be
identified by traversal of the DDGsequences. During such tra-
versal, a node may be visited only if all the parents of that
node already have been visited. Any such valid order of vis-
its induces valid code sequence that do not cause any
semantic hazards to the program.
Sequence merge. The merge action is essentially a code
transformation, merging the instructions belonging to two
yet disjoint sequences, into one larger sequence and to re-
insert this new code sequence into the intermediate repre-
sentation of the instruction stream again on the right loca-
tion. After a merge action taken place, as long as there are
scattered compressible sequence(s), a new DDG reflecting
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the current state of the code is generated and analyzed for
more potential merge opportunities. 

Previously it has been stated that any valid traversal of
the DDG yields a valid permutation of the instruction
stream. The actual merge operation restricts this free defini-
tion down to three precise transformations described below.

S1 ⇒ S2: Move the fist sequence, s1, forward in the
instruction stream to merge together with s2 which is kept in
its current location.

s1 ⇐ s2: This transformation is the inverse in respect to
previous transformation. Here, the second sequence is
moved backward to connect with s1which is kept in place.

S1⇒ ⇐S2: A combination of the two previously
described actions. Both sequences are moved towards each
other, s1 forward and s2 backward, the two sequences
merge somewhere in between.

E. Sequence word construction
The responsibility of the SW-construction pass is to iden-

tify and process, allocate SW-entries and associate ICWs to
the SW-entries, all code sequences possible and adequate2 to
compress using SCWs. 

The stream of basic blocks are processed in order of fit-
ness, see Section B., for each block the instruction stream is
scanned for one or more sequences to compress. Before SW-
allocation can begin the number FWs required for each
found sequence must be calculated. The number of FWs
required depends on sequence length, available resources in
form of empty entries in the SW-dictionary, and whether the
last instruction of the sequence is a relative branch or not.
The number of FWs is calculated accordingly:

where max_len is 16 or 12 depending on whether there
are empty sw-entries on index 0-127 or not. 

If more than one FW is required to compress the
sequence due to a long sequence or resource deficit, it must
be subdivided. The sequence is split in two one equal to the
current max_len in length and a remainder. The remainder is
repeatedly subdivided until the length of the remainder ≤
current max_len. For each of the FWs needed to compress
the entire sequence the sw-allocation procedure is called.
See Figure 5 (b) for the sequence word allocation algorithm.

The required SWs are allocated in the SW-dictionary in
an iterative process. During each iteration the number of
ICWs to be assigned to each SW-entry is calculated. The right
configuration is selected during the allocation,
allocate_sw_config(), depending on instruction types and
number of ICWs, see Table II.

Index 0-127 are prioritized for sequences larger than 12
bytes as they can be fitted within a fetch word. As long as
there are empty entries on index 128-255, sequences with
max_len less than 13 bytes will be assigned on index 128-
255. However, if not enough entries on index 128-255 exist,
the 0-127 partition may be used.

All sequences successfully compressed using SCWs are
marked as SCW-compressible. If we detect a deficit in SW-
entries, the process is aborted and the sequence or subdi-
vided sequence currently processed is marked as ICW-com-
pressible.

F. Code generation 
Finally the stream of basic blocks reaches the two-pass

code generation stage, Fetch word assembly and Address
generation. In the preceding phases, internal compression
has been performed building dictionaries and associating
instructions to ICWs and ICWs to SCWs. At this point it is
time to conclude the process and transform the intermediate
representation to a compressed binary file.
Fetch word assembly. Each basic block is once again pro-
cessed, this time in program order, scanning the code stream
locating code sequences belonging to the three compression
classes SCW-, ICW-, or non-compressible sequences.
Depending on compression class the located sequence is
then processed by one of three FW-assembly schemes.

SCW-compression: Since the scw-compression is per-
formed on a fetch word granularity each detected SCW-com-
pressible sequence corresponds to a fetch word. The work
here consists of constructing and emitting a fetch word con-
taining the correct SCWs and configuration code to the com-
pressed code stream. 

ICW-compression: The sequence to compress is pro-
cessed from the end towards the start, as long as possible the
sequence is subdivided into 3 byte wide units that depend-
ing on instruction types can be represented by 2 or 3 ICWs.
For each such unit a suitable ICW-configuration is selected
from configuration number 4-6 in Table I. If any subdivi-
sion of the sequence results in an unit less that 3 bytes in
length, those 1 or 2 byte must be handled. For 2-byte units
we can employ ICW-configuration 4 to compress the instruc-2. Only sequences larger than 3 bytes, ICW and displacement 

bytes accounted for, are worth compressing using SCWs, smaller 
sequences are labelled as ICW-compressible and passed on.

Figure 8: Possible, practical and used merge operations.
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tions. Any single byte unit is marked as non-compressible
and passed on. 

NO-compression: These instructions are inserted unal-
tered into the stream of compressed code. 
Address generation. After completed compression all branch
& jump target addresses must be adjusted to point out the
correct destination in the new denser memory space.
Depending on branch type and compression state address
re-encoding is performed accordingly; 
• For relative branches new 8- or 16 bit displacement val-

ues must be re-calculated. The update is then either per-
formed on the immediate fields in the sequence word
dictionary, or directly on the FW representation of the
immediate value.

• Absolute branches have their target address embedded
in the instruction. The adjustment must here either be
made on the corresponding instruction dictionary entry
or on the actual FW containing the u-class representa-
tion of the instruction.

• For indirect branches which does not hold any address
information within the instruction, the corresponding
jump tables must be updated with the new target
addresses.
Next we present results from an evaluation of the two-

level dictionary instruction compression using 15 programs
from the MediaBench benchmark suite. 

VI.  EXPERIMENTAL EVALUATION 

A. Micro-architecture
We have devised an example micro-architecture that

would represent a typical implementation of our scheme,
see Figure 9. We assume a small in-order, scalar processor
with standard pipeline structure and a dynamic branch-pre-
diction with branch target buffer in the instruction fetch
stage. The 2-level architecture is an extension of the more
common 1-level approach [4], where a de-pack stage for the
dictionary lookup is added. We have added yet another pipe-
line stage called De-Sequence to perform the sequence dic-
tionary lookup.

In this architecture, the fetch stage does no longer fetch
explicit instructions. Instead, a Fetch Word is fetched from
the instruction memory. The contents of the FW is inserted
into a new sequence buffer installed between the fetch- and
de-sequence stages. The added buffer act as a FIFO possible
to contain the contents of two FWs. A fetch control unit han-
dles the actual fetching and insertion of fetched data. It con-
trols which address is presented to the memory system. The
selected address either belongs to the next FW in sequence,

or the FW on a predicted target address that is provided by
the branch prediction unit (called BTB in Figure 9).

The added DS stage is responsible for reading data out
from the sequence buffer and use the data to index the
embedded sequence dictionary. The dictionary contains 256
35-bit wide entries. The incoming SCW is then substituted
for the ICWs located on the referred SW and inserted into the
code word buffer between the De-Sequence- and De-Com-
pression stages. In order to put the native instructions into
the instruction stream of the pipeline incoming ICWs are
used to index the instruction dictionary. 

From the Decode stage and onwards, the pipeline
remains unaltered as compared to a normal in-order scalar
pipelined processor.

B. Methodology.

In order to evaluate our two-level dictionary method, we
modified Wattch, a SimpleScalar-based simulator with
power models, to model our proposed target architecture [3,
5]. Additional pipeline stage(s), buffers, and dictionaries
were added and modelled. To model energy for off-chip
memory accesses, the simulator was instrumented with an
energy model for memory and bus interface based on the
IRAM project [6]. We also compare the new two-level
method with our one-level approach [4] as well as a model
of a standard five-stage pipelines processor. Simulation
parameters for the three different processors can be viewed
in Table III.

C. Workload characteristics
We have used the MediaBench benchmark suite to eval-

uate the effectiveness of our proposed compression scheme

Figure 9: Architectural overview of the expanded pipeline.
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De-SequenceFetch
Main Memory

DecodeDe-compress Pipeline-
Backend

BTB

dictionary

Sequence
 Word

dictionary
Code Word
dictionary

sequence buffer code word buffer

TABLE III. PROCESSOR SIMULATION PARAMETERS.

 Processor:
Misspredict penalty
2-bit bimodal predictor
Branch target buffer (BTB)
Return stack 

Baseline: 3, 1-level: 4, 2-level: 5 cycles
1024 entries
128 entries, direct mapped
8 entries

Memory system
L1 I-cache
L1 D-cache
TLB (D&I)
Main memory

16kB, 4-way, 32 B blocks, 1 cycle latency
16kB, 4-way, 32 Bblocks, 1 cycle latency
128 entry, 4-way, 30 cycle miss penalty
64 cycle latency

Energy and process parameters
Feature size
Vdd
Clock frequency

0.18 μm
1.8 V
400 MHz
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[10]. They were compiled without modification with gcc
version 3.2.2 with optimization level -O2. 

Figure 10 shows the main characteristics of the 15 pro-
grams from MediaBench and static results from applying
the two-level compression scheme. The average basic block
size in these programs are between 4 and 6. The diversity in
basic block size, however, is high. In particular, toast has a
dominant basic block of 401 instructions which effectively
blocks compression. The average static compression ratio is
0.89 to be compared with the 0.73 achieved by the one-level
approach [4]. The difference comes from the fact that the 1-
level method can make use of scattered single compressible
instructions while in the 2-level approach we need at least a
sequence of two compressible instructions. All programs
except for djpeg and toast which have around 100 basic
blocks which are fully compressible of average length 4-10
instructions. On average 60% of the fully compressible
blocks used sequence words, the remaining only instruction
code words. The basic blocks compressible using sequence
words have a much larger average number of instructions
with a mean of 7.7. 

D. Dynamic Compression
Although static compression may be important in some

embedded applications, it is becoming less so with compact
and dense instruction memories. More important is the
working set size and the dynamic compression ratio which
directly translates into energy savings.

Figure 11 shows the dynamic compression ratio of our
two-level approach compared to the one-level approach [4].
The graph shows both the ideal compression ratio, and the
real dynamic compression ratio taken from executions on
the simulator where the dynamic effects of the branch pre-
dictor becomes visible. For programs with relatively high
branch prediction miss rate such as rawcaudio and rawdau-
dio, this is visible as a relatively large difference between
the ideal and the real cases. These programs have 20-27%
branches and a branch prediction accuracy as low as 70-
85%.

The two-level compression scheme is consistently better
performing than the one-level approach due to the emphasis
on basic blocks and its ability to compress longer sequences
into a single fetch word. The exception is toast where a sin-
gle commonly executed basic block of 401 instructions
blocks the compression because it would require more
instruction code words than what we have available. 

E. Front-end energy consumption
Figure 12 shows the processor front end energy ratio

broken down into its components for the 1- and 2-level
architectures, normalized to the front end energy of our
baseline processor. The energy consumption in the fetch-
path is broken down into energy in the decompression
stages (mainly dictionary lookup), Branch predictor
(denoted BTB), Instruction memory and bus and the
Instruction cache. Of these four components, by far the most
important is the Instruction cache. The solid line on top of

Figure 10: Main application characteristics of the 15 MediaBench applications. 
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the one-level and two-level bars show the reduction in total
processor-memory energy from using the two different dic-
tionary code compression schemes. 

For the programs in this workload and the instruction
cache size used in the experiments, the instruction cache
misses are insignificant and therefore very little energy con-
sumption in the instruction memory and bus system. From
Figure 12, it is clear that the results regarding dynamic com-
pression ratio shown in Figure 11 directly reflects how the
energy consumption in the instruction cache is affected, the
better compression ratio the lower I-cache energy consump-
tion. Also, the energy consumed on BTB lookups are related
to the dynamic compression, fewer I-cache accesses lead to
fewer BTB lookups and vice versa. 

Even though the decompression mechanism consumes a
considerable amount of energy, for all the test programs
used except for toast, the two-level architecture proves to
improve on front-end and total energy consumption as com-
pared to our baseline processor. 

In order for the 2-level architecture to improve on front
end energy over the 1-level architecture the reduction in
instruction cache access and BTB lookups must translate into
a larger energy reduction than the extra energy consumed by
the new de-sequence stage and dictionary adds to the total3.

F. Performance
The immediate relationship between, dynamic compres-

sion, and reduced number of instruction cache accesses
potentially resulting in improved energy consumption in the
front end, does not necessarily apply to performance. Figure
13 shows the performance of the two dictionary approaches
normalized to the baseline processor.

Most programs perform equal to the baseline processor.
Rawc/Rawdaudio have, as mentioned previously, poor
branch prediction accuracy and this shows in lower perfor-
mance using compression since the branch miss prediction
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Figure 12: Energy ratios of the Instruction fetch path and total processor/memory. 

3. That is, given that the number of instruction cache misses are 
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penalty is higher. Some programs, such as encode/decode
exhibit dramatic performance (and energy) improvements
with very small caches since the compressed instruction
stream has a much smaller working set and thus can fit bet-
ter in the cache compared to the baseline processor. Experi-
ments with a 4 kB instruction cache show, for these
programs, a performance ratio of 0.45 and 0.5, respectively,
i.e., a reduction of the execution time by a factor of 2.

VII.  CONCLUSIONS

In this paper, we have introduced and presented a two-
level dictionary code compression method. Based on a
method that could be viewed as a traditional dictionary code
compression architecture using a single dictionary for
decompression, the two-level is an extension using two sep-
arate dictionaries, one for compressed instructions not par-
ticularly different from what normally is the case for
dictionary compression. The new, second dictionary on the
other hand contains compressed code sequences. The nov-
elty of the approach is in fact the use of two separate dictio-
naries and that the compressed sequences are in fact built up
by individually compressed instructions. In addition to the
presented method the means for compression and decom-
pression are presented, code word architecture, micro archi-
tecture and a compression engine capable of utilizing the
proposed method. 

The efficiency of the new two-level method and archi-
tecture has been evaluated on four measurements static code
size, dynamic compression, front end energy consumption,
and performance impact, against a more traditional dictio-
nary code compression architecture here denoted one-level. 

On static code size, the two-level runs short compared to
the one-level method. It is an active choice to let the profil-
ing method and compression method trade off some of the
performance in static code size for better results regarding
dynamic compression. 

This is also reflected when looking at the dynamic com-
pression, i.e., the reduced number of cache accesses. It is
encouraging to note that with an average improvement of
23% on dynamic compression, between 2-21% reduction in
front-end energy consumption is achieved in spite of the
now larger and more energy-consuming hardware required
for the actual decompression, comprising of two pipeline
stages and two dictionary tables. 

The introduced extra de-sequence stage does not only
effect the results because its own energy consumption, it
also increases the mispredict penalty. This makes the archi-
tecture both from a performance and dynamic compression
point of view extra sensitive to the misprediction rate espe-
cially for application executing a large share of branch/jump
instructions. For applications where the prediction accuracy
is good the impact on performance is within 0.2 -6% com-
pared to the one-level processor.

Currently the proposed compression method is un-opti-
mized and has a considerable high complexity repeatedly

throughout the process scanning and sorting the entire
stream of basic blocks. In future implementations more
effort must be made to reduce the complexity that also
involves to make the process integrated in the compiler in
contrast to now being a post-compile procedure. 
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