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Abstract. Multicore and other parallel computer systems increasingly
expose architectural aspects such as different memory access latencies
depending on the physical memory address/location. In order to achieve
high performance, programmers need to take these non-uniformities into
consideration but this not only complicates the programming process but
also will lead to code that is not performance portable between different
architectures.
Task-centric programming models, such as OpenMP tasks, relieves the
programmer from explicitly mapping computation on threads while still
enabling effective resource management. We propose an approach to take
memory locality into account in the task scheduler of an OpenMP run-
time system. This approach make use of programmer annotation to iden-
tify memory regions used in a task and a run-time system scheduler
making use of this information.
We have made an initial implementation of a locality-aware OpenMP
task scheduler on the Tilera TilerPro64 architecture and provide some
initial results showing its effectiveness in fulfilling the need to minimize
non-uniform data and resource access latency.

1 Introduction

Symmetric multiprocessors are rapidly giving way to multicore systems

with great deals of non-uniformity in memory accesses. High-end servers

built on AMD Hypertransport or Intel Quickpath interconnects exhibit

NUMA (non-uniform memory access) characteristics. As an example, a

four-socket AMD server typically connects each processor with two others

using Hypertransport. Each processor has one DRAM memory controller

so there are at least three different latencies to DRAM memory. Accesses

to the local node is the fastest. Accesses to memory belonging to he

neighbouring nodes adds some 40 ns and yet another 40 ns is added for

accesses to the node which is two Hypertransport links away.

Another example where memory locality matters is in the TilePro64

architecture from Tilera. This architecture exhibits NUMA characteristics
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as access time to memory slightly depends on how far away (counting in

tiles) you are from the memory controller (one out of four) you want

to access. Because of its distributed shared cache architecture, it also

exhibits varying cache miss latencies as a cache line is always homed at

some tile’s L2 cache, which in this case acts as an L3 cache for other

tiles. This characteristics is not always easy to deal with and most often

one has to resort to configure the memory, if one has that option, as

uniformly far away interleaving the home on the tiles per cache line or

whatever granularity is possible.Or, alternatively, the architecture detects

access patterns and allocates memory to where it is used the most as in

the R-NUCA approach [7].

Task-centric programming models such as OpenMP tasks, Intel Cilk

Plus, Intel TBB and Wool [1, 5, 6, 9], are rapidly gaining interest in the

parallel software community. The main advantage of a pure task-centric

model over thread- and process-centric models, and even data-parallel

models are that they implement an efficient ”bag-of-tasks” abstraction

for all parallel activities, even for parallel for loops that otherwise can be

performed efficiently with static scheduling provided that all iterations

have the same computational complexity and memory access behaviour.

We argue that for certain applications, we can take knowledge of which

data region each task uses and whether these regions are homed at a par-

ticular tile or not and schedule tasks to be executed on tiles where they

have high likelihood of having its data homed. We have made a prototype

implementation of such a scheduling policy in the experimental OpenMP

run-time system Nanos++ [2] and present here an initial study on its ef-

fectiveness on the TilePro64 architecture from Tilera.As far as we know,

no other task schedulers have been presented before that take locality

aspects into account. We also propose an extension to the OpenMP di-

rectives to allow specification of which data regions a task uses in order

to relieve the run-time system from inferring this indirectly.

Although our implementation is on the TilePro64 architecture, we

believe that our ideas will hold for any architecture using a Distributed

Shared Cache or exhibiting a distributed NUCA behaviour. Future work
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will include investigating the system with no explicit cache coherence

similar to the Intel Single Chip Cloud.

We find that there indeed is performance to be saved by placing tasks

at the right core if the memory access pattern is such that it allows

it. For the evaluation architecture, however, it is surprisingly hard to

predict whether accesses to locally homed data will have substantially

lower latency as compared to remotely homed data.

2 Architectural locality

The spreading of processing units and caches across the chip area of ex-

isting and future multicore processors leads to an architecture with non-

uniform communication latencies which depend on the physical location

of on-chip resources. The TilePro64 processor is an example where strong

notions of architectural locality exist. The TilePro64 conforms to a dis-

tributed shared cache architecture where a processing unit (core) and a

slice of the shared last-level L2 cache are bundled into a structure known

as a tile and tiles are distributed across the chip in a regular manner.

With this architecture, a core can access its local shared L2 slice faster

than other off-tile L2 slices. In effect, an off-tile shared cache slice becomes

an additional L3 cache for that tile.

On the TilePro64, a block of main memory is mapped to a specific

last-level cache slice called the home. Loads issued by cores are met by

first bringing in the block of main memory into the home and then sending

the home allocated block to the local L2 slice. Cache misses to blocks of

main memory homed locally can therefore be loaded faster than those

blocks that are homed remotely. Also, since the TilePro64 employs a

write-through cache policy, writes are forwarded to the home tile and

invalidations sent to local copies in any other L2 cache. Therefore, cache

re-use of data written to is much faster on the tile that homes a particular

block. The TilePro64 architecture has in total 64 tiles with 8 kB private

L1 instruction and data caches and a 64 kB large slice of the L2 cache

which acts as a normal L2 cache and as an L3 cache for all tiles accessing

data homed at this tile.
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The mapping of main memory blocks to homes is greatly configurable

on TilePro64 by means of hashing functions. For example, hash-for-home

is a vendor hashing function provided by Tilera which spreads all main

memory blocks contained within in a OS virtual memory page to a con-

figurable set of homes interleaved on a cache block basis. The default

behaviour of hash-for-home, which is the one used in this paper, is that

cache blocks are interleaved with homes across all tiles on the chip. It is

also possible to configure the home tile of an entire memory page of 64

kB.

Configurable homing of memory blocks on the Tilepro64 is the archi-

tectural locality feature which we aim to exploit in this paper. We first

begin by constructing a static latency graph of the TilePro64 architecture.

The graph is constructed by running micro-benchmarks which measure

the latency of communication between shared L2 slices. Using the graph,

scheduling and data placement over the chip can be performed with the

goal of minimizing the load latencies experienced by OpenMP tasks. The

graph is updated by running the latency benchmarks occasionally to get

a feel for dynamic communication latencies when the chip is loaded with

work.

In order to exploit task memory access patterns effectively on dis-

tributed shared cache architectures, allocation of data structures has to

be done carefully with communication latency in mind. We illustrate this

idea by quantifying the impact of homing decisions while allocating data

on the TilePro64. We consider a simple OpenMP application called home-

test which creates tasks that only makes a number of memory references

on specific exclusive regions of memory. These specific regions are either

all allocated homed on a single L2 slice, or spread across all available L2

slices using TilePro64 hash-for-home, or every region is homed on a spe-

cific L2 slice. We then schedule the tasks to execute one at each core and

collect some statistics using hardware counters to illustrate the perfor-

mance effect of homing decisions. Task execution time is measured using

cycle counters and we then also count the number of L1 misses that go

to data homed either locally or remotely.



5

Average task execution time Max task execution tim

6

Average task execution time Max task execution tim

4

5

6

T
ta

sk
 e

x
e

cu
ti

o
n

 t
im

e
s 

(s
)

Average task execution time Max task execution tim

3

4

5

6

T
ta

sk
 e

x
e

cu
ti

o
n

 t
im

e
s 

(s
)

Average task execution time Max task execution tim

2

3

4

5

6

T
ta

sk
 e

x
e

cu
ti

o
n

 t
im

e
s 

(s
)

Average task execution time Max task execution tim

0

1

2

3

4

5

6

T
ta

sk
 e

x
e

cu
ti

o
n

 t
im

e
s 

(s
)

Average task execution time Max task execution tim

0

1

2

3

4

5

6

Home access Hash-for-home Homed at tile 0

T
ta

sk
 e

x
e

cu
ti

o
n

 t
im

e
s 

(s
)

Average task execution time Max task execution tim

0

1

2

3

4

5

6

Home access Hash-for-home Homed at tile 0

T
ta

sk
 e

x
e

cu
ti

o
n

 t
im

e
s 

(s
)

Average task execution time Max task execution tim

Fig. 1: Average and maximum task execution times.
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mote.
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Figure 1 shows the resulting average task and maximum execution

time. The absolute values are not interesting but rather the relative dif-

ference between the three allocations. To home data where it is accessed

here shows a 43% improvement over the has-for-home policy which dis-

tributes the data across all tiles. Hash-for-home represents a uniformly

”bad” policy but it has the great advantage that the aggregate L2 caches

of all tiles effectively work as a large L3 cache. The single-tile allocation

is on average a little better than hash-for-home, since at least one core

has local access, but the effect on the maximum task execution time is

devastating.

Figure 2 show the causes behind the differences in execution times.

It shows the average number of data accesses done by each task to data

homed either locally or remotely. The home access scheme has virtually

no remote data references which explains the low average and maximum

task execution time.

This simple experiment illustrates the importance of taking architec-

tural locality aspects into account when mapping data and/or compu-

tations onto a tiled architecture with non-uniform communication and

memory access costs. To use this inference effectively, application data

structures need to be homed with task access patterns in mind and the

corresponding homing information must be conveyed to the runtime. This

is easier said than done as it involves substantial compiler, interface design

and memory management work. As our research is in its initial proof-of-

concept phase, we assume that the programmer can explicitly expose task

memory access patterns to the run-time system and allocate application

data on specific homes tiles. This is followed by annotating the task def-

inition with a list of home cache id:s called the home-list. The home-list

is further sub-divided according to home caches are that written, read or

both read and written by the task.
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3 Task-centric programming models and memory

behaviour

We are concerned here with OpenMP tasks which were introduced to

handle applications with irregular parallelism, but also suitable for data-

parallel applications for multiprogrammed systems where the parallelism

may change during execution time. The nature of the parallel execution

graph of such applications can only be unfolded at runtime. Examples of

irregularly parallel applications include those perform sorting, searching,

sparse linear algebra calculations and volume rendering.

OpenMP tasks are defined as follows:

#pragma omp task

{

// This compound statement is scheduled

// to be executed on a core by the

// run-time system

}

When a task is encountered during execution, the run-time system

may choose to execute it immediately or defer it for later execution.

A typical implementation of a task-centric model employs a number of

worker threads onto which the tasks are scheduled. In OpenMP these

worker threads are explicitly created using the parallel directive. Dif-

ferent policies for scheduling task execution onto have been studied and

implemented and many of them use global task queues or per-core local

task-queues with work-stealing in order to provide for a load-balancing

mechanism.

For an irregular application written using OpenMP tasks, its is not

known a priori which tasks will execute where. Although there is irreg-

ularity in task creations, a regularity can exist in the memory access

behaviour of tasks. If such a regularity is found, tasks can be suitably

classified and scheduled on cores such that their memory accesses exe-

cute on locally homed data . For the moment we restrict ourselves to

an application where we know there is a regular access behaviour, the
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sparse LU factorization problem from the Barcelona OpenMP Task Suite

(BOTS) [4].

Regularity within task memory access patterns can be found during

compile time by static analysis. Suitable language extensions can also be

provided to the programmer to indicate the regularity himself. Follow-

ing either mechanism, the compiler can be used to divide and allocate

application data structures such that tasks with regular memory access

patterns experience minimal access latency to data.

4 Taking locality into consideration in OpenMP

In order to take architectural locality into account in an OpenMP pro-

gram we need to: (i) be able to communicate to the run-time system

which data regions a task is expected to make most accesses to, and (ii)

a scheduling algorithm that based on the information from (i) and on

knowledge about memory region homing can improve on the access be-

haviour from a locality perspective. Furthermore there is a choice on who

makes the mapping of memory regions to different homing policies. For

now, we just assume that the latter is done by the programmer in some

ad-hoc manner allocating memory regions to be accessed by tasks homed

to tiles in a round-robin fashion with a granularity of 64 kB. When you

allocate a chunk of memory to be homed in a particular tile, you always

get an integral number of memory pages of size 64 kB.

We propose some extensions to the OpenMP task concept in order

to express memory region usage and also discuss a simple scheduling

methodology that makes use of this.

4.1 OpenMP directive extensions and compiler support

For this initial study we are for the moment only concerned with spec-

ifying important regions of memory used by a task. We have identified

the need to specify either a single region of memory used or a sequence

of regions.

To allow the expression regularity in the access pattern of tasks, we

begin with a simple extension which indicates specific sections of the
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application data structure which will be read or written by a task. The

C syntax of the extension, called range, is shown below:

#pragma omp task range(pointer, size, "r|w|rw")

The range extension is a clause to task construct which specifies the

start address and size of shared memory that will read (r) or written (w)

or both (rw) by the task. The compiler interprets the specified ranges and

passes this information on to the run-time system. For the moment, we

assume that the range is homed at some tile and that this information is

known to the run-time systems.

In order to specify the situation, which we believe is the most common,

when a task touches more than one memory region, we propose a syntax

where each region is registered and named with the run-time system and

then a task can specify a range of region names it uses.

#pragma omp region(name, ptr, size, "r|w|rw")

#pragma omp task ranges(name1, name2, ...)

4.2 Home-based scheduling policy

We use the experimental Nanos++ runtime system to implement a cur-

rently very simple task scheduling policy called the Home Scheduling (HS)

policy which consults the home-list before scheduling a task [2]. Within

the Nanos++ runtime system, threads are bound to processors for their

entire lifetime. Therefore, every home cache has a corresponding home

thread.

The HS policy has distributed task queues, one for each core and for

every new task, we pick a core based on the home of one of the regions

that this task has specified to use and schedules the task for execution on

the associated home thread. The work sharing algorithm of the HS policy

can be configured to disregard certain home caches based on whether

they are read, written or read-written. To balance the load, the HS policy

always picks the least loaded home thread. To balance the load further,

the HS policy permits unrestricted work-stealing within a vicinity of cores.

The HS policy uses the latency information gathered by the architecture
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graph and constructs fixed sized vicinities by grouping home caches which

have a low latency of communication among each other. Different vicinity

configurations are shown in Figure 3.

Fig. 3: Vicinity configurations of the HS policy.

A vicinity setting of one leads to a system with no work-stealing. Since

tasks are placed on cores based on memory region specifications we are

bound to find several tasks sharing regions and therefore leading to load

imbalance. A vicinity setting of four allows for work-stealing among the

nearest neighbours. This is sensible in systems where the node-to-node

latency is a significant factor in the cache miss latency.

There are two obvious improvements to the HS scheme as outlined

here, one with respect to work-sharing and one with respect to work-

stealing. We could make an analysis on previous work-sharing decisions

and avoid placing tasks on cores which already has been assigned a task

and instead pick a core based on some other region specification. Cur-
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rently we only look at the overall load on the possible cores (based on the

region specification).

The second improvement is to steal only tasks that already has a

memory region specification to the local core who needs to steal work.

Currently we steal randomly within the vicinity.

5 Experiments

We consider the SparesLU linear algebra benchmark from the BOTS suite

for testing the HS policy. The SparseLU benchmark performs the LU

factorization of a sparsely allocated matrix which consists of sub-matrices.

The tasks within the benchmark exhibit regular memory access patterns

and work on a maximum of three different sub-matrices. With this in

mind, we allocate the sub-matrices of the sparse-matrix using two homing

schemes. In the first scheme, called the homed scheme, each sub-matrix

is homed completely on a specific home cache chosen in a round-robin

manner. In the second homing scheme, called the hashed scheme, all sub-

matrices are allocated using the hash-for-home feature of the TilePro64.

All tasks within the benchmark are marked as untied.

We use the Cilk-like (Nanos Cilk) scheduling policies of Nanos++ to

compare the execution performance of HS as this is also scheduling mech-

anism with distributed task queues and generally considered to be well

performing. The Nanos Cilk policy is a work-first scheduling policy which

means that a task under Nanos Cilk immediately executes the encoun-

tered (child) task and the encountering (parent) task is queued within the

executing thread’s local queue. Nanos Cilk threads can steal tasks from

any thread’s queue but first considers the parent’s queue.

We have also studied the Nanos BF policy which places all encoun-

tered tasks in a global queue from which all threads pick tasks for execu-

tion. Nanos BF threads do not have local queues. Normally this is a poor

design choice, but for the Sparse LU which does not use a divide-and-

conquer algorithm, the BF scheduler provides excellent load-balancing

and good performance.
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5.1 Methodology

We run the SparseLU benchmark on a 30X30 matrix with 125X125 floating-

point sub-matrices using HS, Nanos BF and Nanos Cilk scheduling poli-

cies for 50 threads on the TilePro64. We allocate the sparse matrix using

the hashed scheme for tests with Nanos Cilk and Nanos BF. For the HS

policy, we allocate the sparse matrix using the homed scheme and anno-

tate the the task definitions with specific homing information. We also

perform tests with vicinities of different sizes of 1, 4, 16 and 50. Note

that a HS vicinity of 1 implies no stealing and a vicinity of 50 implies full

stealing. We use performance counters on the TilePro64 to collect local

and remotely homed cache access statistics.

5.2 Results

Figure 4 shows the execution times of Sparse LU factorization for the

different scheduling policies. For the home schedule policy, we have used

different vicinity settings stealing between 1 (no-stealing), 4, 16 or all 50

cores. We see here that home based scheduling with stealing performs

the best with BF scheduling approximately as good. Home scheduling

without work-stealing obviously leads to load imbalance also illustrated

in figure 5.

In order to study the effectiveness of the home scheduling policy we

have measured the number of L1 cache misses that have their homes

in the local node or in a remote node, respectively. This is shown in

figure 6. Clearly home based scheduling without work-stealing has the

highest fraction of local accesses but poor performance without using

work-stealing.

6 Related work

Distributed shared cache architectures are relatively new and efforts to ex-

ploit architectural locality on them are few and recent. Our work draws

motivation from one of the early efforts to analyze the impact of data

distribution across distributed on-chip caches by [8]. Realizing the need
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Fig. 4: Execution time of Sparse LU for different scheduling policies.
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Fig. 5: Number of tasks executed per thread for different scheduler types.

to match program memory access behavior with hashed memory block

mapping schemes imposed by hardware, they perform compiler-based

data-layout transformations such that accesses to remote caches are mini-

mized. Our work aims to perform the similar data-layout transformations

dynamically at the runtime level supported by programmer hints and

architecture awareness. [3] in their recent express concerns over deepen-

ing memory hierarchies on modern processors and implement runtime

OpenMP thread and data placement strategies guided by programmer

and compiler hints and by using architecture awareness. Our work aims

to progress in a direction similar to theirs. The idea of keeping tasks
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schedulers.

and associated data close together on a given architecture is key in high-

performance computing languages such X10 and Chapel. A recent work

on these languages by [10] builds a tree like notion of the memory hierar-

chy and first allocates user defined data structures on this tree followed

by an affinity-based placement of tasks. Our work is similar in principle,

but currently relies on the programmer to perform allocation of data on

the cache hierarchy.

7 Conclusion

We have presented an initial approach on how to deal with architectural

locality for OpenMP tasks and exemplified it as a prototype implemen-

tation in a run-time system and measured some key aspect on the Tilera

TilePro64 architecture.

While there are some obvious improvements to be made to our schedul-

ing policy, we still have some encouraging results displaying how we can

utilize the fact that the home mapping of cache blocks onto tiles to im-

prove performance. Our immediate future work include, besides imple-
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menting the already outlined improvements, studying applications into

more detail to understand when locality can and should be exploited.
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