

Capture the Concept™

CFD in COMSOL Multiphysics

Christian Wollblad Program manager, CFD COMSOL

World leader in multiphysics simulations

- HQ in Stockholm.
- 16 offices worldwide.
- 250+ employees.
- 14 000 licenses, 60 000 users.

COMSOL

CFD – The Classical View

- Laminar
- Turbulent
 - RANS
 - LES
 -
- Incompressible
- Compressible
 - Mach number effects

Flow over an Ahmed Body

Flow in a Sajben diffuser

Traditional approach to modeling

The COMSOL Multiphysics approach

COMSOL Multiphysics 4.3 Product Suite

The Finite Element Method

• Assume that $u \approx \tilde{u} = \sum_i u_i \phi_i$ Where ϕ_i is a set of basis functions.

COMSOL

(1)

Typical Multiphysics Couplings

- Flow and heat: Forced or natural convection
- Flow and mass-flux, (and heat): Chemical & Diffusion problems
- Flow and structures: Fluid-solid interaction (FSI)
- Flow and EM: Biological RF heating

Fluid-Structure Interaction

- No data transfer between solid and fluid
- One solver machinery
- One post-processing framework

Fluid load on a solar panel

FSI Examples – Poroelasticity

- Fluid Pressure & Structural Support Load
- Collapsing Structure & Slows Flow Rate

Flow Coupled to Electrical

• Electromagnetic Field from percolating charged rainwater

ElectroOsmotic Mixer

- Pressure Driven & ElectroOsmotic Floy
- Coupled Flow and Diffusion
- Goal: Improve Microfluidic Mixing

ElectroOsmotic Mixing

COMSOL

Particle Tracing - Room Contamination

- Particle Release in Hallway
- How much gets into office?

Air Velocity

10 micron Particles

Reactions in Multiphase Flow

- Bubbles introduced at the bottom makes the flow turbulent
- The mixing is done by the gas sparging and it requires less energy than mechanical stirring
- Wet oxidation
- Bioreactor

Fuel Cells – Multiphysics by Nature

Fuel Cells in General

- Electro Chemistry
- Heat + Flow

Stress from Thermal & External Loading

Slice Plots of Velocity through Transparent Boundary Plot of Concentration in Fuel Cell Stack

Fuel Cell Electrochemistry

(T=1073 K)

Excerpted from "Modelling and Design of Solid Oxide Fuel Cell Anode", Tseronis, Kookos, and Theodoropouls COMSOL Conference 2006

COMSOL

(T=298 K)

AEROSPACE: ATTITUDE CO 45

for Greener Ford Vehicles **COVER STORY PAGE 8**

COMSOL

MULTIPHYSICS

- 4 Multiphysics Analysis of a Burning Candle
- Capacitively Coupled Plasma Analysis 5

HVAC

3D Direct Modeling Streamlines б Micro-Cogeneration System Design and Analysis Processes

AUTOMOTIVE

Lithium-Ion Battery Simulation 8 for Greener Ford Vehicles

ENERGY

- Wind Turbine Noise Reduction 12
- The Burning Need for Modeling 16
- Sea Floor Energy Harvesting 18
- Around the Clock Solar Power 20
- 24 Modeling Electromagnetic Waves in the Thermonuclear Fusion Plasmas of the MIT Alcator C-Mod Tokamak

MEDICAL

- Multiphysics Modeling Gives Developer 29 of Small, Low-Power Biomedical Devices a Competitive Edge
- Easy and Accurate Measurement of 34 Blood Viscosity with Breakthrough MEMS-Based Device
- 40 Optimal Wound Treatment Thanks to Modeling
- 42 Microscopic Magnetic Field Simulations with COMSOL Multiphysics

CONTRIBUTORS

AltaSim Technologies Harvard Medical School Microsoft SpaceClaim Corp. Nofima CEA-MINATEC **HCL** Technologies SYNGAS OCAS Desktop Engineering Massachusetts General Tech Briefs Media Hospital Group **Riello Burners** ENEL Massachusetts Institute Veryst Engineering **Ritsumeikan University** Ford Motor Company of Technology VSG SB Microsystems German Federal MatWeb Institute for Materials Xi Engineering Scientific & Biomedical Microsystems LLC Consultants Research and Testing Microvisk

PLASTICS

Modeling Helps Improve Safety 44 in the Production of Teflon

AEROSPACE

46 Reduced-Weight Reaction Sphere Makes Way for Extra Satellite Payload

SENSORS

Optimization Slashes Energy 50 Consumption in Silicon-Based MEMS CO₂ Detectors

HYDROLOGY

54 Restoration of Lake Water Environments

OFFSHORE

56 Making the Oil Supply Safer and More Stable

IMAGING

Analysis and Simulation of 58 Rock Properties

SUPPORT

60 Tips and Tricks

FOOD

COMSOL Assists Master Chef in 62 Winning International Competition

GUEST EDITORIAL

64 3D Direct Modeling: Removing Bottlenecks in Multiphysics Simulation

COMSOL Multiphysics Workflow

User Friendly Interface

Model Builder	🔛 Settings 🛛 🛄 Model Libr 💷 Log 🏶 Material Br 👘		f Graphics
↓≣! †≣! ਙ' ≣* ⇔		2	
🔯 micromixer.mph (root)	@ Inflow		
≡ Global Definitions			
Model 1 (mod1)	Boundary Selection		
E Definitions	Colorian Manual		
Step 1 (step 1)			
a= Variables 1	1 %	t 📗	
Average 2 (aveop_unet)		- 1	
Boundary System 1 (sys1)	n († 1674)	5 II	
View 1			
A Geometry 1	· · · · · · · · · · · · · · · · · · ·		
🏶 Materials			
Laminar Flow (spf)			
Transport of Diluted Species (chds)	Override and Contribution		
Convection and Diffusion 1	Equation		
P Initial Values 1			
@ Outflow 1	^C 0,c c0*step1(-z[1/m]) mol/m	m ³	50
S Meshes			
Study 1			×10'5 0
🛅 Results			-50
Data Sets			
8.85 Derived Values			
E-12 Global Evaluation 1			
I ables			10
Pressure (spf)			0
	11	1	

COMSOL

Everything is Equation Based

Relitor, Luleå

Tid [s]

- Moisture i the gods freezes during transport and makes unloading the wagons difficult
- Simulated the freezing and investigated possible improvements such as isolating, pre-heating and melting.

Centrifugal pumps

1.001

How does the effect change it the impeller is not centered?

Hägglund Drives

Simulation of a radial engine

- How thick is the lubrication film?
- How large is the friction?
- Can deformation of the piston cause leakage

Model Reduction

- Extension of the model
- Representation of components
- What is possible to investigate?

Turbulent or Laminar?

- Reynolds number $Re = \frac{U \cdot L}{v}$ $Re \gg 1 \Rightarrow turbulent$
- Grashof number

$$Gr = \frac{g\alpha\Delta T \cdot L^3}{\nu^2}$$

Gr>> 1 \Rightarrow turbulent

Which Turbulent Model

- RANS
 - One-equation model
 - Two-equation model
 - EARSM
 - Reynolds stress model
- DES/VLES
- LES
- DNS

Multiple Phases

- Mixture
- Euler-Euler
- Particles

Solid Spherical Particles Fluidized by Air

Rarefied Flows

Degree of rarefaction characterized by the Knudsen number, *Kn*:

$$Kn = \frac{\lambda}{L}$$

Rarefied Flow Interfaces: 0.01<*Kn*<0.1: Slip Flow (New in 4.2a) 0.1<*Kn*<10: Transitional Flow (Beta version in 4.2a) *Kn*>10: Molecular Flow

COMSOL Multiphysics

- **True Multiphysics** Everything can link to everything
- Flexible You can model just about anything.
- **Usable** You can keep your sanity doing it.
- **Extensible** If its not specifically there...add it!

Trusted by 60,000 Users World Wide

COMSOL MULTIPHYSICS®

Capture the Concept™

