
2011‐11‐25

1

Klientprogrammering mot
Databaser

Java DataBase Connectivity, JDBC

Klientprogrammering mot databaser

• Native API
‐ olika för olika DBMS, ofta i C/C++

• ODBC, Open Datbase Connectivity
‐ samma API för olika databashanterare. C/C++

• JDBC, Java Database Connectivity
‐ samma API för olika databashanterare. Java

• Webbserver + skriptspråk för dynamiska
webbsidor
‐ PHP, Active Server Pages (ASP), Java Server
Pages (JSP) m.fl.

2011‐11‐25

2

JDBC, Arkitektur

Server

DBMS

MyDB

Klientapplikation

Applikationskod
i Java

API (java.sql,
javax.sql)

JDBC‐driver
(drivrutin)

Nätverk, t.ex. internet (Protokoll specifikt för DBMS)

Treskiktsarkitektur

Källa: http://docs.oracle.com/javase/tutorial/jdbc/index.html

2011‐11‐25

3

Komponenter i JDBC

• DriverManager – laddar rätt drivrutin (om den
finns på systemet) och skapar en connection.

• Connection – representerar en session med
databasen och sköter kommunikationen.

• Statement/PreparedStatement/CallableState
ment – används för att exekvera SQL‐
kommandon. Fås från Connection‐objektet.

• ResultSet – en tabell data, resultatet av en
SQL‐fråga.

Skapa en anslutning

String server = "jdbc:postgresql://localhost:5432/" +
nameOfDatabase + "?UseClientEnc=UTF8";

Class.forName("org.postgresql.Driver");
Connection con = DriverManager.getConnection(

server, user, pwd);

...
con.close();

2011‐11‐25

4

Exekvera en SQL‐sats

Statement stmt = con.createStatement();

String sql = ”DELETE FROM Employee WHERE
name LIKE ’Anders’”;

int n = stmt.executeUpdate(sql);

• executeUpdate kan exekvera satser med INSERT,
DELETE och UPDATE‐satser (och DDL‐satser)

Exekvera en SQL‐fråga, SELECT

Statement stmt = con.createStatement();

String sql = ”SELECT * FROM Employee”;
ResultSet rs = stmt.executeQuery(sql);

while(rs.next()) {
int eno = rs.getInt(”eNo”);
String name = rs.getString(”name”);
. . .

}

. . .
stmt.close();

2011‐11‐25

5

ResultSet

• Cursor (ung. en iterator) pekar på aktuell rad,
next() förflyttar cursorn 1 rad

• Metoder för att hämta alla vanliga datayper, t.ex.
‐ getDate(String columnName)
‐ getDate(int column) ‐ första index är 1

• getMetaData() – antal, typer, namn m.m. för
kolumnerna

• NB! – ResultSet är ”temporärt”, om stmt stängs,
eller ny fråga exekveras på samma stmt, stängs rs.

PreparedStatment

• Använd Prepared statement då en specifik sats
exekveras ofta

• Satsen kompileras första gången den exekveras
och kan ”återanvändas” tills den uttryckligen
stängs (eller session avslutas)

• String sql = ”INSERT . . .”;
PreparedStatement pstmt =

con.prepareStatement(sql);
int n = pstmt.executeUpdate();

2011‐11‐25

6

PreparedStatement

• Man kan, och bör, använda in‐parametrar till ett
PreparedStatement

• String sql = "INSERT INTO Emp_Proj VALUES (?, ?, ?) ";
PreparedStatement addEmpToProj =

con.prepareStatement(sql);

• addEmpToProj.setInt(1, 107);
addEmpToProj.setInt(2, 1002);
addEmpToProj.setDouble(3, 100);

• int n = addEmpToProj.executeUpdate();

CallableSatement

• Används för att anropa lagrade procedurer

• String call = ”{? = call proj_hours(?)}”;
CallableStatement cstmt =

con.prepareCall(call);
cstmt.registerOutParameter(1, Types.BIGINT);

• cstmt.setInt(2, projNo);
cstmt.execute();
int hours = cstmt.getInt(1);

2011‐11‐25

7

Felhantering

• SQLException och subklasser

• Checked exceptions

• ‐ se.getSQLState()SQL‐state enligt SQL:2003
konventioner
‐ se.getErrorCode()
‐ se.getMessage()

• Länk till ursprunglig(a) exception(s)

Felhantering

• Viktigt att allokerade resurser frigörs (ex statement stängs)
oavsett om fel uppstår eller ej

• Om du inte kan hantera felet i metoden – kasta det vidare
till anropande metod

• public void sqlMethod(. . .) throws SQLException {
Statement stmt null;
try {

stmt = con.createStatement();
. . .

}
finally {

stmt.close();
}

}

2011‐11‐25

8

Transaktioner

1. Slå av auto‐commit (som är default)

2. Exekvera sql‐satserna som ingår i
transaktionen

3. Kontrollera om transaktionen verkligen ska
genomföras. . .

4. Utifrån svaret ovan:
con.commit() eller con.rollback()

5. Slå på auto‐commit igen

Transaktioner
Statement stmt = null;
try {

stmt = con.createStatement();
con.setAutoCommit(false);
stmt.executeUpdate("INSERT . . .");
stmt.executeUpdate("UPDATE . . .");
// . . .
con.commit();

}
catch (SQLException e) {

if (con != null) con.rollback();
throw e;

}
finally {

if (stmt != null) stmt.close();
con.setAutoCommit(true);

}

2011‐11‐25

9

Användare(!)

• Connection con = DriverManager.getConnection(
server, user, pwd);

Vilken användare?

• Skapa en användare som har på lämpligt sätt begränsade
rättigheter till din databas

• Ex för PostgreSQL:
CREATE USER clienttapp PASSWORD 'qwerty‘
GRANT SELECT ON Employee, Department, Project TO
clienttapp

• Alternativt ge rättigheter endast till specialiserade vyer

SQL‐injection(!)

• String sql = ”SELECT name, phone FROM Employee
WHERE name = ’” + userInput + ”’ AND secretPhone =
FALSE”;

• Vad blir frågan om användaren matar in ”Anders’ OR
’x’=’x OR ’x’=’x”?

• Vill du slippa problem med SQL‐injection
‐ använd PreparedStatement, där parameterar skickas
till den förkompilerade frågan:

pstmt.setString(1, userInput);

2011‐11‐25

10

Applikationen

• Model‐View‐Controller
‐Model är klasser som kommunicerar med databasen
via JDBC

• Ev – ”mappa” ResultSet mot objekt, ex
ArrayList<Employee> som sedan skickas vidare till view

• Använd gärna PreparedStatements, effektivare och
säkrare

• Exceptions som fångas först i UI bör åtminstone
resultera i ett kort felmeddelande (använd
JOptionPane).

Applikationen, user interface

• Om endast vissa värden är tillåtna,
gör det omöjligt att mata in annat,
använd t.ex. JComboBox

• Inloggning sker lämpligen i ett separat fönster,
använd JDialog

• Resultat av sökningar presenteras snyggt i en
JTable (+ JTableModel)

• BorderLayout ger enkelt ett snyggt och intuitivt ui

