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Wikibooks:Collections Preface 1

Wikibooks:Collections Preface
This book was created by volunteers at Wikibooks (http:/ / en. wikibooks. org).

What is Wikibooks?

Started in 2003 as an offshoot of the popular Wikipedia project, Wikibooks is
a free, collaborative wiki website dedicated to creating high-quality textbooks
and other educational books for students around the world. In addition to
English, Wikibooks is available in over 130 languages, a complete listing of
which can be found at http:/ / www. wikibooks. org. Wikibooks is a "wiki",
which means anybody can edit the content there at any time. If you find an
error or omission in this book, you can log on to Wikibooks to make
corrections and additions as necessary. All of your changes go live on the
website immediately, so your effort can be enjoyed and utilized by other
readers and editors without delay.

Books at Wikibooks are written by volunteers, and can be accessed and printed for free from the website. Wikibooks
is operated entirely by donations, and a certain portion of proceeds from sales is returned to the Wikimedia
Foundation to help keep Wikibooks running smoothly. Because of the low overhead, we are able to produce and sell
books for much cheaper then proprietary textbook publishers can. This book can be edited by anybody at any
time, including you. We don't make you wait two years to get a new edition, and we don't stop selling old versions
when a new one comes out.

What is this book?
This book was generated by the volunteers at Wikibooks, a team of people from around the world with varying
backgrounds. The people who wrote this book may not be experts in the field. Some may not even have a passing
familiarity with it. The result of this is that some information in this book may be incorrect, out of place, or
misleading. For this reason, you should never rely on a community-edited Wikibook when dealing in matters of
medical, legal, financial, or other importance. Please see our disclaimer for more details on this.
Despite the warning of the last paragraph, however, books at Wikibooks are continuously edited and improved. If
errors are found they can be corrected immediately. If you find a problem in one of our books, we ask that you be
bold in fixing it. You don't need anybody's permission to help or to make our books better.
Wikibooks runs off the assumption that many eyes can find many errors, and many able hands can fix them. Over
time, with enough community involvement, the books at Wikibooks will become very high-quality indeed. You are
invited to participate at Wikibooks to help make our books better. As you find problems in your book don't just
complain about them: Log on and fix them! This is a kind of proactive and interactive reading experience that you
probably aren't familiar with yet, so log on to http:/ / en. wikibooks. org and take a look around at all the
possibilities. We promise that we won't bite!

Who are the authors?
The volunteers at Wikibooks come from around the world and have a wide range of educational and professional
backgrounds. They come to Wikibooks for different reasons, and perform different tasks. Some Wikibookians are
prolific authors, some are perceptive editors, some fancy illustrators, others diligent organizers. Some Wikibookians
find and remove spam, vandalism, and other nonsense as it appears. Most wikibookians perform a combination of
these jobs.

http://en.wikibooks.org).
http://en.wikibooks.org/w/index.php?title=File%3AWikibooks-logo-en-noslogan.svg
http://www.wikibooks.org.
http://en.wikibooks.org
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It's difficult to say who are the authors for any particular book, because so many hands have touched it and so many
changes have been made over time. It's not unheard of for a book to have been edited thousands of times by
hundreds of authors and editors. You could be one of them too, if you're interested in helping out. At the time this
book was prepared for print, there have been over ' edits made by over 0' registered users. These numbers are
growing every day.

Wikibooks in Class
Books at Wikibooks are free, and with the proper editing and preparation they can be used as cost-effective
textbooks in the classroom or for independent learners. In addition to using a Wikibook as a traditional read-only
learning aide, it can also become an interactive class project. Several classes have come to Wikibooks to write new
books and improve old books as part of their normal course work. In some cases, the books written by students one
year are used to teach students in the same class next year. Books written can also be used in classes around the
world by students who might not be able to afford traditional textbooks.

Happy Reading!
We at Wikibooks have put a lot of effort into these books, and we hope that you enjoy reading and learning from
them. We want you to keep in mind that what you are holding is not a finished product but instead a work in
progress. These books are never "finished" in the traditional sense, but they are ever-changing and evolving to meet
the needs of readers and learners everywhere. Despite this constant change, we feel our books can be reliable and
high-quality learning tools at a great price, and we hope you agree. Never hesitate to stop in at Wikibooks and make
some edits of your own. We hope to see you there one day. Happy reading!

Microprocessor Design/Introduction
Microprocessor Design

About This Book
Computers and computer systems are a pervasive part of the modern world. Aside from just the common desktop
PC, there are a number of other types of specialized computer systems that pop up in many different places. The
central component of these computers and computer systems is the microprocessor, or the CPU. The CPU (short for
"Central Processing Unit") is essentially the brains behind the computer system, it is the component that "computes".
This book is going to discuss what microprocessor units do, how they do it, and how they are designed.
This book is going to discuss the design of microprocessor units, but it will not discuss the design of complete
computer systems nor the design of other computer components or peripherals. Some microprocessor designs will be
implemented and synthesized in Hardware Description Languages, such as Verilog or VHDL. The book will be
organized to discuss simple designs and concepts first, and expand the initial designs to include more complicated
concepts as the book progresses.
This book will attempt to discuss the basic concepts and theory of microprocessor design from an abstract level, and
give real-world examples as necessary. This book will not focus on studying any particular processor architecture,
although several of the most common architectures will appear frequently in examples and notes.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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How Will This Book Be Organized?
The first section of the book will review computer architecture, and will give a brief overview of the components of
a computer, the components of a microprocessor, and some of the basic architectures of modern microprocessors.
The second section will discuss in some detail the individual components of a microcontroller, what they do, and
how they are designed.
The third section will focus in on the ALU and FPU, and will discuss implementation of particular mathematical
operations.
The fourth section will discuss the various design paradigms, starting with the most simple single cycle machine to
more complicated exotic architectures such as vector and VLIW machines.
Additional chapters will serve as extensions and support chapters for concepts discussed in the first four sections.

Prerequisites
This book will rely on some important background information that is currently covered in a number of other local
wikibooks. Readers of this book will find the following prerequisites important to understand the material in this
book:
• Digital Circuits
• Programmable Logic
• Embedded Systems
• Assembly Language
All readers must be familiar with binary numbers and also hexadecimal numbers. These notations will be used
throughout the book without any prior explanation. Readers of this book should be familiar with at least one
assembly language, and should also be familiar with a hardware description language. This book will use both types
of languages in the main narrative of the text without offering explanation beforehand. Appendices might be
included that contain primers on this material.
Readers of this book will also find some pieces of software helpful in examples. Specifically, assemblers and
assembly language simulators will help with many of the examples. Likewise, HDL compilers and simulators will be
useful in the design examples. If free versions of these software programs can be found, links will be added in an
appendix.

Who Is This Book For?
This book is designed to accompany an advanced undergraduate or graduate study in the field of microprocessor
design. Students in the areas of Electrical Engineering, Computer Engineering, or Computer Science will likely find
this book to be the most useful. The basic subjects in this field will be covered, and more advanced topics will be
included depending on the proficiencies of the authors. Many of the topics considered in this book will apply to the
design of many different types of digital hardware, including ASICs. However, the main narrative of the book, and
the ultimate goals of the book will be focused on microcontrollers and microprocessors, not other ASICs.

http://en.wikibooks.org/w/index.php?title=Digital_Circuits
http://en.wikibooks.org/w/index.php?title=Programmable_Logic
http://en.wikibooks.org/w/index.php?title=Embedded_Systems
http://en.wikibooks.org/w/index.php?title=Assembly_Language
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What This Book Will Not Cover
This book is about the design of micro-controllers and microprocessors only. This book will not cover the following
topics in any detail, although some mention might be made of them as a matter of interest:
• Transistor mechanics, semiconductors, or integrated circuit fabrication (Microtechnology)
• Digital Circuit Logic, Design or Layout (Programmable Logic)
• Design or interfacing with other computer components or peripherals (Embedded Systems)
• Design or implementation of communication protocols used to communicate between computer components

(Serial Programming)
• Design or creation of computer software (Computer Programming)
• Design of System-on-a-Chip hardware or any device with an integrated micro-controller

Terminology
Throughout the book, the words "Microprocessor", "Microcontroller", "Processor", and "CPU" will all generally be
used interchangeably to denote a digital processing element capable of performing arithmetic and quantitative
comparisons. We may differentiate between these terms in individual sections, but an explanation of the differences
will always be provided.

http://en.wikibooks.org/w/index.php?title=Semiconductors
http://en.wikibooks.org/w/index.php?title=Microtechnology
http://en.wikibooks.org/w/index.php?title=Digital_Circuits
http://en.wikibooks.org/w/index.php?title=Programmable_Logic
http://en.wikibooks.org/w/index.php?title=Embedded_Systems
http://en.wikibooks.org/w/index.php?title=Serial_Programming
http://en.wikibooks.org/w/index.php?title=Subject:Computer_programming
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Microprocessor Basics

Microprocessor Design/Microprocessors
Microprocessor Design

Microprocessors
Microprocessors are the devices in a computer which make things happen. Microprocessors are capable of
performing basic arithmetic operations, moving data from place to place, and making basic decisions based on the
quantity of certain values.

The components of a PC computer. Part number 3 is the CPU.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=File%3APersonal_computer%2C_exploded_4.svg
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Types of Processors
The vast majority of microprocessors are embedded microcontrollers. The second most common type of processors
are common desktop processors, such as Intel's Pentium or AMD's Athlon. Less common are the extremely powerful
processors used in high-end servers, such as Sun's SPARC, IBM's Power, or Intel's Itanium.
Historically, microprocessors and microcontrollers have come in "standard sizes" of 8 bits, 16 bits, 32 bits, and 64
bits. These sizes are common, but that does not mean that other sizes are not available. Some microcontrollers
(usually specially designed embedded chips) can come in other "non-standard" sizes such as 4 bits, 12 bits, 18 bits,
or 24 bits. The number of bits represent how much physical memory can be directly addressed by the CPU. It also
represents the amount of bits that can be read by one read/write operation. In some circumstances, these are different;
for instance, many 8 bit microprocessors have an 8 bit data bus and a 16 bit address bus.
• 8 bit processors can read/write 1 byte at a time and can directly address 256 bytes
• 16 bit processors can read/write 2 bytes at a time, and can address 65,536 bytes (64 Kilobytes)
• 32 bit processors can read/write 4 bytes at a time, and can address 4,294,967,295 bytes (4 Gigabytes)
• 64 bit processors can read/write 8 bytes at a time, and can address 18,446,744,073,709,551,616 bytes (16

Exabytes)

General Purpose Versus Specific Use
Microprocessors that are capable of performing a wide range of tasks are called general purpose microprocessors.
General purpose microprocessors are typically the kind of CPUs found in desktop computer systems. These chips
typically are capable of a wide range of tasks (integer and floating point arithmetic, external memory interface,
general I/O, etc). We will discuss some of the other types of processor units available:
General Purpose

A general purpose processing unit, typically referred to as a "microprocessor" is a chip that is designed to be
integrated into a larger system with peripherals and external RAM. These chips can typically be used with a
very wide array of software.

DSP
A Digital Signal Processor, or DSP for short, is a chip that is specifically designed for fast arithmetic
operations, especially addition and multiplication. These chips are designed with processing speed in mind,
and don't typically have the same flexibility as general purpose microprocessors. DSPs also have special
address generation units that can manage circular buffers, perform bit-reversed addressing, and simultaneously
access multiple memory spaces with little to no overhead. They also support zero-overhead looping, and a
single-cycle multiply-accumulate instruction. They are not typically more powerful than general purpose
microprocessors, but can perform signal processing tasks using far less power (as in watts).

Embedded Controller
Embedded controllers, or "microcontrollers" are microprocessors with additional hardware integrated into a
single chip. Many microcontrollers have RAM, ROM, A/D and D/A converters, interrupt controllers, timers,
and even oscillators built into the chip itself. These controllers are designed to be used in situations where a
whole computer system isn't available, and only a small amount of simple processing needs to be performed.

Programmable State Machines
The most simplistic of processors, programmable state machines are a minimalist microprocessor that is
designed for very small and simple operations. PSMs typically have very small amount of program ROM
available, limited scratch-pad RAM, and they are also typically limited in the type and number of instructions
that they can perform. PSMs can either be used stand-alone, or (more frequently) they are embedded directly
into the design of a larger chip.
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Graphics Processing Units
Computer graphics are so complicated that functions to process the visuals of video and game applications
have been offloaded to a special type of processor known as a GPU. GPUs typically require specialized
hardware to implement matrix multiplications and vector arithmetic. GPUs are typically also highly
parallelized, performing shading calculations on multiple pixels and surfaces simultaneously.

Types of Use
Microcontrollers and Microprocessors are used for a number of different types of applications. People may be the
most familiar with the desktop PC, but the fact is that desktop PCs make up only a small fraction of all
microprocessors in use today. We will list here some of the basic uses for microprocessors:
Signal Processing

Signal processing is an area that demands high performance from microcontroller chips to perform complex
mathematical tasks. Signal processing systems typically need to have low latency, and are very deadline
driven. An example of a signal processing application is the decoding of digital television and radio signals.

Real Time Applications
Some tasks need to be performed so quickly that even the slightest delay or inefficiency can be detrimental.
These applications are known as "real time systems", and timing is of the upmost importance. An example of a
real-time system is the anti-lock braking system (ABS) controller in modern automobiles.

Throughput and Routing
Throughput and routing is the use of a processor where data is moved from one particular input to an output,
without necessarily requiring any processing. An example is an internet router, that reads in data packets and
sends them out on a different port.

Sensor monitoring
Many processors, especially small embedded processors are used to monitor sensors. The microprocessor will
either digitize and filter the sensor signals, or it will read the signals and produce status outputs (the sensor is
good, the sensor is bad). An example of a sensor monitoring processor is the processor inside an antilock brake
system: This processor reads the brake sensor to determine when the brakes have locked up, and then outputs a
control signal to activate the rest of the system.

General Computing
A general purpose processor is like the kind of processor that is typically found inside a desktop PC. Names
such as Intel and AMD are typically associated with this type of processor, and this is also the kind of
processor that the public is most familiar with.

Graphics
Processing of digital graphics is an area where specialized processor units are frequently employed. With the
advent of digital television, graphics processors are becoming more common. Graphics processors need to be
able to perform multiple simultaneous operations. In digital video, for instance, a million pixels or more will
need to be processed for every single frame, and a particular signal may have 60 frames per second! To the
benefit of graphics processors, the color value of a pixel is typically not dependent on the values of
surrounding pixels, and therefore many pixels can typically be computed in parallel.
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Abstraction Layers
Computer systems are developed in layers known as layers of abstraction. Layers of abstraction allow people to
develop computer components (hardware and software) without having to worry about the internal design of the
other layers in the system. At the highest level are the user-interface programs that people use on their computers. At
the lowest level are the transistor layouts of the individual computer components. Some of the layers in a computer
system are (listed from highest to lowest):
1. Application
2. Operating System
3. Firmware
4. Instruction Set Architecture
5. Microprocessor Control Logic
6. Physical Circuit Layout
This book will be mostly concerned with the Instruction Set Architecture (ISA), and the Microprocessor Control
Logic. Topics above these are typically the realm of computer programmers. The bottom layer, the Physical Circuit
Layout is the job of hardware and VLSI engineers.

ISA
The Instruction Set Architecture is a long name for the assembly language of a particular machine, and the
associated machine code for that assembly language. We will discuss this below.

Assembly Language
An assembly language is a small language that contains a short word or "mnemonic" for each individual command
that a microcontroller can follow. Each command gets a single mnemonic, and each mnemonic corresponds to a
single machine command. Assembly language gets converted (by a program called an "assembler") into the binary
machine code. The machine code is specific to each different type of machine.

Common ISAs
Wikibooks contains books about programming in multiple different types of assembly language. For more

information about Assembly language, or for books on a particular ISA, see Assembly Language.
Some of the most common ISAs, listed in order of popularity (most popular first) are:
• ARM
• IA-32 (Intel x86)
• MIPS
• Motorola 68K
• PowerPC
• Hitachi SH
• SPARC

Moore's Law
A common law that governs the world of microprocessors is Moore's Law. Moore's Law, originally by Dr. Carver
Mead at Caltech, and summarized famously by Intel Founder Gordon Moore. Moore's Law states that the number of
transistors on a single chip at the same price will double every 18 to 24 months. This law has held without fail since
it was originally stated in 1965. Current microprocessor chips contain millions of transistors and the number is
growing rapidly. Here is Moore's summarization of the law from Electronics Magazine in 1965:

http://en.wikibooks.org/w/index.php?title=Assembly_Language
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The complexity for minimum component costs has increased at a rate of roughly a factor of two per
year...Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain
nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for
minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.

—Gordon Moore
Moore's Law has been used incorrectly to calculate the speed of an integrated circuit, or even to calculate it's power
consumption, but neither of these interpretations are true. Also, Moore's law is talking about the number of
transistors on a chip for a "minimum component cost", which means that the number of transistors on a chip, for the
same price, will double. This goes to show that chips for less price can have fewer transistors, and that chips at a
higher price can have more transistors. On an economic note, a consequence of Moore's Law is that companies need
to continue to innovate and integrate more transistors onto a single chip, without being able to increase prices.
Moore's Law does not require that the speed of the chip increase along with the number of transistors on the chip.
However, the two measurements are typically related. Some points to keep in mind about transistors and Moore's
Law are:
1. Smaller Transistors typically switch faster then larger transistors.
2. To get more transistors on a single chip, the chip needs to be made larger, or the transistors need to be made

smaller. Typically, the transistors get smaller.
3. Transistors tend to leak electrical current as they get smaller. This means that smaller transistors require more

power to operate, and they generate more heat.
4. Transistors tend to generate heat as a function of frequencies. Higher clock rates tend to generate more heat.

Moore's law is occasionally misinterpreted to mean that the speed of processors, in hertz will double every 18
months. This is not strictly true, although the speed of processors does tend to increase as transistors are made

http://en.wikibooks.org/w/index.php?title=File%3AMoore_Law_diagram_%282004%29.png
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smaller and more compact. With the advent of multi-core processors, some people have used Moore's law to mean
that processor throughput increases with time, which is not strictly the case either (although it is a likely side effect
of Moore's law).

Clock Rates
Microprocessors are typically discussed in terms of their clock speed. The clock speed is measured in hertz (or
megahertz, or gigahertz). A hertz is a "cycle per second". Each cycle, a microprocessor will perform certain tasks,
although the amount of work performed in a single cycle will be different for different types of processors. The
amount of work that a processor can complete in a single cycle is measured in "cycles per instruction". For some
systems, such as MIPS, there is 1 cycle per instruction. For other systems, such as modern x86 chips, there are
typically very many cycles per instruction.
The clock rate is equated as such:

This means that the amount of time for a cycle is inversely proportional to the clock rate. A computer with a 1MHz
clock rate will have a clock time of 1 microsecond. A modern desktop computer with a 3.2 GHz processor will have
a clock time of approximately 3× 10-10 seconds, or 300 picoseconds. 300 picoseconds is an incredibly small amount
of time, and there is a lot that needs to happen inside the processor in each clock cycle.

Basic Elements of a Computer
There are a few basic elements that are common to all computers. These elements are:
• CPU
• Memory
• Input Devices
• Output Devices
Depending on the particular computer architecture, these elements may be available in various sizes, and they may
be accompanied by additional elements.
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Microprocessor Design/Computer Architecture

Von Neumann Architecture
Early computer programs were hard wired. To reprogram a computer meant changing the hardware switches
manually, that took a long time with potential errors. Computer memory was only used for storing data.
John von Neumann suggested that data and programs should be stored together in memory, it is now called Von
Neumann architecture. Programs are fetched from memory for executions by a central unit that is what we call the
CPU. Basically programs and data are represented on memory in the same way. The program is just data coded for
special meaning.
A Von Neumann microprocessor is a processor that follows this pattern:
Fetch

An instruction and the necessary data are obtained from memory.
Decode

The instruction and data are separated, and the components and pathways required to execute the instruction
are activated.

Execute
The instruction is performed, the data is manipulated, and the results are stored.

This pattern is typically implemented by separating the task into two components, the control, and the datapath.

Control
The control unit reads the instruction, and activates the appropriate parts of the datapath.

Datapath
The datapath is the pathway that the data takes through the microprocessor. As the data travels to different parts of
the datapath, the command signals from the control unit cause the data to be manipulated in specific ways, according
to the instruction. The datapath consists of the circuitry for transforming data and for storing temporary data. It
contains ALUs capable of transforming data through operations such as addition, subtraction, logical AND, OR,
inverting, and shifting.

Harvard Architecture
In a Harvard Architecture machine, the computer system's memory is separated into two discrete parts: data and
instructions. In a pure Harvard system, the two different memories occupy separate memory modules, and
instructions can only be executed from the instruction memory.
In a "Princeton Architecture" machine, the computer system's memory comprises one uniform address space: data
and instructions may be placed anywhere in this single memory.
Many DSPs are modified Harvard architectures, designed to simultaneously access three distinct memory areas: the
program instructions, the signal data samples, and the filter coefficients (often called the P, X, and Y memories).
In theory, such three-way Harvard architectures can be three times as fast as a Princeton architecture that is forced to
read the instruction, the data sample, and the filter coefficient, one at a time.
In Princeton architecture systems, there is only one memory area. Any particular memory location that can be written
to and read as data at any one time can also be executed as an instruction at other times. Several common computer
security problems arise because modern processors are not pure Harvard systems, and manipulate instructions as if

http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Von_Neumann_architecture
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they were data, and vice-versa.

RISC and CISC and DSP
Historically, the first type of ISA was the complex instruction set computers (CISC), and the second type was the
reduced instruction set computers (RISC). It is a common misunderstanding that RISC systems typically have a
small ISA (fewer instructions) but make up for it with faster hardware. RISC system actually have "reduced
instructions", in the sense that each instruction does so little that it takes very little time to execute it. It is a common
misunderstanding that CISC systems have more instructions, but typically pay a steep performance penalty for the
added versatility. CISC systems actually have "complex instructions", in the sense that at least one instruction takes a
long time to execute -- for example, the "double indirect" addressing mode inherently requires two memory cycles to
execute, and a few CPUs have a "string copy" instruction that may require hundreds of memory cycles to execute.
MIPS and SPARC are examples of RISC computers. Intel x86 is an example of a CISC computer.
Some people group stack machines with the RISC machines; others[1] group stack machines with the CISC
machines; some people [2] describe stack machines as neither RISC nor CISC.
Other ISA types include DSPs, stack machines, VLIW machines, MISC machines, TTA architectures, massively
parallel processor arrays, etc.
We will discuss these terms and concepts in more detail later.

Microprocessor Components
Some of the common components of a microprocessor are:
• Control Unit
• I/O Units
• Arithmetic Logic Unit (ALU)
• Registers
• Cache
We will give a brief introduction to these components below.

Control Unit
The control unit, as described above, reads the instructions, and generates the necessary digital signals to operate the
other components. An instruction to add two numbers together would cause the Control Unit to activate the addition
module, for instance.

I/O Units
A processor needs to be able to communicate with the rest of the computer system. This communication occurs
through the I/O ports. The I/O ports will interface with the system memory (RAM), and also the other peripherals of
a computer.

http://www.cs.uiowa.edu/~jones/arch/cisc/
http://www.ultratechnology.com/ml0.htm
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design/Instruction_Set_Architectures%23ISAs
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Arithmetic Logic Unit
The Arithmetic Logic Unit, or ALU is the part of the microprocessor that performs arithmetic operations. ALUs can
typically add, subtract, divide, multiply, and perform logical operations of two numbers (and, or, nor, not, etc).

Registers
In this book, we talk about lots of different kinds of registers. Hopefully it will be obvious which kind of register we
are talking about from the context.
The most general meaning is a "hardware register": anything that can be used to store bits of information, in a way
that all the bits of the register can be written to or read out simultaneously. Since registers outside of a CPU are also
outside the scope of the book, this book will only discuss processor registers, which are hardware registers that
happen to be inside a CPU. But usually we will refer to a more specific kind of register.

programmer-visible registers

The programmer-visible registers, also called the user-accessible registers, also called the architectural registers,
often simply called "the registers", are the registers that are directly encoded as part of at least one instruction in the
instruction set.
The registers are the fastest accessible memory locations, and because they are so fast, there are typically very few of
them. In most processors, there are fewer than 32 registers. The size of the registers defines the size of the computer.
For instance, a "32 bit computer" has registers that are 32 bits long. The length of a register is known as the word
length of the computer.
There are several factors limiting the number of registers, including:
• It is very convenient for a new CPU to be software-compatible with an old CPU. This requires the new chip to

have exactly the same number of programmer-visible registers as the old chip.
• Doubling the number general-purpose registers requires adding another bit to each instruction that selects a

particular register. Each 3-operand instruction (that specify 2 source operands and a destination operand) would
expand by 3 bits. Modern chip manufacturing processes could put a million registers on a chip; that would make
each and every 3-operand instruction require 60 bits just to select the registers, not counting the bits required to
specify what to do with those operands.

• Adding more registers adds more wires to the critical path, adding capacitance, which reduces the maximum
clock speed of the CPU.

• Historically, CPUs were designed with few registers, because each additional register increased the cost of the
CPU significantly. But now that modern chip manufacturing can put tens of millions of bits of storage on a single
commodity CPU chip, this is less of an issue.

Microprocessors typically contain a large number of registers, but only a small number of them are accessible by the
programmer. The registers that can be used by the programmer to store arbitrary data, as needed, are called general
purpose registers. Registers that cannot be accessed by the programmer directly are known as reserved
registers[citation needed].
Some computers have highly specialized registers -- memory addresses always came from the program counter or
"the" index register or "the" stack pointer; one ALU input was always hooked to data coming from memory, the
other ALU input was always hooked to "the" accumulator; etc.
Other computers have more general-purpose registers -- any instruction that access memory can use any address
register as a index register or as a stack pointer; any instruction that uses the ALU can use any data register.
Other computers have completely general-purpose registers -- any register can be used as data or an address in any
instruction, without restriction.

http://en.wikibooks.org/w/index.php?title=Wikibooks:OR
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microarchitectural registers

Besides the programmer-visible registers, all CPUs have other registers that are not programmer-visible, called
"microarchitectural registers" or "physical registers".
These registers include:
• memory address register
• memory data register
• instruction register
• microinstruction register
• microprogram counter
• pipeline registers
• extra physical registers to support register renaming
• the prefetch input queue
• writable control stores (We will discuss the control store in the Microprocessor Design/Control Unit and

Microprocessor Design/Microcode)
• Some people consider on-chip cache to be part of the microarchitectural registers; others consider it "outside" the

CPU.
There are a wide variety of ways to implement any one instruction set. The vast majority of these microarchitectural
registers are technically not "necessary". A designer could choose to design a CPU that had almost no physical
registers other than the programmer-visible registers. However, many designers choose to design a CPU with lots of
physical registers, using them in ways that make the CPU execute the same given instruction set much faster than a
CPU that lacks those registers.

Cache
Most CPUs manufactured do not have any cache.
Cache is memory that is located on the chip, but that is not considered registers. The cache is used because reading
external memory is very slow (compared to the speed of the processor), and reading a local cache is much faster. In
modern processors, the cache can take up as much as 50% or more of the total area of the chip. The following table
shows the relationship between different types of memory:

smallest largest

Registers cache RAM

fastest slowest

Cache typically comes in 2 or 3 "levels", depending on the chip. Level 1 (L1) cache is smaller and faster than Level
2 (L2) cache, which is larger and slower. Some chips have Level 3 (L3) cache as well, which is larger still than the
L2 cache (although L3 cache is still much faster than external RAM).

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design/Microcode
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Endian
Different computers order their multi-byte data words (i.e., 16-, 32-, or 64-bit words) in different ways in RAM.
Each individual byte in a multi-byte word is still separately addressable. Some computers order their data with the
most significant byte of a word in the lowest address, while others order their data with the most significant byte of a
word in the highest address. There is logic behind both approaches, and this was formerly a topic of heated debate.
This distinction is known as endianness. Computers that order data with the least significant byte in the lowest
address are known as "Little Endian", and computers that order the data with the most significant byte in the lowest
address are known as "Big Endian". It is easier for a human (typically a programmer) to view multi-word data
dumped to a screen one byte at a time if it is ordered as Big Endian. However it makes more sense to others to store
the LS data at the LS address.
When using a computer this distinction is typically transparent; that is that the user cannot tell the difference between
computers that use the different formats. However, difficulty arises when different types of computers attempt to
communicate with one another over a network.
With a big-endian 68K sort of machine,

       address increases > ------ >

       data   : 74 65 73 74 00 00 00 05

is the string "test" followed by the 32-bit integer 5. The little-endian x86 sort of machine would interpret the last part
as the integer 0x0500_0000.
When communicating over a network composed of both big-endian and little-endian machines, the network
hardware (should) apply the Address Invariance principle, to avoid scrambling text (avoiding the NUXI problem).
High-level software (should) format packets of data to be transmitted over the network in Network Byte Order.
High-level software (should) be written as "endian clean" -- always reading and writing 16 bit integers as whole 16
bit integers, 32 bit integers as whole 32 bit integers, etc. -- so no changes are needed to re-compile it for big-endian
or little-endian machines. Software that is not "endian clean" -- software that writes integers, but then reads them out
as 8 bit octets or integers of some other length -- usually fails when re-compiled for another computer.
A few computers -- including nearly all DSPs -- are "neither-endian". They always read and write complete aligned
words, and don't have any hardware for dealing with individual bytes. Systems build on top of such computers often
*do* have a particular endianness -- but that endianness is written into the software, and can be switched by
re-compiling for the opposite endianness.

Stack
A stack is a block of memory that is used as a scratchpad area. The stack is a sequential set of memory locations that
is set to act like a LIFO (last in, first out) buffer. Data is added to the top of the stack in a "push" operation, and the
top data item is removed from the stack during a "pop" operation. Most computer architectures include at least a
register that is usually reserved for the stack pointer.
Some microprocessors include a small hardware stack built into the CPU, independent from the rest of the RAM.
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Modern Computers
Modern desktop computers, especially computers based on the Intel x86 ISA are not Harvard computers, although
the newer variants have features that are "Harvard-Like". All information, program instructions, and data are stored
in the same RAM areas. However, a modern feature called "paging" allows the physical memory to be segmented
into large blocks of memory called "pages". Each page of memory can either be instructions or data, but not both.
Modern embedded computers, however, are typically based on a Harvard architecture. Instructions are stored in a
different addressable memory block than the data is, and there is no way for the microprocessor to interchange data
and instructions.

further reading
• Wikipedia: writable control stores

References
[1] http:/ / www. cs. uiowa. edu/ ~jones/ arch/ cisc/
[2] http:/ / www. ultratechnology. com/ ml0. htm

Microprocessor Design/Instruction Set
Architectures

Microprocessor Design

ISAs
The instruction set or the instruction set architecture (ISA) is the set of basic instructions that a processor
understands. The instruction set is a portion of what makes up an architecture.
Historically, the first two philosophies to instruction sets were: reduced (RISC) and complex (CISC). The merits and
argued performance gains by each philosophy are and have been thoroughly debated.

CISC
Complex Instruction Set Computer (CISC) is rooted in the history of computing. Originally there were no
compilers and programs had to be coded by hand one instruction at a time. To ease programming more and more
instructions were added. Many of these instructions are complicated combination instructions such as loops. In
general, more complicated or specialized instructions are inefficient in hardware, and in a typically CISC
architecture the best performance can be obtained by using only the most simple instructions from the ISA.
The most well known/commoditized CISC ISAs are the Motorola 68k and Intel x86 architectures.

http://en.wikipedia.org/wiki/Microcode#Writable_control_stores
http://www.cs.uiowa.edu/~jones/arch/cisc/
http://www.ultratechnology.com/ml0.htm
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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RISC
Reduced Instruction Set Computer (RISC) was realized in the late 1970s by IBM. Researchers discovered that
most programs did not take advantage of all the various address modes that could be used with the instructions. By
reducing the number of address modes and breaking down multi-cycle instructions into multiple single-cycle
instructions several advantages were realized:
• compilers were easier to write (easier to optimize)
• performance is increased for programs that did simple operations
• the clock rate can be increased since the minimum cycle time was determined by the longest running instruction
The most well known/commoditized RISC ISAs are the PowerPC, ARM, MIPS and SPARC architectures.

VLIW
We will discuss VLIW Processors in a later section.

Vector processors
We will discuss Vector Processors in a later section.

Memory Arrangement
Instructions are typically arranged sequentially in memory. Each instruction occupies 1 or more computer words.
The Program Counter (PC) is a register inside the microprocessor that contains the address of the current
instruction.[1] During the fetch cycle, the instruction from the address indicated by the program counter is read from
memory into the instruction register (IR), and the program counter is incremented by n, where n is the word length of
the machine (in bytes).
In addition to fetches of the executable instructions, many (but not all) instructions also fetch data values from
memory ("load") into a data register, or write data values from a data register to memory ("store"). The address of
the particular memory word accessed in such a load or store instruction is called the "effective address". In the
simplest instruction sets, the effective address always contained in some address register. Other instruction sets have
more complex "effective address" calculations — we will discuss such "addressing modes" later.

Common Instructions

Move, Load, Store
Move instructions cause data from one register to be moved or copied to another register. Load instructions put data
from an external source, such as memory, into a register. Store instructions move data from a register to an external
destination.
Instructions that move (or copy) data from one place to another are the #1 most-frequently-used instructions in most
programs.[2]
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Branch and Jump
Branching and Jumping is the ability to load the PC register with a new address that is not the next sequential
address. In general, a "jump" or "call" occurs unconditionally, and a "branch" occurs on a given condition. In this
book we will generally refer to both as being branches, with a "jump" being an unconditional branch.
A "call" instruction is a branch instruction with the additional effect of storing the current address in a specific
location, e.g. pushing it on the stack, to allow for easy return to continue execution. A "call" instruction is generally
matches with a "return" instruction which retrieves the stored address and resumes execution where it left off.
An "interrupt" instruction is a call to a preset location, generally one encoded somehow in the instruction itself. This
is often used to reach commonly-used resources such as the operating system. Generally, a routine entered via an
interrupt instruction is left via an interrupt return instruction, which, similarly to the return instruction, retrieves the
stored address and resumes execution.
In many programs, "call" is the second-most-frequently used instruction (after "move").[2]

Arithmetic Instructions
The Arithmetic Logic Unit (ALU) is used to perform arithmetic and logical instructions. The capability of the ALU
typically is greater with more advanced central processors, but RISC machines' ALUs are deliberately kept simple
and so have only some of these functions. An ALU will, at minimum, perform addition, subtraction, NOT, AND,
OR, and XOR, and usually also single-bit rotates and shifts. Many CISC machine ALUs can also perform multi-bit
rotates and shifts (with a barrel shifter) and integer multiplication and division. While many modern CPUs can also
do floating point mathematical operations, these are usually handled by the FPU, a different part of the machine. We
describe the ALU in more detail in the ALU design chapter.

Input / Output
Input instructions fetch data from a specified input port, while output instructions send data to a specified output
port. There is very little distinction between input/output space and memory space, the microprocessor presents an
address and then either accepts data from, or sends data to, the data bus, but the sort of operations available in the
input/output space are typically more limited than those available in memory space.

NOP
NOP, short for "no operation" is an instruction that produces no result and causes no side effects. NOPs are useful
for timing and preventing hazards.

instruction length
There are several different ways people balance the various advantages and disadvantages of various instruction
lengths.

A MIPS "add immediate" instruction includes the
opcode (logical operation), the destination

register specifier, the source register specifier,
and a constant value, all in the same 32 bits that

are used for every MIPS instruction.

Fixed-length instructions are less complicated for a CPU to handle than
variable-width instructions for several reasons, and are therefore
somewhat easier to optimize for speed. Such reasons include: CPUs
with variable-length instructions have to check check whether each
instruction straddles a cache line or virtual memory page boundary;
CPUs with fixed-length instructions can skip all that.
There simply are not enough bits in a 16 bit instruction to
accommodate 32 general-purpose registers, and also do "Ra = Rb (op)

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design%23ALU_Design
http://en.wikibooks.org/w/index.php?title=File%3AMips32_addi.svg
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Rc" -- i.e., independently select 2 source and 1 destination register out of a general purpose register bank of 32
registers, and also independently select one of several ALU operations.
And so people who design instruction sets must make one or more of the following compromises:
• sacrifice code density and use longer fixed-width instructions, typically 32 bit, such as the MIPS and DLX and

ARM.
• sacrifice fixed-width instructions, requiring a more complicated decoder to handle both short 16 bit instructions

and longer 3-operand instructions, such as ARM Thumb
• sacrifice 3-operands, using no more than 2 operands in all instructions for everything, such as the Atmel AVR.

Without 3-operand instructions, programs occasionally require extra copy instructions when both variable input
operands to some ALU operation need to be preserved for some later instruction(s).

• sacrifice registers, so only 16 or 8 programmer-visible registers.
• sacrifice the concept of general purpose register -- perhaps only 16 or 8 "data registers" are visible to 3-operand

ALU instructions, as in the 68000, or the destination is restricted to one or two "accumulators", but other registers
(such as "address registers") are visible to other instructions.

Further reading
[1] Practically all modern CPUs maintain the illusion of a program counter sequentially walking through code one instruction at a time. However,

a few complex modern CPUs internally execute several instructions simultaneously (superscalar), or execute instructions out-of-order, or even
speculatively pre-execute instructions down the "wrong" path, then back up and take the right path. When designing and testing such internal
structures, the concept of "the" PC is a bit fuzzy.

Some processor architectures, for instance the CDP1802, do not have a single Program Counter; instead, one of the
general purpose registers is used as a program counter, and which register that is can be changed under program
control.
[2] Peter Kankowski. "x86 Machine Code Statistics" (http:/ / www. strchr. com/ x86_machine_code_statistics)

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design/Instruction_Set_Architectures%23code_density
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design/Computer_Architecture%23Registers
http://www.strchr.com/x86_machine_code_statistics
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Microprocessor Design/Memory
Microprocessor Design

Memory is a fundamental aspect of microcontroller design, and a good understanding of memory is necessary to
discuss and processor system.

Memory Hierarchy
Memory suffers from the dichotomy that it can be either large or it can be fast. As memory becomes more large, it
becomes less fast, and vice-versa. Because of this trade-off, computer systems typically have a hierarchy of memory
types, where faster (and smaller) memories are closer to the processor, and slower (but larger) memories are further
from the processor.

Hard Disk Drives
Hard Disk Drives (HDD) are occasionally known as secondary memory or nonvolatile memory. HDD typically
stores data magnetically (although some newer models use FLASH), and data is maintained even when the computer
is turned off or removed from power. HDD is several orders of magnitude slower then all other memory devices, and
a computer system will be more efficient when the number of interactions with the HDD are minimized.
Because most HDDs are mechanical and have moving parts, they tend to wear out and fail after time.

RAM
Random Access Memory (RAM), also known as main memory, is a volatile storage that holds data for the
processor. Unlike HDD storage, RAM typically only has a capacity of a few megabytes to a few gigabytes. There are
two primary forms of RAM, and many variants on these.

SRAM
Static RAM (SRAM) is a type of memory storage that uses 6 transistors to store data. These transistors store data so
long as power is supplied to the RAM and do not need to be refreshed.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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A single bit of storage in SRAM, showing 6 transistors.

SRAM is typically used in processor cache, not main memory because it has a faster speed despite it's larger area.

DRAM
Dynamic RAM (DRAM) is a type of RAM that contains a single transistor and a capacitor. DRAM is smaller than
SRAM, and therefore can store more data in a smaller area. Because of the charge and discharge times of the
capacitor, however, DRAM tends to be slower than SRAM. Many modern types of Main Memory are based on
DRAM design because of the high memory densities. Because DRAM is simpler than SRAM, it is typically cheaper
to produce.
A popular type of RAM, SDRAM, is a variant of DRAM and is not related to SRAM.
As digital circuits continue to grow smaller and faster as per Moore's Law, the speed of DRAM is not increasing as
rapidly. This means that as time goes on, the speed difference between the processor and the RAM units (so long as
the RAM is based on DRAM or variants) will continue to increase, and communications between the two units
becomes more inefficient.

http://en.wikibooks.org/w/index.php?title=File%3A6t-SRAM-cell.png
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Cache
Cache is memory that is smaller and faster than main memory and resides closer to the processor. RAM runs on the
system bus clock, but Cache typically runs on the processor speed which can be 10 times faster or more. Cache is
frequently divided into multiple levels: L1, L2, and L3, with L1 being the smallest and fastest, and L3 being the
largest and slowest. We will discuss cache in more detail in a later chapter.
A computer system may have between several kilobytes to a few megabytes of available cache.

Registers
Registers are the smallest and fastest memory storage elements. A modern processor may have anywhere from 4 to
256 registers. We will discuss registers in much more detail in a later chapter, Microprocessor Design/Register File.

Microprocessor Design/Control and Datapath
Microprocessor Design

Most processors and other complicated hardware circuits are typically divided into two components: a datapath and
a control unit. The datapath contains all the hardware necessary to perform all the necessary operations. In many
cases, these hardware modules are parallel to one another, and the final result is determined by multiplexing all the
partial results.
The control unit determines the operation of the datapath, by activating switches and passing control signals to the
various multiplexers. In this way, the control unit can specify how the data flows through the datapath.
The width of the data path ...

"There is only one mistake that can be made in a computer design that is difficult to recover from: not
providing enough address bits for memory addressing and memory management." -- Gordon Bell and Bill
Strecker, 1975[1]

For good code density, you want the ALU datapath width to be at least as wide as the address bus width. Then every
time you need to increment an address, you can do it in a single instruction, rather than requiring multiple
instructions to manipulate an address one piece at a time.[2] [3]

[1] Engineering Education "Today in History" PDP-11 minicomputer introduced (http:/ / www. k-grayengineeringeducation. com/ blog/ index.
php/ 2009/ 03/ 13/ engineering-education-today-in-history-pdp-11-minicomputer-introduced-2/ ) by Gordon Bell 2009; referring to "What we
learned from the PDP-11" (http:/ / research. microsoft. com/ ~gbell/ Digital/ Bell_Strecker_What_we _learned_fm_PDP-11c 7511. pdf) by
Gordon Bell and Bill Strecker, 1975. Early version of the PDP-11 had a 16-bit address space. ... also quoted in the book "Electronics" (http:/ /
books. google. com/ books?id=6amzAAAAIAAJ& q=insufficient+ address+ computer+ architecture& dq=insufficient+ address+ computer+
architecture& pgis=1)

[2] "It seems that the 16-bit ISA hits somehow the "sweet spot" for the best code density, perhaps because the addresses are also 16-bit wide and
are handled in a single instruction. In contrast, 8-bitters need multiple instructions to handle 16-bit addresses." -- "Insects of the computer
world" (http:/ / embeddedgurus. com/ state-space/ 2009/ 03/ insects-of-the-computer-world/ ) by Miro Samek 2009.

[3] "it just really sucks if the largest datum you can manipulate is smaller than your address size. This means that the accumulator needs to be the
same size as the PC -- 16-bits." -- Allen "Opcode considerations" (http:/ / david. carybros. com/ html/ computer_architecture.
html#considerations)

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://www.k-grayengineeringeducation.com/blog/index.php/2009/03/13/engineering-education-today-in-history-pdp-11-minicomputer-introduced-2/
http://www.k-grayengineeringeducation.com/blog/index.php/2009/03/13/engineering-education-today-in-history-pdp-11-minicomputer-introduced-2/
http://research.microsoft.com/~gbell/Digital/Bell_Strecker_What_we%20_learned_fm_PDP-11c%207511.pdf
http://books.google.com/books?id=6amzAAAAIAAJ&q=insufficient+address+computer+architecture&dq=insufficient+address+computer+architecture&pgis=1
http://books.google.com/books?id=6amzAAAAIAAJ&q=insufficient+address+computer+architecture&dq=insufficient+address+computer+architecture&pgis=1
http://books.google.com/books?id=6amzAAAAIAAJ&q=insufficient+address+computer+architecture&dq=insufficient+address+computer+architecture&pgis=1
http://embeddedgurus.com/state-space/2009/03/insects-of-the-computer-world/
http://david.carybros.com/html/computer_architecture.html#considerations
http://david.carybros.com/html/computer_architecture.html#considerations
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Microprocessor Design/Performance
Microprocessor Design

Clock Cycles
The clock signal is a 1-bit signal that oscillates between a "1" and a "0" with a certain frequency. When the clock
transitions from a "0" to a "1" it is called the positive edge, and when the clock transitions from a "1" to a "0" it is
called the negative edge.
The time it takes to go from one positive edge to the next positive edge is known as the clock period, and represents
one clock cycle.
The number of clock cycles that can fit in 1 second is called the clock frequency. To get the clock frequency, we
can use the following formula:

Clock frequency is measured in units of cycles per second.

Cycles per Instruction
In many microprocessor designs, it is common for multiple clock cycles to transpire while performing a single
instruction. For this reason, it is frequently useful to keep a count of how many cycles are required to perform a
single instruction. This number is known as the cycles per instruction, or CPI of the processor.
Because all processors may operate using a different CPI, it is not possible to accurately compare multiple
processors simply by comparing the clock frequencies. It is more useful to compare the number of instructions per
second, which can be calculated as such:

One of the most common units of measure in modern processors is the "MIPS", which stands for millions of
instructions per second. A processor with 5 MIPS can perform 5 million instructions every second. Another common
metric is "FLOPS", which stands for floating point operations per second. MFLOPS is a million FLOPS, GFLOPS is
a billion FLOPS, and TFLOPS is a trillion FLOPS.

Instruction count
The "instruction count" in microprocessor performance measurement is the number of instructions executed during
the run of a program. Typical benchmark programs have instruction counts in the millions or billions -- even though
the program itself may be very short, those benchmarks have inner loops that are repeated millions of times.
Some microprocessor designers have the freedom to add instructions to or remove instructions from the instruction
set. Typically the only way to reduce the instruction count is to add instructions such that those inner loops can be
re-written in a way that does the necessary work using fewer instructions -- those instructions do "more work" per
instruction.
Sometimes, counter-intuitively, we can improve overall CPU performance (i.e., reduce CPU time) in a way that
increases the instruction count, by using instructions in that inner loop that may do "less work" per instruction, but
those instructions finish in less time.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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CPU Time
CPU Time is the amount of time it takes the CPU to complete a particular program. CPU time is a function of the
amount of time it takes to complete instructions, and the number of instructions in the program:

Sometimes we can improve one of the 3 components alone, reducing CPU time. But quite often we find a tradeoff --
say, a technique that increases instruction count, but reduces the clock cycle time -- and we have to measure the total
CPU time to see if that technique makes the overall performance better or worse.

Amdahls Law
Amdahl's Law is a law concerned with computer performance and optimization. Amdahl's law states that an
improvement in the speed of a single processor component will have a comparatively small effect on the
performance of the overall processor unit.
In the most general sense, Amdahl's Law can be stated mathematically as follows:

where:
• Δ is the factor by which the program is sped up or slowed down,
• Pk is a percentage of the instructions that can be improved (or slowed),
• Sk is the speed-up multiplier (where 1 is no speed-up and no slowing),
• k represents a label for each different percentage and speed-up, and
• n is the number of different speed-up/slow-downs resulting from the system change.
For instance, if we make a speed improvement in the memory module, only the instructions that deal directly with
the memory module will experience a speedup. In this case, the percentage of load and store instructions in our
program will be P0, and the factor by which those instructions are sped up will be S0. All other instructions, which
are not affected by the memory unit will be P1, and the speed up will be S1 Where:

We set S1 to 1 because those instructions are not sped up or slowed down by the change to the memory unit.

benchmarking
• SpecInt
• SpecFP
• "Maxim/Dallas APPLICATION NOTE 3593" [1] benchmarking
• "Mod51 Benchmarks" [2]

• EEMBC, the Embedded Microprocessor Benchmark Consortium [3]

http://www.maxim-ic.com/appnotes.cfm/appnote_number/3593
http://www.designtools.co.nz/modbench.htm
http://www.eembc.org/
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[2] http:/ / www. designtools. co. nz/ modbench. htm
[3] http:/ / www. eembc. org/

Microprocessor Design/Assembly Language
Microprocessor Design

Assemblers

Assembly Language Constructs
There are a number of different assembly languages in existance, but all of them have a few things in common. They
all map directly to the underlying hardware CPU instruction sets.
CPU instuction set

is a set of binary code/instruction that the CPU understands. Based on the CPU, the instruction can be one
byte, two bytes or longer. The instruction code is usually followed by one or two operands.

Instruction Code operand 1 operand 2

How many instructions there are depends on the CPU.
Because binary code is difficult to remember, each instruction has as its name a so-called mnemonic. For example
'MOV' can be used for moving instructions.

MOV A, 0x0020

The above instruction moves the value of register A to the specified address.
A simple assembler will translate the 'MOV A' to its CPU's instruction code.
Assembly languages cannot be assumed to be directly portable to other CPU's. Each CPU has its own assembly
language, though CPU's within the same family may support limited portability

Load and Store
These instructions tell the CPU to move data from memory to a CPU's register, or move date from one of the CPU's
register to memory.
register

is a special memory located inside the CPU, where arithmetic operations can be performed.

Arithmetic
Arithmetic operations can be performed using the CPU's registers:
• Increment the value of one of the CPU's registers
• Decrement the value of one of the CPU's registers

http://www.maxim-ic.com/appnotes.cfm/appnote_number/3593
http://www.designtools.co.nz/modbench.htm
http://www.eembc.org/
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=File:Assembler.png
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• Add a value to the register
• Subtract value from the register
• Multiply the register value
• Divide the register value
• Shift the register value
• Rotate the register value

Jumping
During a jump instruction, the program counter is loaded with a new address that is not necessarily the address of the
next sequential instruction. After a jump, the program execution continues from the new location in memory.
Relative jump

the instruction's operand tells how many bytes the program counter should be increased or decreased.
Absolute jump

the instruction's operand is copied to the program counter; the operand is an absolute memory address where
the execution should continue.

Branching
During a branch, the program counter is loaded with one of multiple new values, depending on some specified
condition. A branch is a series of conditional jumps.
Some CPUs have skipping instructions. If a register is zero, the following instruction is skipped, if not then the
following instruction is executed, which can be a jumping instruction. So Branching can be done by using skipping
and jumping instructions together.

Further reading
• Assembly Language

http://en.wikibooks.org/w/index.php?title=Assembly_Language
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Microprocessor Design/Design Steps
Microprocessor Design

When designing a new microprocessor or microcontroller unit, there are a few general steps that can be followed to
make the process flow more logically. These few steps can be further sub-divided into smaller tasks that can be
tackled more easily. The general steps to designing a new microprocessor are:
1. Determine the capabilities the new processor should have.
2. Lay out the datapath to handle the necessary capabilities.
3. Define the machine code instruction format (ISA).
4. Construct the necessary logic to control the datapath.
We will discuss each of these steps below:

Determine Machine Capabilities
Before you start to design a new processor element, it is important to first ask why you are designing it at all. What
new thing will your processor do that existing processors cannot? Keep in mind that it is always less expensive to
utilize an existing chip than to design and manufacture a new one.
Some questions to start:
1. Is this chip an embedded chip, a general-purpose chip, or a different type entirely?
2. What, if any, are the limitations in terms of resources, price, power, or speed?
With that in mind, we need to ask what our chip will do:
1. Does it have integer, floating-point, or fixed point arithmetic, or a combination of all three?
2. Does it have scalar or vector operation abilities?
3. Is it self-contained, or must it interface with a number of external peripherals?
4. Will it support interrupts? If so, How much interrupt latency is tolerable? How much interrupt-response jitter is

tolerable?
We also need to ask ourselves whether the machine will support a wide array of instructions, or if it will have a
limited set of instructions. More instructions make the design more difficult, but make programming and using the
chip easier. On the other hand, having fewer instructions is easier to design, but can be harder and more costly to
program.
Lay out the basic arithmetic operations you want your chip to have:
• Addition/Subtraction
• Multiplication
• Division
• Shifting and Rotating
• Logical Operations: AND, OR, XOR, NOR, NOT, etc.
List other capabilities that your machine has:
• Unconditional jumps
• Conditional Jumps (and what conditions?)
• Stack operations (Push, pop)
Once we know what our chip is supposed to do, it is easer to lay out the framework for our datapath

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Design the Datapath
Right off the bat we need to determine what ALU architecture that our processor will use:
• Accumulator
• Stack
• Register
• A combination of the above 3
This decision, more than any other, is going to have the largest effect on your final design. Do not proceed in the
design process until you have made this decision. Once you have your ALU architecture, you create your memory
element (stack or register file), and you can lay out your ALU.

Create ISA
Once we have our basic datapath, we can start to design our ISA. There are a few things that we need to consider:
1. Is this processor RISC, CISC, or VLIW?
2. How long is a machine word?
3. How do you deal with immediate values? What kinds of instructions can accept immediate values?
Once we have our machine code basics, we frequently need to determine whether our processor will be compatible
with higher-level languages. Specifically, are there any instructions that can be used for function call and return?
Determining the length of the instruction word in a RISC is a very important matter, and one that is worth a
considerable amount of thought. For additional flexibility you can utilize a variable-length instruction set instead —
like most CISC machines — at the expense of additional—and more complicated—instruction decode logic. If the
instruction word is too long, programmers will be able to fit fewer instructions into memory. If the instruction word
is too small, there will not be enough room for all the necessary information. On a desktop PC with several
megabytes or even gigabytes of RAM, large instruction words are not a big problem. On an embedded system
however, with limited program ROM, the length of the instruction word will have a direct effect on the size of
potential programs, and the usefulness of the chips.
Each instruction should have an associated opcode, and typically the length of the opcode field should be constant
for all instructions, to reduce complexity of the decoder. The length of the opcode field will directly impact the
number of distinct instructions that can be implemented. if the opcode field is too small, you won't have enough
room to designate all your instructions. If your opcode is too large, you will be wasting precious bits in your
instruction word.
Some instructions will need to be larger than others. For instance, instructions that deal with an immediate value, a
memory location, or a jump address are typically larger than instructions that only deal with registers. Instructions
that deal only with registers, therefore, will have additional space left over that can be used as an extension to the
opcode field.
Example: MIPS R-Type

In the MIPS architecture, instructions that only deal with registers are called R type instructions. With 32 registers, a
register address is only 5 bits wide. The MIPS opcode is 6 bits wide. With the opcode and the three register
addresses (two source and 1 destination register), an R-type instruction only uses 21 out of the 32 bits available.
The additional 11 bits are broken into two additional fields: Shamt, a 5 bit immediate value that controls the amount
of places shifted by a shift or rotate instruction, and Func. Func is a 6 bit field that contains additional information
about R-Type instructions. Because of the availability of the Func field, all R-Type instructions share an opcode of 0.
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Instruction Set Design
Picking a particular set of instructions is often more an art than a science.
Historically there have been different perspectives on what makes a "good" instruction set.
• The early CISC years focused on making instruction sets that expert assembly language programmers enjoyed

programming -- "../code density" was a common metric.
• the early RISC years focused on making instruction sets that ran a few benchmark programs in C, when compiled

with relatively primitive compilers, really, really fast -- "cycles per instruction", and later "instructions per cycle"
was recognized as an important part of achieving low "time to run the benchmark".

• The rise of multitasking operating systems (and shared-memory parallel processors) lead to the discovery of
non-blocking synchronization and the instructions necessary to support it.

• CPUs dedicated to a single application (ASICs or FPGAs) led to the idea of customizing the CPU for one
particular application[1]

• The rise of viruses and other malware led to the recognition of the Popek and Goldberg virtualization
requirements.

Build Control Logic
Once we have our datapath and our ISA, we can start to construct the logic of our primary control unit. These units
are typically implemented as a finite state machine, and we can try to map the ISA to the control unit in a logical
way.

design the address path
If a simple virtual==physical address path is adequate for your CPU, you can skip this section.
Most processors have a very simple address path -- address bits come from the PC or some other programmer-visible
register, or directly from some instruction, and they are directly applied to the address bus.
Many general-purpose processors have a more complex address path: user-level programs run as if they have a
simple address path, but the physical address applied to the address bus is significantly different than the
programmer-visible address. If your CPU needs to do this, then you need something to translate user-visible
addresses to physical address -- either design the CPU to connect to some off-chip bank register or MMU (such as
the 8722 MMU or the 68851 MMU) or design in an on-chip bank register or MMU.
You may want to do this in order to:
• support various debug tools that trap on reads or writes to selected addresses.
• allow access to more RAM (wider physical address) than the user-level address seems to support (banking)
• support many different programs all in different physical RAM locations, even though they were all compiled to

run at location 0x300.
• allow a program to successfully read and write a large block of data using normal LOAD and STORE instructions

as if it were all in RAM, even though the machine doesn't have that much RAM (paging with virtual memory)
• support a "protected" supervisor-level system that can run buggy or malicious user-level code in an isolated

sandbox at full speed without damaging other user-level programs or the supervisor system itself -- Popek and
Goldberg virtualization, W xor X memory protection, etc.

• or some combination of the above.

http://en.wikibooks.org/w/index.php?title=../code_density
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Verify the design
People who design a CPU often spend more time on functional verification than all other steps combined.

Further reading
• Kong and Patterson. "Instruction set design". 1995.[2]

References
[1] "Generating instruction sets and microarchitectures from applications" (http:/ / portal. acm. org/ citation. cfm?id=191326. 191501) by Ing-Jer

Huang, and Alvin M. Despain
[2] http:/ / www. cs. berkeley. edu/ ~pattrsn/ 152/ lec3. ps

http://www.cs.berkeley.edu/~pattrsn/152/lec3.ps
http://portal.acm.org/citation.cfm?id=191326.191501
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Microprocessor Components

Microprocessor Design/Basic Components
Microprocessor Design

Basic Components
There are a number of components in a common microprocessor that designers should be familiar with before
attempting a design. For an overview of these components, see Digital Circuits.

Registers
A register is a storage element typically composed of an array of flip-flops. A 1-bit register can store 1 bit, and a
32-bit register can hold 32 bits, etc. Registers can be any length.
A register has two inputs, a data input and a clock input. The clock input is typically called the "enable". When the
enable signal is high, the register stores the data input. When the clock signal is low, the register value stays the
same.

Register File
A register file is a whole collection of registers, typically all of which are the same length. A register file takes three
inputs, an index address value, a data value, and an enable signal. A signal decoder is used to pass the data value
from the register file input to the particular register with the specified address.

Multiplexers

A multiplexer is an input selector. A multiplexer has 1 output, a
control input, and several data inputs. For ease, we number
multiplexer inputs from zero, at the top. If the control signal is "0",
the 0th input is moved to the output. If the control signal is "3", the
3rd input is moved to the output.
A multiplexer with N control signal bits can support 2N inputs. For
example, a multiplexer with 3 control signals can support 23 = 8
inputs.

Multiplexers are typically abbreviated as "MUX", and will be
abbreviated as such throughout the rest of this book.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Digital_Circuits
http://en.wikibooks.org/w/index.php?title=File%3AMultiplexer_2-to-1.svg
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A 4 input Multiplexer with 2 control signal wires An 8 input Multiplexer with 3 control signal wires 

A 16 input Multiplexer with 4 control wires 

There can be decoders implemented in the components.Decoder
Decoder ( inverse functionality of Encoder) can have multiple inputs and depending upon the inputs one of the output signals can go high.

For a 2 input decoder there will be 4 output signals.

       /|- O0

 i0---| |- O1

 i1---| |- O2

       \|- O3

 suppose input i is having value 00  then output signal O0 will go high and remaining other threee lines O1 to O3 will be low.

  In same fashion if i is having value 2 then output O2 will be high and remaining other three lines will be low.

http://en.wikibooks.org/w/index.php?title=File%3AMultiplexer_4-to-1.svg
http://en.wikibooks.org/w/index.php?title=File%3AMultiplexer_8-to-1.svg
http://en.wikibooks.org/w/index.php?title=File%3AMultiplexer_16-to-1.svg
http://en.wikibooks.org/w/index.php?title=Decoder
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Microprocessor Design/Program Counter
Microprocessor Design

The Program Counter (PC) is a register structure that contains the address pointer value of the current instruction.
Each cycle, the value at the pointer is read into the instruction decoder and the program counter is updated to point to
the next instruction. For RISC computers updating the PC register is as simple as adding the machine word length (in
bytes) to the PC. In a CISC machine, however, the length of the current instruction needs to be calculated, and that
length value needs to be added to the PC.

Updating the PC
The PC can be updated by making the enable signal high. Each instruction cycle the PC needs to be updated to point
to the next instruction in memory. It is important to know how the memory is arranged before constructing your PC
update circuit.
Harvard-based systems tend to store one machine word per memory location. This means that every cycle the PC
needs to be incremented by 1. Computers that share data and instruction memory together typically are byte
addressable, which is to say that each byte has its own address, as opposed to each machine word having its own
address. In these situations, the PC needs to be incremented by the number of bytes in the machine word.

In this image, the letter M is being used as the amount by which to update the PC each cycle. This might be a
variable in the case of a CISC machine.
Example: MIPS

The MIPS architecture uses a byte-addressable instruction memory unit. MIPS is a RISC computer, and that means
that all the instructions are the same length: 32-bits. Every cycle, therefore, the PC needs to be incremented by 4 (32

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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bits = 4 bytes).
Example: Intel IA32

The Intel IA32 (better known by some as "x86") is a CISC architecture, which means that each instruction can be a
different length. The Intel memory is byte-addressable. Each cycle the instruction decoder needs to determine the
length of the instruction, in bytes, and it needs to output that value to the PC. The PC unit increments itself by the
value received from the instruction decoder.

Branching
Branching occurs at one of a set of special instructions known collectively as "branch" or "jump" instructions. In a
branch or a jump, control is moved to a different instruction at a different location in instruction memory.
During a branch, a new address for the PC is loaded, typically from the instruction or from a register. This new value
is loaded into the PC, and future instructions are loaded from that location.

Non-Offset Branching
A non-offset branch, frequently referred to as a "jump" is a branch where the previous PC value is discarded and a
new PC value is loaded from an external source.

In this image, the PC value is either loaded with an updated version of itself, or else it is loaded with a new Branch
Address. For simplification we do not show the control signals to the MUX.

http://en.wikibooks.org/w/index.php?title=File%3APC_Branch.svg
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Offset Branching
An offset branch is a branch where a value is added (or subtracted) to the current PC value to produce the new value.
This is typically used in systems where the PC value is larger then a register value or an immediate value, and it is
not possible to load a complete value into the PC. It is also commonly used to support relocatable binaries which
may be loaded at an arbitrary base address.

In this image there is a second ALU unit. Notice that we could simplify this circuit and remove the second ALU unit
if we use the configuration below:

http://en.wikibooks.org/w/index.php?title=File%3APC_Offset_Branch.svg
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These are just two possible configurations for this circuit.

Offset and Non-Offset Branching
Many systems have capabilities to use both offset and non-offset branching. Some systems may differentiate
between the two as "far jump" and "near jump", respectively, although this terminology is archaic.

http://en.wikibooks.org/w/index.php?title=File%3APC_Offset_Branch_2.svg
http://en.wikibooks.org/w/index.php?title=File%3APC_Branch_Jump.svg
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Microprocessor Design/Instruction Decoder
Microprocessor Design

The Instruction Decoder reads the next instruction in from memory, and sends the component pieces of that
instruction to the necessary destinations.

RISC Instruction Decoder
The RISC instruction decoder is typically a very simple device. Because RISC instruction words are a fixed length,
the positions of the fields are fixed. We can decode an instruction, therefore, by simply separating the machine word
into small parts using wire slices.

CISC Instruction Decoder
Decoding a CISC instruction word is much more difficult than the RISC case, and the increased complexity of the
decoder is a common reason that people cite when they choose to use RISC over CISC in their designs.
A CISC decoder is typically set up as a state machine. The machine reads the opcode field to determine what type of
instruction it is, and where the other data values are. The instruction word is read in piece by piece, and decisions are
made at each stage as to how the remainder of the instruction word will be read.

Microprocessor Design/Register File
Microprocessor Design

Registers are temporary storage locations inside the CPU that hold data and addresses.
The register file is the component that contains all the general purpose registers of the microprocessor. A few CPUs
also place special registers such as the PC and the status register in the register file. Other CPUs keep them separate.
When designing a CPU, some people distinguish between "architectural features" and the "implementation details".
The "architectural features" are the programmer visible parts; if someone makes a new system where any of these
parts are different from the old CPU, then suddenly all the old software won't work on the new CPU. The
"implementation details" are the parts that, although we put even more time and effort into getting them to work, one
can make a new system that has a different way of implementing them, and still keep software compatibility -- some
programs may run a little faster, other programs may run a little slower, but they all produce the same results as on
the earlier machine.
The programmer-visible register set has the biggest impact on software compatibility of any other part of the
datapath, and perhaps of any other part in the entire computer. The architectural features of the programmer-visible
register set are the number of registers, the number of bits in each register, and the logical organization of the
registers. Assembly language programmers like to have many registers. Early microprocessors had painfully few
registers, limited by the area of the chip. Today, many chips have room for huge numbers of registers, so the number
of programmer-registers is limited by other constraints: More programmer-visible registers requires bigger operand
fields. More programmer-visible registers requires more time saving and restoring registers on an interrupt or context
switch. Software compatibility requires keeping exactly the same number, size, and organization of
programmer-visible registers. Assembly language programmers like a "flat" address space, where the full address of
any location in (virtual) memory fits in a single address register. And so the amount of (virtual) memory desired by
an architect sets a minimum width to each address register. [1]

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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The idea of "general registers" -- a group of registers, any one of which can, at different times, operate as a stack
pointer, index register, accumulator, program counter, etc. was invented around 1971.[2]

Register File
A simple register file is a set of registers and a decoder. The register file requires an address and a data input.

However, this simple register file isn't useful in a modern processor design, because there are some occasions when
we don't want to write a new value to a register. Also, we typically want to read two values at once and write one
value back in a single cycle. Consider the following equation:

To perform this operation, we want to read two values from the register file, A and B. We also have one result that
we want to write back to the register file when the operation has completed. For cases where we do not want to write
any value to the register file, we add a control signal called Read/Write. When the control signal is high, the data is
written to a register, and when the control signal is low, no new values are written.

In this case, it is likely advantageous for us to specify a third address port for the write address:

http://en.wikibooks.org/w/index.php?title=File%3ARegister_File_Simple.svg
http://en.wikibooks.org/w/index.php?title=File%3ARegister_File_Medium.svg
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More registers than you can shake a stick at
Consider a situation where the machine word is very small, and therefore the available address space for registers is
very limited. If we have a machine word that can only accommodate 2 bits of register address, we can only address 4
registers. However, register files are small to implement, so we have enough space for 32 registers. There are several
solutions to this dilemma -- several ways of increasing performance by using many registers, even though we don't
quite have enough bits in the instruction word to directly address all of them.
Some of those solutions include:
• special-purpose registers that are always used for some specific instruction, and so that instruction doesn't need

any bits to specify that register.
• In almost every CPU, the program counter PC and the status register are treated differently than the other

registers, with their own special set of instructions.
• separating registers into two groups, "address registers" and "data registers", so an instruction that uses an address

needs enough bits to select one out of all the address registers, which is 1 less bit than one out of every register.
• register windowing as on SPARC
[1] and
• using a "register bank".

http://en.wikibooks.org/w/index.php?title=File%3ARegister_File_Large.svg
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Register Bank
Consider a situation where the machine word is very small, and therefore the available address space for registers is
very limited. If we have a machine word that can only accommodate 2 bits of register address, we can only address 4
registers. However, register files are small to implement, so we have enough space for 32 registers. The solution to
this dilemma is to utilize a register bank which consists of a series of register files combined together.
A register bank contains a number of register files or pages. Only one page can be active at a time, and there are
additional instructions added to the ISA to switch between the available register pages. Data values can only be
written to and read from the currently active register page, but instructions can exist to move data from one page to
another.

As can be seen in this image, the gray box represents the current page, and the page can be moved up and down on
the register bank.
If the register bank has N registers, and a page can only show M registers (with N > M), we can address registers with
two values, n and m respectively. We can define these values as:

In other words, n and m are the number of bits required to address N and M registers, respectively. We can break
down the address into a single value as such:

http://en.wikibooks.org/w/index.php?title=File%3ARegister_Bank.svg
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Where p is the number of bits reserved to specify the current register page. As we can see from this graphic, the
current register address is simply the concatenation of the page address and the register address.

References
[1] "Computer architecture: fundamentals and principles of computer design" (http:/ / books. google. com/ books?id=ZWaUurOwMPQC&

pg=PA112& lpg=PA112& dq=insufficient+ address+ computer+ architecture& source=bl& ots=Ak4ghlsMBy&
sig=dqDtvlQA3fyPTSqQGfxwzz2lgio& hl=en& ei=N9n3SYO7BI3uMsPvyKkP& sa=X& oi=book_result& ct=result&
resnum=3#v=onepage& q=& f=false) by Joseph D. Dumas 2006 page 111.

[2] "general registers" were invented by C. Gordon Bell and Allen Newell as they were working on their book, Computer Structures: Readings
and Examples (1971). -- Frederik Nebeker. "More Treasured Texts" article. "IEEE Spectrum" 2003 July.

Microprocessor Design/Memory Unit
Microprocessor Design

Microprocessors rely on memory for storing the instructions and the data used by software programs. The memory
unit is responsible for communicating with the system memory.

Memory Unit

Actions of the Memory Unit
All von Neumann CPUs store their instructions in memory.
In a Harvard architecture, the data memory unit and the instruction memory unit are two different units. However, in
a Princeton architecture the two memory units are combined into a single module. Most modern PC computer
systems are Princeton, not Harvard, so the memory unit must handle all instruction and data transactions. This can
serve as a bottleneck in the design.

http://en.wikibooks.org/w/index.php?title=File%3ARegister_Bank_Address.svg
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Timing Issues
The memory unit is typically one of the slowest components of a microcontroller, because the external interface with
RAM is typically much slower than the speed of the processor.

Microprocessor Design/ALU
Microprocessor Design

Microprocessors tend to have a single module that performs arithmetic
operations on integer values. This is because many of the different
arithmetic and logical operations can be performed using similar (if not
identical) hardware. The component that performs the arithmetic and
logical operations is known as the Arithmetic Logic Unit, or ALU.

The ALU is one of the most important components in a
microprocessor, and is typically the part of the processor that is
designed first. Once the ALU is designed, the rest of the
microprocessor is implemented to feed operands and control codes to
the ALU.

Tasks of an ALU
ALU units typically need to be able to perform the basic logical operations (AND, OR), including the addition
operation. The inclusion of inverters on the inputs enables the same ALU hardware to perform the subtraction
operation (adding an inverted operand), and the operations NAND and NOR.
A basic ALU design involves a collection of "ALU Slices", which each can perform the specified operation on a
single bit. There is one ALU slice for every bit in the operand.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Example: 2-Bit ALU
This is an example of a basic 2-bit ALU. The boxes on the right hand side of the image are multiplexers and are used
to select between various operations: OR, AND, XOR, and addition.

Notice that all the operations are performed in parallel, and the select signal ("OP") is used to determine which result
to pass on to the rest of the datapath. Notice that the carry signal, which is only used for addition, is generated and
passed out of the ALU for every operation, so it is important that if we aren't performing addition that we ignore the
carry flag.

http://en.wikibooks.org/w/index.php?title=File%3A2-bit_ALU.png
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Example: 4-Bit ALU
Here is a circuit diagram of a 4 bit ALU.

Additional Operations
Logic and addition are some of the easiest, but also the most common operations. For this reason, typical ALUs are
designed to handle these operations specially, and other operations, such as multiplication and division, are handled
in a separate module.
Notice also that the ALU units that we are discussing here are only for integer datatypes, not floating-point data.
Luckily, once integer ALU and multiplier units have been designed, those units can be used to create floating-point
units (FPU).

ALU Configurations
Once an ALU is designed, we need to define how it interacts with the rest of the processor. We can choose any one
of a number of different configurations, all with advantages and disadvantages. Each category of instruction set
architecture (ISA) -- stack, accumulator, register-memory, or register-register-load-store -- requires a different way
of connecting the ALU. [1] In all images below, the orange represents memory structures internal to the CPU
(registers), and the purple represents external memory (RAM).

http://en.wikibooks.org/w/index.php?title=File%3A74181aluschematic.png


Microprocessor Design/ALU 45

Accumulator

An accumulator machine has one special register, called the
accumulator. The accumulator stores the result of every ALU
operation, and is also one of the operands to every instruction. This
means that our ISA can be less complicated, because instructions only
need to specify one operand, instead of two operands and a destination.
Accumulator architectures have simple ISAs and are typically very
fast, but additional software needs to be written to load the
accumulator with proper values. Unfortunately, accumulator machines
are difficult to pipeline.
One example of a type of computer system that is likely to use an
accumulator is a common desk calculator.

Register-to-Register

One of the more common architectures is a Register-to-register
architecture, also called a 3 register operand machine. In this
configuration, the programmer can specify both source operands, and a
destination register. Unfortunately, the ISA needs to be expanded to
include fields for both source operands and the destination operands. This
requires longer instruction word lengths, and it also requires additional
effort (compared to the accumulator) to write results back to the register
file after execution. This write-back step can cause synchronization issues
in pipelined processors (we will discuss pipelining later).

http://en.wikibooks.org/w/index.php?title=File%3AIsaccumulator.png
http://en.wikibooks.org/w/index.php?title=File%3AIsreg2reg.png
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Register Stack

A register stack is like a combination of the Register-to-Register and
the accumulator structures. In a register stack, the ALU reads the
operands from the top of the stack, and the result is pushed onto the top
of the stack. Complicated mathematical operations require
decomposition into Reverse-Polish form, which can be difficult for
programmers to use. However, many computer language compilers can
produce reverse-polish notation easily because of the use of binary
trees to represent instructions internally. Also, hardware needs to be
created to implement the register stack, including PUSH and POP
operations, in addition to hardware to detect and handle stack errors
(pushing on a full stack, or popping an empty stack).
The benefit comes from a highly simplified ISA. These machines are
called "0-operand" or "zero address machines" because operands don't
need to be specified, because all operations act on specified stack
locations.
In the diagram at right, "SP" is the pointer to the top of the stack. This
is just one way to implement a stack structure, although it might be one
of the easiest.

Register-and-Memory

One complicated structure is a Register-and-Memory structure, like
that shown at right. In this structure, one operand comes from a register
file, and the other comes from external memory. In this structure, the
ISA is complicated because each instruction word needs to be able to
store a complete memory address, which can be very long. In practice,
this scheme is not used directly, but is typically integrated into another
scheme, such as a Register-to-Register scheme, for flexibility.
Some CISC architectures have the option of specifying one of the
operands to an instruction as a memory address, although they are
typically specified as a register address.

Complicated Structures

There are a number of other structures available, some of which are
novel, and others are combinations of the types listed above. It is up to
the designer to decide exactly how to structure the microprocessor, and
feed data into the ALU.

Example: IA-32

The Intel IA-32 ISA (x86 processors) use a register stack architecture
for the floating point unit, but it uses a modified Register-to-Register
structure for integer operations. All integer operations can specify a

register as the first operand, and a register or memory location as the second operand. The first operand acts as an

http://en.wikibooks.org/w/index.php?title=File%3AIs0addr.png
http://en.wikibooks.org/w/index.php?title=File%3AIsregmem.png
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accumulator, so that the result is stored in the first operand register. The downside to this is that the instruction words
are not uniform in length, which means that the instruction fetch and decode modules of the processor need to be
very complex.
A typical IA-32 instruction is written as:

ADD AX, BX

Where AX and BX are the names of the registers. The resulting equation produces AX = AX + BX, so the result is
stored back into AX.

Example: MIPS
MIPS uses a Register-to-Register structure. Each operation can specify two register operands, and a third destination
register. The downside is that memory reads need to be made in separate operations, and the small format of the
instruction words means that space is at a premium, and some tasks are difficult to perform.
An example of a MIPS instruction is:

ADD R1, R2, R3

Where R1, R2 and R3 are the names of registers. The resulting equation looks like: R1 = R2 + R3.

References
[1] "Instruction Set Principles: Basic ISA Classes" (http:/ / users. encs. concordia. ca/ ~tahar/ coen6741/ notes/ Chapter2-4p. pdf) by Dr. Sofiène

Tahar
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http://users.encs.concordia.ca/~tahar/coen6741/notes/Chapter2-4p.pdf
http://en.wikibooks.org/w/index.php?title=Digital_Circuits/ALU
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Similar to the ALU is the Floating-Point Unit, or FPU. The FPU performs arithmetic operations on floating point
numbers.
An FPU is complicated to design, although the IEEE 754 standard helps to answer some of the specific questions
about implementation. It isn't always necessary to follow the IEEE standard when designing an FPU, but it certainly
does help.

Floating point numbers
This section is just going to serve as a brief refresher on floating point numbers. For more information, see the
Floating Point book.
Floating point numbers are specified in two parts: the exponent (e), and the mantissa (m). The value of a floating
point number, v, is generally calculated as:

IEEE 754
IEEE 754 format numbers are calculated as:

The mantissa, m, is "normalized" in this standard, so that it falls between the numbers 1.0 and 2.0.

Floating Point Multiplication
Multiplying two floating point numbers is done as such:

Likewise, division can be performed by:

To perform floating point multiplication then, we can follow these steps:
1. Separate out the mantissa from the exponent
2. Multiply (or divide) the mantissa parts together
3. Add (or subtract) the exponents together
4. Combine the two results into the new value
5. Normalize the result value (optional).

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Floating_Point
http://en.wikibooks.org/w/index.php?title=File%3AGeneral_floating_point.svg
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Floating Point Addition
Floating point addition—and by extension, subtraction— is more difficult than multiplication. The only way that
floating point numbers can be added together is if the exponents of both numbers are the same. This means that when
we add two numbers together, we need first to scale the numbers so that they have the same exponent. Here is the
algorithm:
1. Separate the mantissa from the exponent of each number
2. Compare the two exponents, and determine the difference between them.
3. Add the difference to the smaller exponent, to make both exponents the same.
4. Logically right-shift the mantissa of the number with the smaller exponent a number of spaces equal to the

difference.
5. Add the two mantissas together
6. Normalize the result value (optional).

Floating Point Unit Design
As we have seen from the two algorithms above, an FPU needs the following components:
For addition/Subtraction
• A comparator (subtracter) to determine the difference between exponents, and to determine the smaller of the two

exponents.
• An adder unit to add that difference to the smaller exponent.
• A shift unit, to shift the mantissa the specified number of spaces.
• An adder to add the mantissas together
For multiplication/division
• A multiplier (or a divider) for the mantissa part
• An adder for the exponent prts.
Both operation types require a complex control unit.
Both algorithms require some kind of addition/subtraction unit for the exponent part, so it seems likely that we can
use just one component to perform both tasks (since both addition and multiplication won't be happening at the same
time in the same unit). Because the exponent is typically a smaller field than the mantissa, we will call this the
"Small ALU". We also need an ALU and a multiplier unit to handle the operations on the mantissa. If we combine
the two together, we can call this unit the "Large ALU". We can also integrate the fast shifter for the mantissa into
the large ALU.
Once we have an integer ALU designed, we can copy those components almost directly into our FPU design.

Further Reading
• Floating Point

http://en.wikibooks.org/w/index.php?title=Floating_Point
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Microprocessor Design/Control Unit
Microprocessor Design

The control unit reads the opcode and instruction bits from the machine code instruction, and creates a series of
control codes to activate and operate the various components to perform the desired task.

Simple Control Unit
In it's most simple form, a control unit can take the form of a lookup table. The machine word opcode is used as the
index into the table, and the various control signals are output to the respective destinations.

Complex Control Unit
A more complex version of a control unit is implemented as a finite state machine (FSM). Multi-cycle, Pipelined,
and other advanced processor designs may require an FSM-based control unit.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Addition and Subtraction
Addition and subtraction are similar algorithms. Taking a look at subtraction, we can see that:

Using this simple relationship, we can see that addition and subtraction can be performed using the same hardware.
Using this setup, however, care must be taken to invert the value of the second operand if we are performing
subtraction. Note also that in twos-compliment arithmetic, the value of the second operand must not only be
inverted, but 1 must be added to it. For this reason, when performing subtraction, the carry input into the LSB should
be a 1 and not a zero.

Our goal on this page, then, is to find suitable hardware for performing addition.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=File%3A4-bit_ripple_carry_adder-subtracter.svg
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Bit Adders

Half Adder
A half adder is a circuit that performs binary addition on two bits. A half adder does not explicitly account for a carry
input signal.

In verilog, a half-adder can be implemented as follows:

module half_adder(a, b, c, s)

   input a, b;

   output s, c;

   s = a ^ b;

   c = a & b;

endmodule

Full Adder
Full adder circuits are similar to the half-adder, except that they do account for a carry input and a carry output. Full
adders can be treated as a 3-bit adder with a 2-bit result, or they can be treated as a single stage (a 3:2 compressor) in
a larger adder.

 
As can be seen below, the number of gate delays in a full-adder circuit is 3:

http://en.wikibooks.org/w/index.php?title=File%3AHalf-adder.svg
http://en.wikibooks.org/w/index.php?title=File:Full-adder.svg
http://en.wikibooks.org/w/index.php?title=File:1-bit_full-adder.svg
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We can use verilog to implement a full adder module:

module full_adder(a, b, cin, cout, s);

   input a, b, cin;

   output cout, s;

   wire temp;

   temp = a ^ b;

   s = temp ^ cin;

   cout = (cin & temp) | (a & b);

endmodule

Serial Adder

A serial adder is a kind of ../ALU/ that calculates each bit of the output, one at a time, re-using one full adder (total).
This image shows a 2-bit serial adder, and the associated waveforms.

http://en.wikibooks.org/w/index.php?title=File%3AFull-adder_with_gate_delay.svg
http://en.wikibooks.org/w/index.php?title=File%3ASerialadder.png
http://en.wikibooks.org/w/index.php?title=../ALU/
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Serial adders have the benefit that they require the least amount of hardware of all adders, but they suffer by being
the slowest.

Parallel Adder
A parallel adder is a kind of ../ALU/ that calculates every bit of the output more or less simultaneously, using one
full adder for each output bit. The 1947 Whirlwind computer was the first computer to use a parallel adder.
In many CPUs, the CPU latches the final carry-out of the parallel adder in an external "carry flag" in a "status
register".
In a few CPUs, the latched value of the carry flag is always wired to the first carry-in of the parallel adder; this gives
"Add with carry" with 2s' complement addition. (In a very few CPUs, an end-around carry -- the final carry-out of
the parallel adder is directly connected to the first carry-in of the same parallel adder -- gives 1's complement
addition).

Ripple Carry Adder

Numbers of more than 1 bit long require more then just a single full adder to manipulate using arithmetic and bitwise
logic instructions[citation needed]. A simple way of operating on larger numbers is to cascade a number of full-adder
blocks together into a ripple-carry adder, seen above. Ripple Carry adders are so called because the carry value
"ripples" from one block to the next, down the entire chain of full adders. The output values of the higher-order bits
are not correct, and the arithmetic is not complete, until the carry signal has completely propagated down the chain
of full adders.
If each full adder requires 3 gate delays for computation, then an n-bit ripple carry adder will require 3n gate delays.
For 32 or 64 bit computers (or higher) this delay can be overwhelmingly large.
Ripple carry adders have the benefit that they require the least amount of hardware of all adders (except for serial
adders), but they suffer by being the slowest (except for serial adders).
With the full-adder verilog module we defined above, we can define a 4-bit ripple-carry adder in Verilog. The adder
can be expanded logically:

wire [3:0] c;

wire [3:0] s;

full_adder fa1(a[0], b[0], 1'b0, c[0], s[0]);

full_adder fa1(a[1], b[1], c[0], c[1], s[1]);

full_adder fa1(a[2], b[2], c[1], c[2], s[2]);

http://en.wikibooks.org/w/index.php?title=../ALU/
http://en.wikibooks.org/w/index.php?title=File%3A4-bit_ripple_carry_adder.svg
http://en.wikibooks.org/w/index.php?title=Wikibooks:OR
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full_adder fa1(a[3], b[3], c[2], c[3], s[3]);

At the end of this module, s contains the 4 bit sum, and c[3] contains the final carry out.
This "ripple carry" arrangement makes "add" and "subtract" take much longer than the other operations of an ALU
(AND, NAND, shift-left, divide-by-two, etc). A few CPUs use a ripple carry ALU, and require the programmer to
insert NOPs to give the "add" time to settle.[1] A few other CPUs use a ripple carry adder, and simply set the clock
rate slow enough that there is plenty of time for the carry bits to ripple through the adder. A few CPUs use a ripple
carry adder, and make the "add" instruction take more clocks than the "XOR" instruction, in order to give the carry
bits more time to ripple through the adder on an "add", but without unnecessarily slowing down the CPU during a
"XOR". However, it makes pipelining much simpler if every instruction takes the same number of clocks to execute.

Carry Lookahead Adder

Carry-lookahead adders use special "look ahead" blocks to compute the carry from a group of 4 full-adders, and
passes this carry signal to the next group of 4 full adders. lookahead units can also be cascaded, to minimize the
number of gate delays to completely propagate the carry signal to the end of the chain. Carry lookahead adders are
some of the fastest adder circuits available, but they suffer from requiring large amounts of hardware to implement.
The number of transistors needed to implement a carry-lookahead adder is proportional to the number of inputs
cubed.
The addition of two 1-digit inputs A and B is said to generate if the addition will always carry, regardless of
whether there is an input carry (equivalently, regardless of whether any less significant digits in the sum carry). For
example, in the decimal addition 52 + 67, the addition of the tens digits 5 and 6 generates because the result carries
to the hundreds digit regardless of whether the ones digit carries (in the example, the ones digit clearly does not
carry).

In the case of binary addition, generates if and only if both A and B are 1. If we write to
represent the binary predicate that is true if and only if generates, we have:

http://en.wikibooks.org/w/index.php?title=File%3A4-bit_carry_lookahead_adder.svg
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The addition of two 1-digit inputs A and B is said to propagate if the addition will carry whenever there is an input
carry (equivalently, when the next less significant digit in the sum carries). For example, in the decimal addition 37 +
62, the addition of the tens digits 3 and 6 propagate because the result would carry to the hundreds digit if the ones
were to carry (which in this example, it does not). Note that propagate and generate are defined with respect to a
single digit of addition and do not depend on any other digits in the sum.

In the case of binary addition, propagates if and only if at least one of A or B is 1. If we write 
to represent the binary predicate that is true if and only if propagates, we have:

Cascading Adders
The power of carry-lookahead adders is that the bit-length of the adder can be expanded without increasing the
propagation delay too much. By cascading lookahead modules, and passing "propagate" and "generate" signals to the
next level of the lookahead module. For instance, once we have 4 adders combined into a simple lookahead module,
we can use that to create a 16-bit and a 64-bit adder through cascading:

The 16-Bit carry lookahead unit is exactly the same as the 4-bit carry lookahead adder.

http://en.wikibooks.org/w/index.php?title=File%3A16-bit_lookahead_carry_unit.svg
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the 64-bit carry lookahead unit is exactly the same as the 4-bit and 16-bit units. This means that once we have designed one carry
lookahead module, we can cascade it to any large size.

Generalized Cascading

A generalized CLA block diagram. Each of the
turquoise blocks represents a smaller CLA adder.

http://en.wikibooks.org/w/index.php?title=File%3A64-bit_lookahead_carry_unit.svg
http://en.wikibooks.org/w/index.php?title=File%3ACla4bitsPG.png
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We can cascade the generalized CLA block above to form a larger CLA block. This larger block can then be cascaded into a larger CLA block using
the same method.

Sources
[1] "MuP21 Machine Forth": "Ripple Carry on + and +*" (http:/ / www. ultratechnology. com/ mfp21. htm)

Microprocessor Design/Shift and Rotate Blocks
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Shift and Rotate
Shift and rotate blocks are essential elements in most processors. They are useful on their own, but they also are used
in multiplication and division modules. In a binary computer, a left shift has the same effect as a multiplication by 2,
and a right shift has the same effect as a division by 2. Since shift and rotate operations perform much more quickly
then multiplication and division, they are useful as a tool in program optimization.

Logical Shift

A left logical shift A right logical shift 

In a logical shift, the data is shifted in the appropriate direction, and a zero is shifted into the new location.

http://en.wikibooks.org/w/index.php?title=File%3ACla16bitsPG.png
http://www.ultratechnology.com/mfp21.htm
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=File:Rotate_left_logically.svg
http://en.wikibooks.org/w/index.php?title=File:Rotate_right_logically.svg
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Arithmetic shift

A right arithmetic shift 

In an arithmetic shift, the data is shifted right so that the sign of the data item is preserved. This means that the MSB
is the value that is shifted into the new position. An arithmetic left shift is the same as a logical left shift, and is
therefore not shown here.

Rotations

A left rotation A right rotation 

A rotation is like a shift, except the bit shifted off the end of the register is then shifted into the new spot.

Fast Shift Implementations
The above images in each section help to indicate a method to shift a register more quickly, at the expense of
requiring additional hardware. Instead of having one register that attempts to shift in place, we have have two
registers in parallel, with wires connecting the various blocks together. When a shift is indicated, gates open that
allow the data to pass from one register to the next, the proper number of spaces forward or backward.
In practice, fast shift blocks are implemented as a "barrel shifter". The barrel shifter includes several "levels" of
multiplexers, each connected to the previous one by straight wires (wires that transfer the data without a shift), and
wires that cause a shift by successive powers of two. For instance, the first level of shift would be 4 spaces, the next
level would be 2 spaces, and the last level would be 1 space. In this way, the value of each shift level corresponds to
the binary representation of the number of spaces to shift. This implementation makes for very fast shifters that can
shift an arbitrary number of spaces in a single clock cycle.

Further reading
32-Bit Barrel Shifter Implementation Using 74-Series Integrated Circuits [1]

References
[1] http:/ / ixeelectronics. com/ Chipset/ CPU/ V3264/ BarrelShifter32. html

http://en.wikibooks.org/w/index.php?title=File:Rotate_right_arithmetically.svg
http://en.wikibooks.org/w/index.php?title=File:Rotate_left.svg
http://en.wikibooks.org/w/index.php?title=File:Rotate_right.svg
http://ixeelectronics.com/Chipset/CPU/V3264/BarrelShifter32.html
http://ixeelectronics.com/Chipset/CPU/V3264/BarrelShifter32.html
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Microprocessor Design/Multiply and Divide
Blocks

Microprocessor Design

Multiply and Divide Problems
Multiplication and Division operations are significantly more complicated then addition or subtraction operations.
This additional complexity leads to more hardware, more complicated hardware, and longer processing time.
In hardware, multiplication and division are performed by a series of sequential additions and arithmetic shifts. for
this reason, it is imperative that we have efficient adders and shifters at our disposal.
Multipliers and dividers are composed of shifters and adders. It is typically not possible, or not desirable to to use the
main adder and shifter units of the ALU, so a microprocessor will typically have multiple ALU units (a primary unit
for addition and subtraction, and units embedded in the multiplication and division units). These are other good
reasons why our ALU and shifters need to be small and fast.

Multiplication Algorithms

Multiply and Acculumulate
Multiply and accumulate (MAC) operations perform a multiplication and an addition in a single instruction. For
instance, the instruction:

MAC A, B, C

Would perform the operation:

A = A + (B × C)

This is valuable for math-intensive processors, such as graphics processors and DSPs.
An MAC tends to have a long critical path, so if your processor has an MAC operation it is probably possible to
include other complicated arithmetic operations.
In a processor with an accumulator architecture, MAC operations will use the accumulator as the destination register,
so the instruction:

MAC B, C

Will perform the operation:

ACC = ACC + (B × C)

Fused Multiply-Add
A fused multiply-add operation is a floating-point operation that is similar to the MAC. However, in the fused
operation, the floating-point values are not rounded between the multiply and the add, they are rounded afterwards.
For more information about floating-point rounding, see Floating Point.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Floating_Point
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For a number of reasons, it can be important to export a number of status codes from the ALU, for detecting errors,
and for making decisions.

Comparisons
Comparisons between two values are typically performed by subtracting them. We can determine the relationship
between the two values by examining the difference:
• If the first is larger than the second, the result will be positive
• If the second is larger than the first, the result will be negative
• If the two are equal, the result will be zero.

Zero Flag
Determining whether two values are equal requires the ALU to determine whether the result is zero. This can be
accomplished by feeding each bit of the result into a NOR gate. The beauty of this is that a single multi-port NOR
gate requires less hardware than an entire array of equivalent 2-port gates.

Overflow Flag
It is good to know when the result of an addition or multiplication is larger than the maximum result size. Likewise,
it is also good to know if the result of a subtraction or a division is smaller than possible, and thus creates underflow.
Either two separate flags can be used for these conditions, or one flag can be interpreted in different ways, depending
on the input operation.

Carry/Borrow flag
This flag indicates when an operation results in a value larger than the accumulator can represent (carry/overflow) or
smaller than the accumulator can represent (borrow/underflow). It can be used by software to implement
arbitrary-width arithmetic, such as a "bignum" library.

Comparisons
Many ALUs need to compare data items, and determine if a particular value is greater than or less than another
value. In these cases, the ALU will also export flags for these values.
A comparison in a processor can typically be performed by a subtraction operation. If the result is a positive number,
the first item is greater than the second item. If the result is a negative number, the first item is less than the second.
If the numbers being compared are unsigned, the value of the carry flag will serve the same purpose as the
greater-than or less-than flag.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Latch ALU flags or not?
Some instruction sets refer to the ALU flags from some previous instruction:

 CMP R1,R2 // compare

 ...

 BEQ equal_routine // branch if equal

Such instruction sets force the CPU designer to latch those ALU flags in some sort of "status register", and to be very
careful to make sure it is possible to preserve those flags during an interrupt routine.
Other instruction sets never refer to previous ALU flags -- they always use the results from the ALU in the same
instruction that they are calculated:

 BEQ R1,R2,equal_routine // compare and branch if equal

or

 SKEQ R1,R2 // compare and skip next instruction if equal

   JMP equal_routine

Some CPU designers prefer such instruction sets that never refer to previous ALU flags. Such instruction sets make
out-of-order execution much simpler. Many of Chuck Moore's CPU designs never refer to the ALU flags from any
previous instruction.
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Single-cycle processors are what we have been studying so far: an instruction is fetched from memory, it is executed,
and the results are stored all in a single clock cycle.
The benefits of single-cycle processors is that they tend to be the most simple in terms of hardware requirements,
and they are easy to design. Unfortunately, they tend to have poor data throughput, and require long clock cycles
(slow clock rate) in order to perform all the necessary computations in time.

Cycle Times
The length of the cycle must be long enough to accommodate the longest possible propagation delay in the
processor. This means that some instructions (typically the arithmetic instructions) will complete quickly, and time
will be wasted each cycle. Other instructions (typically memory read or write instructions) will have a much longer
propagation delay.

As this image shows, an instruction is not over until all 5 components have acted. This means that the length of the
cycle must be the length of the longest instruction. The longest path from one end of the processor to the other is
called the critical path and is used to determine the cycle time.

Redundant Hardware
Single cycle processors typically require a number of ALUs (or a single master ALU, and smaller ALUs) to handle
the increment operations on the instruction pointer, and the memory address calculations for the data memory. When
resources are at a premium, having multiple ALU units in your design can be costly and pointless. It requires nearly
as many resources to construct an adder that adds a constant value as it does to construct a more general purpose
adder unit.

Single Cycle Designs
It is very rare, if not completely unheard of, for a modern processor unit to have a single-cycle design. The reasons
for this are the long cycle times, the wasted resources, and the large amount of wasted time in each cycle. What the
single-cycle lacks in timing and efficiency, it makes up for in simplicity and elegance. It is for this reason that
single-cycle processors work as a good teaching tool, but are not often employed in actual designs.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=File%3ANopipeline.png
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Single-cycle processors suffer from poor speed performance. Control and data signals must propagate completely
through the processor in a single cycle, which means that cycle times need to be long, and many parts of the
hardware tend to be dormant for much of the cycle.

Multi-Cycle Stages =
Multi-cycle processors break up the instruction into its fundamental parts, and executes each part of the instruction in
a different clock cycle. Since signals have less distance to travel in a single cycle, the cycle times can be sped up
considerably.
Typically, an instruction is executed over at least 5 cycles, which are named as such:
IF

Fetch the instruction from memory
ID

Decode the instruction, and generate the necessary control signals
EX

Feed the necessary control signals into the ALU and produce a result
MEM

Read from memory, if specified
WB

Write the result back to the register file or to memory.
This is just a textbook example, and modern processes tend to use many more steps than this to execute an
instruction.
Example: MicroChip PIC16 Microcontroller

The PIC Microcontroller, manufactured by MicroChip Technology Inc, is a family of embedded microcontrollers.
The PIC units vary, but execute an instruction every 2-4 clock cycles. All instructions typically execute in the same
number of cycles, except for branch instructions.

Hardware Reuse
The primary benefit to a multicycle design is to be able to share hardware elements, specifically the ALU, among
various tasks. In a multicycle processor, a single ALU can be used to update the instruction pointer (in the IF cycle),
perform the operation (in the EX cycle), and calculate a necessary memory address (in the MEM cycle). Multicycle
processors also allow computers that have a single memory unit, instead of the two separate instruction and data
memory units of the traditional harvard machine. This is because the instructions are loaded on one cycle, and the
data memory is interfaced on another cycle.
Multi-cycle processors are typically used in applications where resources are at a premium, and speed is not as
important.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Pipelining Introduction
Let us break down our microprocessor into 5 distinct activities, which generally correspond to 5 distinct pieces of
hardware:
1. Instruction fetch (IF)
2. Instruction Decode (ID)
3. Execution (EX)
4. Memory Read/Write (MEM)
5. Result Writeback (WB)
Any given instruction will only require one of these modules at a time, generally in this order. The following timing
diagram of the multi-cycle processor will show this in more detail:

This is all fine and good, but at any moment, 4 out of 5 units are not active, and could likely be used for other things.

Pipelining Philosophy
Pipelining is concerned with the following tasks:
• Use multi-cycle methodologies to reduce the amount of computation in a single cycle.
• Shorter computations per cycle allow for faster clock cycles.
• Overlapping instructions allows all components of a processor to be operating on a different instruction.
• Throughput is increased by having instructions complete more frequently.
We will talk about how to make these things happen in the remainder of the chapter.

Pipelining Hardware
Given our multicycle processor, what if we wanted to overlap our execution, so that up to 5 instructions could be
processed at the same time? Let's contract our timing diagram a little bit to show this idea:

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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As this diagram shows, each element in the processor is active in every cycle, and the instruction rate of the
processor has been increased by 5 times! The question now is, what additional hardware do we need in order to
perform this task? We need to add storage registers between each pipeline state to store the partial results between
cycles, and we also need to reintroduce the redundant hardware from the single-cycle CPU. We can continue to use a
single memory module (for instructions and data), so long as we restrict memory read operations to the first half of
the cycle, and memory write operations to the second half of the cycle (or vice-versa). We can save time on the
memory access by calculating the memory addresses in the previous stage.

The registers would need to hold the data from the pipeline at that point, and also the necessary control codes to
operate the remainder of the pipeline.
Our resultant processor design will look similar to this:

If we have 5 instructions, we can show them in our pipeline using different colors. In the diagram below, white
corresponds to a NOP, and the different colors correspond to other instructions in the pipeline. Each stage, the
instructions shift forward through the pipeline.

http://en.wikibooks.org/w/index.php?title=File%3APipeline-base.png
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Superpipeline
Superpipelining is the technique of raising the pipeline depth in order to increase the clock speed and reduce the
latency of individual stages. If the ALU takes three times longer then any other module, we can divide the ALU into
three separate stages, which will reduce the amount of time wasted on shorter stages. The problem here is that we
need to find a way to subdivide our stages into shorter stages, and we also need to construct more complicated
control units to operate the pipeline and prevent all the possible hazards.
It is not uncommon for modern high-end processors to have more than 20 pipeline stages.
Example: Intel Pentium 4

The Intel Pentium 4 processor is a recent example of a super-pipelined processor. This diagram shows a Pentium 4
pipeline with 20 stages.

http://en.wikibooks.org/w/index.php?title=File%3APipeline_3.png
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In a superscalar design, the processor actually has multiple datapaths, and multiple instructions can be exectuted
simultaneously, one in each datapath. It is not uncommon for a superscalar CPU to have multiple ALU and FPU
units, for each datapath.

In this image, all the stages highlighted in green are executing simultaneously. As we can see from this image, there
are two execution cores operating simultaneously.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Very Long Instruction Words (VLIW) can be used to simultaneously specify multiple instructions in parallel with
one another.

VLIW Vs Superscalar
In a superscalar design, the microprocessor will have multiple independant execution units. An instruction scheduler
determines which instructions will be executed on which execution unit, at what time. This scheduler unit requires
large amounts of additional hardware complexity.
VLIW is similar to superscalar architecture except that instead of using scheduling hardware to map instructions to
available execution units, instructions for all units are provided in every instruction word. The scheduling is
performed by the compiler at compile time.
The term VLIW comes from the fact that multiple instructions typically requires large instruction words. If each
instruction is 32 bits (including opcode, source and destination registers, etc), and the processor has 4 execution
cores, then the total instruction word length is 128 bits long!

Multi-Issue
Similar to the VLIW design, a multi-issue processor will issue an unfixed number of instructions per cycle, and each
will be executed simultaneously.

Microprocessor Design/Vector Processors
Microprocessor Design

Vector processors, or SIMD processors are microprocessors that are specialized for operating on vector or matrix
data elements. These processors have specialized hardware for performing vector operations such as vector addition,
vector multiplication, and other operations.
Modern graphics processors and GPUs tend to be vector-based processors. Modern Intel-based chips also have
SIMD capabilities known as SSE or MMX operations.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Parallel Execution
Vector processors which perform an instruction on all data elements simultaneously are said to execute in parallel.

Each EX in this image shows a separate execution core (typically an ALU) operating in parallel with one another.

Non-Parallel Execution
Vector processors which reuse a single ALU for a vector operation look like this:

As this diagram shows, each EX stage is a new set of data from the first instruction being loaded into the execution
core. The next instruction will not be fetched until all the data has been acted upon.

http://en.wikibooks.org/w/index.php?title=File%3AVliwpipeline.png
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Taking the idea of superscalar operations to the next level, it is possible (and frequently desirable) to put multiple
microprocessor cores onto a single chip, and have the cores operate in parallel with one another.

Symmetric Multicore
A symmetric multicore processor is one that has multiple cores on a single chip, and all of those cores are identical.
Example: Intel Core 2:
The Intel Core 2 is an example of a symmetric multicore processor. The Core 2 can have either 2 cores on chip
("Core 2 Duo") or 4 cores on chip ("Core 2 Quad"). Each core in the Core 2 chip is symmetrical, and can function
independantly of one another. It requires a mixture of scheduling software and hardware to farm tasks out to each
core.
Example: Parallax Propeller:
The Parallax Propeller is an example of a symmetric multicore processor. The Parallax Propeller has 8 cores on chip,
each one a 32-bit RISC processor. Each core in the Parallax Propeller chip is symmetrical, and can function
independently of one another.

Asymmetric Multicore
An asymmetric multicore processor is one that has multiple cores on a single chip, but those cores might be different
designs. For instance, there could be 2 general purpose cores and 2 vector cores on a single chip.
Example: Cell Processor

IBM's Cell processor, used in the Sony PlayStation 3 video game console is an asymmetrical multicore processor.
The Cell has 9 processor cores on board, one general purpose processor, and 8 data-processing cores. The one
multipurpose core, known as the Power Processor Element (PPE) controls the communication between the other
cores, and distributes computing tasks to the other cores for processing. The other 8 cores are known as Synergistic
Processor Elements (SPE), and are specially designed to have high floating-point throughput, especially with vector
operations.
Example: Kilocore

Rapport's Kilocore processor, is an asymmetrical multicore processor. The Kilocore has one general purpose
processor, a PowerPC processing core, and either 256 or 1024 data processing cores on-chip. The cores are designed
to run at extremely low power, so the overall chip is faster and yet uses less power than typical desktop CPUs[1] .

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Symmetric Multicore

The Intel Core 2 Duo

A symmetric multicore processor is a processor which has multiple
cores that are all exactly the same. Every single core has the same
architecture and the same capabilities. An example of a symmetric
multicore system is the Intel Core 2 Duo processor.
Each core has the same capabilities, so it requires that there is an
arbitration unit to give each core a specific task. Software that uses
techniques like multithreading makes the best use of a multi-core
processor like the Intel Core 2.

Asymmetric Multicore

In an asymmetric multicore processor, the chip has multiple cores
onboard, but the cores might be different designs. Each core will have
different capabilities.

Example: IBM Cell Processor
An example of an asymmetric multicore processor is the IBM Cell processor.

Block diagrams of the IBM Cell processor. The Cell processor has 8 SPE cores (left) and 1 PPE core (right). The PPE core is the primary core, and controls
the behavior of the SPE cores.

The IBM Cell processor has 1 PPE that controls the chip, and 8 SPEs that are designed for high mathematical
throughput. The IBM Cell processor is designed as follows:

http://en.wikibooks.org/w/index.php?title=File%3AIntelCore2DuoE6600.jpg
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Notice how the SPE cores only connect to the PPE, and not to each other. Notice also that the PPE core is much
larger then the individual SPE cores.

further reading
[1] Tom's hardware: "IBM says Kilocore technology will outrun today's mobile processors" (http:/ / www. tomshardware. com/ news/

ibm-rapport-kilocore,2575. html) 2006

http://en.wikibooks.org/w/index.php?title=File%3AIBM_Cell_Block_Diagram.svg
http://www.tomshardware.com/news/ibm-rapport-kilocore,2575.html
http://www.tomshardware.com/news/ibm-rapport-kilocore,2575.html


74

Execution Problems

Microprocessor Design/Exceptions
Microprocessor Design

Exceptions, are situations where the processor needs to stop executing the current code because of an error. In these
cases, the processor typically begins running an exception handling routine to resolve the error, and then returns to
the normal program flow. For instance, if the ALU attempts to divide by zero, or if an addition causes overflow, an
exception might be triggered. The processor needs to stop operation and fix the error before the program can be
resumed.
Some common examples of exceptions are arithmetic overflow or underflow, division by zero, or attempting to
access a memory location that does not exist.

Microprocessor Design/Interrupts
Microprocessor Design

An interrupt is a condition that causes the microprocessor to temporarily work on a different task, and then later
return to its previous task. Interrupts can be internal or external. Internal interrupts, or "software interrupts," are
triggered by a software instruction and operate similarly to a jump or branch instruction. An external interrupt, or a
"hardware interrupt," is caused by an external hardware module. As an example, many computer systems use
interrupt driven I/O, a process where pressing a key on the keyboard or clicking a button on the mouse triggers an
interrupt. The processor stops what it is doing, it reads the input from the keyboard or mouse, and then it returns to
the current program.
The image below shows conceptually how an interrupt happens:

The grey bars represent the control flow. The top line is the program that is currently running, and the bottom bar is
the interrupt service routine (ISR). Notice that when the interrupt (Int) occurs, the program stops executing and the
microcontroller begins to execute the ISR. Once the ISR is complete, the microcontroller returns to processing the
program where it left off.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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http://en.wikibooks.org/w/index.php?title=File%3AInterrupt.svg


Microprocessor Design/Interrupts 75

What happens when external hardware requests another interrupt while the processor is already in the middle of
executing the ISR for a previous interrupt request?
When the first interrupt was requested, hardware in the processor causes it to finish the current instruction, disable
further interrupts, and jump to the interrupt handler.
The processor ignores further interrupts until it gets to the part of the interrupt handler that has the "return from
interrupt" instruction, which re-enables interrupts.
If an interrupt occurs while interrupts were turned off, some processors will immediately jump to that interrupt
handler as soon as interrupts are turned back on. With this sort of processor, an interrupt storm "starves" the main
loop background task. Other processors[citation needed] execute at least one instruction of the main loop before
handling the interrupt, so the main loop may execute extremely slowly, but at least it never "starves".

further reading
• Operating System Design/Processes/Interrupt

Microprocessor Design/Hazards
Microprocessor Design

A hazard is an error in the operation of the microcontroller, caused by the simultaneous execution of multiple stages
in a pipelined processor.
There are three types of hazards: Data hazards, control hazards, and structural hazards.

Data Hazards
Data hazards are caused by attempting to access data or modify data simultaneously. In the MIPS design, the result is
written back to the register file at the same time that another instruction decode stage is reading the register file.
There are three basic types of data hazards:
Read After Write (RAW)

In these hazards, the read process happens after the write process, although both processes happen in the same
clock cycle. If the write process takes a long time, it may not complete by the time the read occurs, which will
produce incorrect data.

Write After Read (WAR)
In a WAR hazard, the write from a previous instruction will not complete before the successive read
instruction. This means that the next value read will be a previous value, not the correct current value.

Write After Write (WAW)
WAW hazards occur when two processes try to write to a data storage element at the same time. If this occurs
in a single clock cycle, there will be no time in between to read the intermediate value. If the instructions
execute out of order, the incorrect value may be left in the register.

http://en.wikibooks.org/w/index.php?title=Wikibooks:OR
http://en.wikibooks.org/w/index.php?title=Operating_System_Design/Processes/Interrupt
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Race Conditions
If data hazards are not explicitly accounted for, a race condition can arise where the proper execution of the
processor is a matter of timing. If things occur in the proper times and the proper sequence, there might be no
problems. However, In a race condition it is frequently likely that things will occur out of order, or at different time
intervals, and this will cause a problem.

Control Hazards
Control hazards occur when a branch instruction is processed. While the branch instruction is traveling through the
pipeline, the instruction fetch module will continue to read sequential instructions from the instruction memory. The
problem is that because of the branch, the next instructions might execute out of order, which will cause problems.

Structural Hazards
A structural hazard occurs when two separate instructions attempt to access a particular hardware module at the same
time.

Fixing Hazards
There are a number of ways to avoid or eliminate hazards.

Stall
A stall, or a "bubble" in the pipeline occurs when the control unit detects that a hazard will occur. When this
happens, the control unit stops the instruction fetch mechanism and puts NOPs into the pipeline instead. In this way,
the sensitive instructions will be forced to occur alone, without any other instructions being processed at the same
time.
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In this image we can see "bubbles" drawn where data hazards occur. A bubble signifies that the instruction has
stalled in the pipeline until a previous instruction completes. Once the previous instruction has completed, the stalled
instruction continues moving.
Notice in this image that the yellow instruction stops at the ID stage for 2 cycles, while the red instruction continues.

Forwarding
When an result from one instruction is to be used as the input to the ALU in the next instruction, we can use
forwarding to move data directly from the ALU output into the ALU input of the next cycle, before that data has
been written to the register. In this way, we can avoid the need for a stall in these situations, but at the expense of
adding an additional forwarding unit to control this mechanism.

Register renaming
Instead of having fixed numbers for registers, registers can be renamed or renumbered. Consider the following ADD
instruction:

add R1, R2, R1

We are adding the values in R1 and R2, and we are storing the result back in R1. What if the name "R1" pointed to
two different physical storage areas, that is the value is read from one location, the "old R1", and is written to a new
storage area, the "new R1".
Register renaming can be used to prevent hazards caused by out-of-order execution (OOOE).

http://en.wikibooks.org/w/index.php?title=File%3APipeline_5.png


Microprocessor Design/Hazards 78

Speculative execution
During a branch, it is frequently possible to "guess" about the outcome of the branch. By guessing about the
destination, instructions can be executed speculatively. If the guess is wrong, the pipeline will need to be emptied,
which takes the same amount of time as a stall. However, if the guess is right, no time is wasted and the processor
continues operation as normal.
The process of guessing which way the branch will take is a complicated subject and is beyond the current scope of
this book.

Branch delay
A branch delay is an instruction written in the assembly source code after the branch, that is designed to execute
whether the branch is taken or not. If there are no instructions that can be executed without a dependency on the
branch, then a NOP should be inserted instead. Some assemblers are capable of rearranging code in this fashion,
although other assemblers that use this technique require the programmer to handle branch delays manually.

Branch Predication
In a branch predication scheme, all instructions, or most instructions in the ISA may be conditionally executed
based on some condition. In other words, the instruction will be loaded from memory, decoded, and then the
processor will determine whether or not to execute it. In the event of a branch, for instance, the instructions in the
pipeline after the branch can be turned off if the branch went the other direction. Branch predication is very closely
related to speculative execution.

Branch Prediction
Branch Prediction is the act of guessing about the direction a branch instruction will take. Typically, branch
predictors base these decisions off register values, and past branch history. In a large loop, for instance, a particular
program may branch back to the top of the loop many many times before the loop terminates. Consider this
high-level pseudo code:

while(condition)

    do this

end

Which roughly translates to this assembly pseudo code:

top of loop:

compare condition and 0.

branch to end of loop if equal

do this

branch to top of loop

bottom of loop:

This loop will continue to repeat until the condition flag is 0. This code will likely loop many times before the one
time that it exits. In a while structure like this, it takes the branch every time except for the last time, and it only
doesn't take the branch once. It makes good sense to assume, therefore, that every branch that we come to will be
taken, which can increase the accuracy of our speculative execution.
Example: Loop Optimization

In modern processors, branch prediction will frequently look at the history of recent branches to determine how to
guess the outcome of a future branch. Consider the following loop structure with a nested conditional:
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while(loop condition)

   if(branch condition)

      do this

   else

      do that

 end

If we know statistically that the branch condition will be false (0) 90% of the time, and that the loop condition will
be true (1) nearly 100% of the time. We can decompose this into assembly pseudo code:

1) compare loop condition and 0

2) branch to end of loop if equal

3) compare branch condition and 0

4) branch to branch true if not equal

5) do that

6) branch to end of if

7) branch true

8) do this

9) end of if

10)branch to top of loop

If we look at this loop structure, we can see that the branch on line 10 is taken most of the time. We can also see that
the branch on line on line 4 only occurs if the branch condition is 1. We know that the branch condition is true only
10% of the time, so this loop will have bad branch prediction. A better loop in this case would be:

while(loop condition)

   if(not branch condition)

      do this

   else

      do that

 end

so that the branch in the conditional is taken 90% of the time, so that the branch predictor will be more accurate.
A branch predictor typically acts like a counter. Every time a branch is taken, the counter is incremented, and every
time a branch is not taken, the counter is decremented. Consider a 2-bit predictor. If the predictor is 0 or 1, the
branch is not taken, but if the predictor is 2 or 3, the branch is taken.

A 2-bit branch predictor with 4 stages.

http://en.wikibooks.org/w/index.php?title=File%3ABranchPredictor.JPG
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We can treat a branch predictor like a finite-state-machine (FSM) like in the diagram above. This FSM has 4 stages,
corresponding to the following "guesses":
• q0:Strong Take
• q1:Weak Take
• q2:Weak Not Take
• q3:Strong Not Take
The zeros in this diagram refer to a branch not being taken, and a 1 corresponds to a branch being taken. If many
branches are taken, the state moves towards the right. If branches are not taken, the stage moves towards the left.
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Benchmarking and Optimization

Microprocessor Design/Performance Metrics
Microprocessor Design

Performance Metrics
Performance metrics are measurements of a microprocessor that help to determine how well a microprocessor
performs.
For many years, computers were excruciatingly slow. Much time and effort were dedicated to finding ways of
getting typical batch programs to run faster -- to reduce runtime or, in other words, to improve throughput. In the
process, many other things were sacrificed.

Runtime
Runtime is the time it takes to run a program.
We will discuss some of the subtleties of accurately measuring runtime in a later Benchmarking section.
For now, let us note that, for any program running on any computer,
time per program = clock period * cycles per instruction * instructions executed per program
You see there are 3 different factors involved in the total time. If you can reduce any one of those factors, then the
time will be shorter, making your users happier.
Alas, all too often attempts at making one factor shorter result in making some other factor larger. Sometimes a CPU
designer will focusing on only one factor, trying to make it as small as possible, and hoping that the resulting
increases in the other factors will be small enough that there is still a net improvement.

Clock rate
Clock rate (often called "clock speed") is one of the easiest to measure performance metrics, and the most
over-emphasized.
As of 2008, clock rate of most CPUs is measured in MHz. A typical FPGA soft processor runs at about 10 MHz (a
clock period of 100 ns), but later in this book we will explain techniques for increasing the clock rate of a FPGA soft
processor to over 100 MHz (a clock period of less than 10 ns).

Cycles per Instruction
Historically, all early computers used many clock cycles during the execution of even the simplest instruction.
During the RISC revolution, many designers focused on reducing this factor closer to the apparent minimum of 1
cycle per instruction. We will discuss some of the techniques used later in this book. Since then, CPUs that use
techniques such as superscalar execution and multicore computing have reduced this even further. Such CPUs can
(on average) use less than 1 cycle per instruction.
"CPI" is a throughput measure of how many instructions are completed (on average) for a given number of clocks. A
CPU that can complete, on average, 2 instructions per cycle (a CPI of 0.5) may have a 20 stage pipeline, which
inevitably causes a 20 cycle latency between an instruction fetch to the completion of that instruction. We ignore

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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those 20 cycles when we calculate CPI.

instructions executed per program
If the program you need to run is a binary executable, this number can't be changed.
However, some CPU designers have the freedom of designing a new instruction set (or at least adding a few
instructions to an old instruction set).
Early CPU designers attempted to reduce this number by adding new, more complicated instructions, that did more
work. (Later this idea was retroactively called "CISC"). When a given program (perhaps a benchmark program) is
re-compiled for this new instruction set and executed, it requires fewer total executed instructions to finish. Alas,
these more complicated instructions often require more cycles to execute -- or worse, a longer clock period, which
slows down every instruction -- so the net benefit was not as great as was hoped. In a surprising number of cases,
such "RICH" instructions actually made the runtime worse (longer). Benchmarking is required to see if such changes
to the instruction set are worthwhile.
Some examples where it did turn out to be worthwhile:
More complicated instructions that do more work include the "load multiple" and "store multiple" instructions of the
ARM processors, the "multimedia extensions" of other processors, the MAC instructions used by most DSPs, etc.
Sometimes a CPU can be tweaked in ways that fewer instructions need to be executed in a program, without adding
complexity -- the "every instruction is conditional" technique used by ARM processors (the "conditional logic" was
needed anyway for conditional branches); the "add more registers" and "register windowing" ideas, each of which
attempts to reduce the number of register spill/reload instructions; widening the width of the data bus, so more data
can be transferred per "load" or "store" instruction (also enabling wider instructions); etc.
There are a few chips that do things in a few cycles of a single "instruction" that any von Neumann CPU would
require hundreds of cycles to implement -- such as content-addressible RAM.

MIPS/$
When building a computer cluster, the raw MIPS of any one chip is irrelevant. When someone needs a teraflop of
performance, no one chip can do it. The person is forced to keep adding CPUs until he gets the performance he
wants. There are many tricks (that we will discuss later) that slightly reduce the runtime of one program on one CPU,
but make that CPU much more expensive. Rather than build a teraflop system out of a few of the lowest-runtime
chips, usually people build such a system out of CPUs that take slightly longer to perform any particular task, but
then these people simply use a lot more of them.
In such systems is useful if the CPUs are specifically designed to coordinate their work and synchronize rapidly.

Latency
In hard real-time systems, low latency is critical.

MIPS/mW
[1]

Most CPUs in mobile electronics -- PDAs, cell phones, laptops, wireless keyboards, MP3 players, etc. -- are
underclocked.
Why do people deliberately clock them at a rate far below their potential runtime performance? Because clocking
them any faster squanders battery life.
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Every clock tick to a particular CPU uses up (approximately) some fixed amount of energy. If it takes
(hypothetically) 900,000 clock ticks on that CPU to decode one second worth of MP3, then we maximize battery life
by clocking the CPU at 0.9 MHz while playing MP3s.
Say we have some other CPU that requires 4,000,000 clock ticks to decode one second worth of MP3. Which CPU
should we use? The absolute fastest MIPS rating at the maximum speed is irrelevant. The "clock ticks required to
decode one second worth of MP3" is irrelevant. The better CPU for a MP3 player is the one that gives the maximum
battery life, assuming we are smart enough to underclock each CPU to give its maximum battery life. Or in other
words (since the amount of "work" done decoding an MP3 is fixed, and the amount of energy stored in a battery is
fixed), the better CPU is the one with more MIPS/mW.

Further reading
[1] "CISC, RISC, and DSP Microprocessors" (http:/ / www. ifp. uiuc. edu/ ~jones/ RISCvCISCvDSP. pdf) by Douglas L. Jones 2000 "Most

quoted numbers for DSP uPs not MIPS, but MIPS/$$, MIPS/mW" "Why have RISC/CISC converged?"

Microprocessor Design/Benchmarking
Microprocessor Design

Common Benchmarks
• block move
• Eratosthenes sieve
• matrix multiply
• MINC/Benchmarks
• "AN910: ST7 and ST9 performance benchmarking" [1] describes a collection of short benchmark programs that

measure interrupt latency and execution time and code size, and discusses architectural features that affect the
scores. Eratosthenes sieve, Ackermann function, string search, block move, block translation, etc.

• "Benchmarks and Case Studies of Forth Kernels" [2] describes some very frequently used, very short code
fragments.

• Wikipedia: benchmark (computing)
• Wikipedia: EEMBC Embedded Microprocessor Benchmark Consortium
• MIPS/Watt benchmarks; "Philips Challenges 8-bit MCUs" [3]; "Innovative Techniques for Extremely Low Power

Consumption with 8-bit Microcontrollers" [4]

• real-time benchmark: "the number of voices of MIDI-driven OPL2-style FM synthesis (at a 48k sample rate) that
each chip can perform ... the clock required for sample output has the potential to test

interrupt latency ... it scales down to the lowest PICs ... and up to the scary fast GPUs ..." -- Gwenhwyfaer 2008 [5]

http://www.ifp.uiuc.edu/~jones/RISCvCISCvDSP.pdf
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=MINC/Benchmarks
http://www.st.com/stonline/books/pdf/docs/5039.pdf
http://www.bradrodriguez.com/papers/moving2.htm
http://en.wikipedia.org/wiki/benchmark_(computing)
http://en.wikipedia.org/wiki/EEMBC
http://www.standardics.nxp.com/support/documents/microcontrollers/pdf/article.challenge.8-bit.mcu.pdf
http://atmel.com/dyn/resources/prod_documents/doc7903.pdf
http://www.nabble.com/Re:-Intellasys-question-for-Jeff-Fox-p17450680.html
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Further reading
• Cyberbotics' Robot Curriculum/Cognitive Benchmarks

References
[1] http:/ / www. st. com/ stonline/ books/ pdf/ docs/ 5039. pdf
[2] http:/ / www. bradrodriguez. com/ papers/ moving2. htm
[3] http:/ / www. standardics. nxp. com/ support/ documents/ microcontrollers/ pdf/ article. challenge. 8-bit. mcu. pdf
[4] http:/ / atmel. com/ dyn/ resources/ prod_documents/ doc7903. pdf
[5] http:/ / www. nabble. com/ Re:-Intellasys-question-for-Jeff-Fox-p17450680. html

Microprocessor Design/Optimizations
Microprocessor Design

Once the microprocessor is designed, there is typically a large amount of room for that design to be made more
efficient through optimization. The control unit specifically can be subject to logical minimizations.
As the specific requirements of each component are understood better, through simulation and prototyping, the clock
speed of the system can be increased to reduce waste.
The most common operations, memory loads, memory stores, and basic arithmetic can be laid out in such a way that
they can be performed quickly and easily.
The word "optimization" is likely a misnomer because it is unlikely that the best possible solution will ever be found
to the complex problems that arise during microcontroller or microprocessor design. However, there are typically
ways to make things better, even if they can't be made optimal.

http://en.wikibooks.org/w/index.php?title=Cyberbotics%27_Robot_Curriculum/Cognitive_Benchmarks
http://www.st.com/stonline/books/pdf/docs/5039.pdf
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http://www.standardics.nxp.com/support/documents/microcontrollers/pdf/article.challenge.8-bit.mcu.pdf
http://atmel.com/dyn/resources/prod_documents/doc7903.pdf
http://www.nabble.com/Re:-Intellasys-question-for-Jeff-Fox-p17450680.html
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Parallel Processing

Microprocessor Design/Multi-Core Systems
Microprocessor Design

Taking the idea of superscalar operations to the next level, it is possible (and frequently desirable) to put multiple
microprocessor cores onto a single chip, and have the cores operate in parallel with one another.

Symmetric Multicore
A symmetric multicore processor is one that has multiple cores on a single chip, and all of those cores are identical.
Example: Intel Core 2:
The Intel Core 2 is an example of a symmetric multicore processor. The Core 2 can have either 2 cores on chip
("Core 2 Duo") or 4 cores on chip ("Core 2 Quad"). Each core in the Core 2 chip is symmetrical, and can function
independantly of one another. It requires a mixture of scheduling software and hardware to farm tasks out to each
core.
Example: Parallax Propeller:
The Parallax Propeller is an example of a symmetric multicore processor. The Parallax Propeller has 8 cores on chip,
each one a 32-bit RISC processor. Each core in the Parallax Propeller chip is symmetrical, and can function
independently of one another.

Asymmetric Multicore
An asymmetric multicore processor is one that has multiple cores on a single chip, but those cores might be different
designs. For instance, there could be 2 general purpose cores and 2 vector cores on a single chip.
Example: Cell Processor

IBM's Cell processor, used in the Sony PlayStation 3 video game console is an asymmetrical multicore processor.
The Cell has 9 processor cores on board, one general purpose processor, and 8 data-processing cores. The one
multipurpose core, known as the Power Processor Element (PPE) controls the communication between the other
cores, and distributes computing tasks to the other cores for processing. The other 8 cores are known as Synergistic
Processor Elements (SPE), and are specially designed to have high floating-point throughput, especially with vector
operations.
Example: Kilocore

Rapport's Kilocore processor, is an asymmetrical multicore processor. The Kilocore has one general purpose
processor, a PowerPC processing core, and either 256 or 1024 data processing cores on-chip. The cores are designed
to run at extremely low power, so the overall chip is faster and yet uses less power than typical desktop CPUs[1] .

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Symmetric Multicore

The Intel Core 2 Duo

A symmetric multicore processor is a processor which has multiple
cores that are all exactly the same. Every single core has the same
architecture and the same capabilities. An example of a symmetric
multicore system is the Intel Core 2 Duo processor.
Each core has the same capabilities, so it requires that there is an
arbitration unit to give each core a specific task. Software that uses
techniques like multithreading makes the best use of a multi-core
processor like the Intel Core 2.

Asymmetric Multicore

In an asymmetric multicore processor, the chip has multiple cores
onboard, but the cores might be different designs. Each core will have
different capabilities.

Example: IBM Cell Processor
An example of an asymmetric multicore processor is the IBM Cell processor.

Block diagrams of the IBM Cell processor. The Cell processor has 8 SPE cores (left) and 1 PPE core (right). The PPE core is the primary core, and controls
the behavior of the SPE cores.

The IBM Cell processor has 1 PPE that controls the chip, and 8 SPEs that are designed for high mathematical
throughput. The IBM Cell processor is designed as follows:

http://en.wikibooks.org/w/index.php?title=File%3AIntelCore2DuoE6600.jpg
http://en.wikibooks.org/w/index.php?title=File%3ASPE_%2528cell%2529.png
http://en.wikibooks.org/w/index.php?title=File%3APPE_%2528Cell%2529.png
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Notice how the SPE cores only connect to the PPE, and not to each other. Notice also that the PPE core is much
larger then the individual SPE cores.

further reading
[1] Tom's hardware: "IBM says Kilocore technology will outrun today's mobile processors" (http:/ / www. tomshardware. com/ news/

ibm-rapport-kilocore,2575. html) 2006

Microprocessor Design/Memory-Level
Parallelism

Microprocessor Design

Memory-Level Parallelism
Memory-Level Parallelism (MLP) is the ability to perform multiple memory transactions at once. In many
architectures, this manifests itself as the ability to perform both a read and write operation at once, although it also
commonly exists as being able to perform multiple reads at once. It is rare to perform multiple write operations at
once, because of the risk of potential conflicts (trying to write two different values to the same location).
Notice that this is not the same as vectorized memory operations, such as reading 4 separate but contiguous 8-bit
values in a single 32-bit read.

http://en.wikibooks.org/w/index.php?title=File%3AIBM_Cell_Block_Diagram.svg
http://www.tomshardware.com/news/ibm-rapport-kilocore,2575.html
http://www.tomshardware.com/news/ibm-rapport-kilocore,2575.html
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Microprocessor Design/Out Of Order Execution
Microprocessor Design

In a superscalar or similar processor design, there are multiple execution units that can be used to process pieces of
data simultaneously. However, these execution units are not always used at the same time, and some processing
power is lost. Sometimes, it is possible to feed instructions to all the execution units if we take the instructions out of
their original order. Out of order execution (OOOE) is when a processor is capable of executing instructions out of
their original order, in an attempt to do more work in parallel, and execute programs more quickly.

Hazards
OOOE comes with some significant hazards, and the hazard detection units in these processors are not trivial. The
dependencies of all instructions need to be determined, and instructions cannot execute before or at the same time as
instructions on which they are dependent.

Example: Intel Hyperthreading
Hyperthreading is the name for a technology developed by Intel for use in the Pentium 4 chip. Hyperthreading
works by duplicating some architectural components of the processor, such as the status flags, the control registers,
and the general purpose registers. Hyperthreading does not, however, duplicate any of the execution units.
In a hyperthreaded system, it appears to the operating system that there are two separate processors, when there is
only one processor. The OOOE engine feeds instructions from the two separate execution threads to the execution
cores, to try and keep all of the cores simultaneously busy. In general hyperthreading increases performance,
although in some instances this additional complexity actually decreased performance.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Support Software

Microprocessor Design/Assembler
Microprocessor Design

Simply having a new microprocessor is not much of a benefit, unless you have a way to program it. The most simple
and direct way to program a microprocessor is through the use of an assembler. An assembler converts mnemonics
into corresponding machine code instructions. Once you have an ISA, it's a trivial task to map mnemonics to the
various instruction opcodes.
Once an ISA is finalized, the design work can usually be split into two teams: a hardware team to design the datapath
and control units, and a software team to write an assembler and other programs, such as a simulator and a compiler.
This is not the way it is always done, however, as a single group of people is perfectly capable of doing both sets of
tasks.

Microprocessor Design/Simulator
Microprocessor Design

Simulators are software programs that have grown in popularity among design groups in recent years. Once an ISA
is finalized, and the basics of the datapath are mapped out (especially the timing and delays), a simulator can be a
very valuable project to work on.
A simulator allows software for your new microprocessor to be tested on a separate computer. This means that
people can write and test software for your new processor even before you have finished designing it!
Simulators have lead to a fascinating new realm of productivity known as hardware software co-design.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Microprocessor Design/Compiler
Microprocessor Design

With an assembler written, it is typically a good idea (although not always) to write a high-level language compiler
for your new processor. Typically the high-level language in these situations is C because of its small number of
builtin constructions, and the close relationship that C shares with the underlying assembly language.
Compilers help to speed up the development process, so that more complicated software can be written without the
tedium of writing large assembly language programs. Another benefit to this is that there are a number of
pre-existing tools for use with higher-level languages, such as simulators and debuggers that can increase the
efficiency of your software team.

Further reading
• Compiler Construction discusses how to write a compiler from scratch
• GNU Compiler Collection has a section on how to adapt the GCC "backend" to your particular processor.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Compiler_Construction
http://en.wikibooks.org/w/index.php?title=GNU_Compiler_Collection
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Microprocessor Production

Microprocessor Design/FPGA
Microprocessor Design

For more information about FPGAs, Verilog and VHDL, see Programmable Logic.
Field-Programmable Gate Arrays (FPGA) are programmable logic elements. FPGAs can be designed using a
hardware description language (HDL) such as Verilog or VHDL, and that design can be mapped to a hardware
design by the HDL synthesizer. FPGAs are the successors of their previous similar components, PLAs and PALs,
used at the first steps of the programmable logic era.
FPGAs are quick to design, and because they are reprogrammable, troubleshooting is quick and easy.
FPGAs are useful for designing microcontrollers, which is why we have discussed HDL implementations of various
components in the text of this book. In this chapter we will will discuss the implementation of a microcontroller in
HDL, and some of the consequences of that implementation.
Dozens of FPGA CPU designs are available for download and tinkering. An appendix to this book, Microprocessor
Design/Resources, lists details on how to get them.

Microprocessor Design/Wire Wrap
Microprocessor Design

Historically, most of the early CPUs were built by attaching integrated circuits (ICs) to circuit boards and wiring
them up.
Nowadays, it's much faster to design and implement a new CPU in a FPGA -- the result will probably run faster and
use less power than anything spread out over multiple ICs.
However, some people still design and build CPUs the old-fashioned way. Such a CPU is sometimes called a "home
brew CPU" or a "home built CPU".
Some people feel that physically constructing a CPU in this way, since it allows students to probe the inner workings
of the CPU, it helps them "Touch the magic"[1] , helps them learn and understand the underlying electronics and
hardware.

Overview
(FIXME: How do I get the picture from http:/ / en. wikipedia. org/ wiki/ Image:YUNTEN. gif to show up here?)

A homebrew CPU is a central processing unit constructed using a number of simple integrated circuits, usually from
the 7400 Series. When planning such a CPU, the designer must not only consider the hardware of the device but also
the instructions the CPU will have, how they will operate, the bit patterns for each one, and their mnemonics. Before
the existence of computer based circuit simulation many commercial processors from manufacturers such as
Motorola were first constructed and tested using discrete logic (see Motorola 6809). [2]

Although no limit exists on data bus sizes when constructing such a CPU, the number of components required to
complete a design increases exponentially as bus size gets wider. Common physical data bus sizes are 1-bit, 4-bits,
8-bits, and 16-bits, although incomplete design documents exist for a 40-bit CPU.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Programmable_Logic
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design/Resources
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design/Resources
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikipedia.org/wiki/Image:YUNTEN.gif
http://en.wikibooks.org/w/index.php?title=Central_processing_unit
http://en.wikibooks.org/w/index.php?title=Integrated_circuits
http://en.wikibooks.org/w/index.php?title=7400
http://en.wikibooks.org/w/index.php?title=Mnemonics
http://en.wikibooks.org/w/index.php?title=Motorola
http://en.wikibooks.org/w/index.php?title=Discrete_logic
http://en.wikibooks.org/w/index.php?title=Motorola_6809
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A microcoded CPU may be able to present a significantly different instruction set to the application programmer
than seems to be directly supported by the hardware used to implement it. For example, the 68000 presented a 32-bit
instruction set to the application programmer -- a 32-bit "add" was a single instruction -- even though internally it
was implemented with 16-bit ALUs.
For example, w:serial computers, even though they do calculations one bit per clock cycle, present a instruction set
that deals with much wider words -- often 12 bits (PDP-14), 24 bits (D-17B), or even wider -- 39 bits (Elliott 803).
Notable Homebrew CPUs

The Magic-1 is a CPU with an 8-bit data bus and 16-bit address bus running at about 3.75MHz 4.09 Mhz. [3]
The Mark I FORTH also has a 8-bit data bus and 16-bit address bus, but runs at 1MHz. [4]
The V1648CPU is a CPU with a 16-bit data bus and 48-bit address bus that is currently being designed. [5]

Parts
...

chips

bus

Practically all CPU designs include several 3-state buses -- an "address bus", a "data bus", and various internal buses.
A 3-state bus is functionally the same as a multiplexer. However, there is no physical part you can point to and say
"that is the multiplexer" in a 3-state bus; it's a pattern of activity shared among many parts. The only reason to use a
3-state bus is when it requires fewer chips or fewer, shorter wires, compared to an equivalent multiplexer
arrangement. When you want to select between very few pieces of data that are close together, and most of that data
is stored on a chip that only has 2-state outputs, it may require fewer chips and less wiring to use actual multiplexer
chips. When you want to select between many pieces of data (one of many registers, or one of many memory chips,
etc.), or many of the chips holding that data already have 3-state outputs, it usually requires fewer chips to use a
3-state bus (even counting the "extra" 3-state buffer between the bus and each thing that doesn't already have 3-state
outputs).
A typical register file connected to a 3-state 16-bit bus on a TTL CPU includes:
• octal 2-state output registers (such as 74x273), 2 chips per 16-bit register
• octal 3-state non-inverting buffers (such as 74x241), 2 chips per 16-bit register per bus
• a demultiplexer with N inputs (driven by microcode) and 2^N output wires that select the 3-state buffers of one of

up to 2^N possible things that can drive the bus, 1 chip per bus.
Later we discuss a other shortcuts that may require fewer chips.

74181

Like many historically important commercial computers, many home-brew CPUs use some version of the 74181, the
first complete ALU on a single chip.[6] (Versions of the 74181 include the 74F181, the 40181[citation needed], the
74AS181, the 72LS181, the 74HCT181, etc.). The 74181 is a 4-bit wide ALU can perform all the traditional add /
subtract / decrement operations with or without carry, as well as AND / NAND, OR / NOR, XOR, and shift.
A typical home-brew CPU uses 4 of these 74181 chips to build an ALU that can handle 16 bits at once. The simplest
home-brew CPUs have only one ALU, which at different times is used to increment the program counter, do
arithmetic on data, do logic operations on data, and calculate addresses from base+offset.
Some people who build home-brew CPUs attempt to "save chips" by building that one ALU of less than the largest
word size (which is often 16 bits in TTL computers). Unfortunately, this adds complexity elsewhere, and may
actually increase the total number of chips needed.[7] [8] [9]

http://en.wikipedia.org/wiki/serial_computer
http://www.homebrewcpu.com/
http://www.holmea.demon.co.uk/Mk1/Architecture.htm
http://ixeelectronics.com/Development/Chipset/CPU_Goals.html
http://en.wikibooks.org/w/index.php?title=Wikibooks:OR
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The simplest (and slowest) 16-bit TTL ALU wires the carry-out of each 74181 chip to the carry-in of the next,
creating a ripple-carry adder.
Historically, some version of the look ahead carry generator 74182 was used to speed up "add" and "subtract" to be
about the same speed as the other ALU operations.
Historically, some people who built TTL CPUs put two or more independent ALU blocks in a single CPU -- a
general-purpose ALU for data calculations, a PC incrementer, an index register incrementer/decrementer, a
base+offset address adder, etc.
We discuss ripple-carry adders, look-ahead carry generators, and their effects on other parts of a CPU at
Microprocessor Design/Add and Subtract Blocks.

alternatives to 74181

Some people find that '181 chips are becoming hard to find.
Quite a few people building "TTL CPUs" use GAL chips (which can be erased and reprogrammed). [10] A single
GAL20V8 chip can replace a 74181 chip.[11] Often another GAL chip can replace 2 or 3 other TTL chips.
Other people building "TTL CPUs" find it more magical to build a programmable machine entirely out of discrete
non-programmable chips. Are there any reasonable alternatives to the '181 for building an ALU out of discrete
chips? The Magic-1 uses 74F381s and a 74F382 ALUs;[12] is there any variant of the '381 and '382 chips that are any
easier to find than a '181? ... the 74HC283, 74HCT283, MC14008 chips only add; they don't do AND, NAND, etc. ...
One could build the entire CPU -- including the ALU -- out of sufficient quantities of the 74153 multiplexer.[13]

One designer "built-from-scratch" a 4-bit ALU that does add, subtract, increment, decrement, "and", "or", "xor", etc.
-- roughly equivalent to the 4-bit 74181 -- out of about 14 simple TTL chips: 2-input XOR, AND, OR gates.[14]

Another designer has posted a 8-bit ALU design that has more functionality than two 74181 chips -- the 74181 can't
shift right -- built from 14 complex TTL chips: two 74283 4-bit adders, some 4:1 mux, and some 2:1 mux.[15]

The designers of the LM3000 CPU posted an ALU design that has less functionality than the 74181. The 8 bit
"ALU" in the LM3000 can't actually do any logical operations, only "add" and "subtract", built from two 74LS283
4-bit adders and a few other chips. Apparently those "logical" operations aren't really necessary.[16]

other parts

solderless breadboard approach

Solderless breadboards are perhaps the fastest way to build experimental prototypes that involve lots of changes.
For about a decade, every student taking the 6.004 class at MIT was part of a team -- each team had one semester to
design and build a simple 8 bit CPU out of 7400 series integrated circuits.[17] These CPUs were built out of TTL
chips plugged into several solderless breadboards connected with lots of 22 AWG (0.33 mm2) solid copper wires.[18]

wire-wrap

Traditionally, minicomputers built from TTL chips were constructed with lots of wire-wrap sockets (with long
square pins) plugged into perfboard and lots of wire-wrap wire, assembled with a "wire-wrap pencil" or "wire-wrap
gun".
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stripboard

More recently, some "retrocomputer" builders have been using standard sockets plugged into stripboard and lots of
wire-wrap wire, assembled with solder and a soldering iron.[19]

Tools
...

Design Tips
There are many ways to categorize CPUs. Each "way to categorize" represents a design question, and the various
categories of that way represent various possible answers to that question that needs to be decided before the CPU
implementation can be completed.
One way to categorize CPU that has a large impact on implementation is: "How many memory cycles will I hold one
instruction before fetching the next instruction?"
• 0: load-instruction on every memory cycle (Harvard architecture)
• 1: At most 1 memory cycle between each load-instruction memory cycle ( load-store architecture )
• more: some instructions have 2 or more memory cycles between load-instruction memory cycles

(memory-memory architecture)
Another way to categorize CPUs is "Will my control lines be controlled by a flexible microprogramming, a fixed
control store, or by hard-wired control decoder that directly decodes the instruction?"
The load-store and memory-memory architectures require a "instruction register" (IR). At the end of every
instruction (and after coming out of reset), the next instruction is fetched from memory[PC] and stored into the
instruction register, and from then on the information in the instruction register (directly or indirectly) controls
everything that goes on in the CPU until the next instruction is stored in the instruction register.
For homebrew CPUs, the 2 most popular architectures are[citation needed]:
• direct-decode Harvard architecture
• flexible microprogramming that supports the possibility of memory-memory architecture.
Another way to categorize CPUs is "How many sub-states are in a complete clock cycle?"
Many textbooks imply that a CPU has only one clock signal -- a bunch of D flip-flops each hold 1 bit of the current
state of the CPU, and those flip-flops drive that state out their "Q" output. Those flip-flops always hold their internal
state constant, except at the instant of the rising edge of the one and only clock, where each flip-flop briefly
"glances" at their "D" input and latches the new bit, and shortly afterwards (when the new bit is different from the
old bit) changes the "Q" output to the new bit.
Single clock signals are nice in theory. Alas, in practice we can never get the clock signal to every flip-flop precisely
simultaneously -- there is always some clock skew (differences in propagation delay). One way to avoid these timing
issues is with a series of different clock signals.[20] Another way is to use enough power[21] and carefully design a w:
clock distribution network (perhaps in the form of an w: H tree) with w: timing analysis to reduce the clock skew to
negligible amounts.
Relay computers are forced to use at least 2 different clock signals, because of the "contact bounce" problem.
Many chips have a single "clock input" pin, giving the illusion that they use a single clock signal -- but internally a
"clock generator" circuit converts that single external clock to the multiple clock signals used by the chip.
Many historically and commercially important CPUs have many sub-states in a complete clock cycle, with two or
more "non-overlapping clock signals". Most MOS ICs used dual clock signals (a two-phase clock) in the 1970s[22]

http://en.wikibooks.org/w/index.php?title=Wikibooks:OR
http://en.wikipedia.org/wiki/clock_distribution_network
http://en.wikipedia.org/wiki/clock_distribution_network
http://en.wikipedia.org/wiki/H_tree
http://en.wikipedia.org/wiki/timing_analysis
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shortcuts
Building a CPU from individual chips and wires takes a person a long time. So many people take various shortcuts to
reduce the amount of stuff that needs to be connected, and the amount of wiring they need to do.
• 3-state bus rather than 2-state bus often requires fewer and shorter connections.
• Rather than general-purpose registers that can be used (at different times) to drive the data bus (during STORE) or

the address bus (during indexed LOAD), sometimes it requires less hardware to have separate address registers
and data registers and other special-purpose registers.

• If the software guy insists on general-purpose registers that can be used (at different times) to drive the data bus
(during STORE) or the address bus (during indexed LOAD), it may require less hardware to emulate them: have
all programmer-visible registers drive only one internal microarchitectural bus, and (at different times) load the
microarchitectural registers MAR and MDR from that internal bus, and later drive the external address bus from
MAR and the external data bus from MDR. This sacrifices a little speed and requires more microcode to make it
easier to build.

• Rather than 32-bit or 64-bit address and data registers, it usually requires less hardware to have 8-bit data registers
(occasionally combining 2 of them to get a 16-bit address register).

• If the software guy insists on 16-bit or 32-bit or 64-bit data registers and ALU operations, it may require less
hardware to emulate them: use multiple narrow micro-architectural registers to store each programmer-visible
register, and feed 1 or 4 or 8 or 16 bits at a time through a narrow bus to the ALU to get the partial result each
cycle, or to sub-sections of the wide MAR or MDR. This sacrifices a little speed (and adds complexity elsewhere)
to make the bus easier to build. (See: 68000, as mentioned above)

• Rather than many registers, it usually requires less hardware to have fewer registers.
• If the software guy insists on many registers, it may require less hardware to emulate some of them (like some

proposed MMIX implementations) or perhaps all of them (like some PDP computers): use reserved locations in
RAM to store most or all programmer-visible registers, and load them as needed. This sacrifices speed to make
the CPU easier to build. Alas, it seems impossible to eliminate all registers -- even if you put all
programmer-visible registers in RAM, it seems that you still need a few micro-architectural registers: IR
(instruction register), MAR (memory address register), MDR (memory data register), and ... what else?

• Harvard architecture usually requires less hardware than Princeton architecture. This is one of the few ways to
make the CPU simpler to build *and* go faster.

Harvard architecture
The simplest kinds of CPU control logic use the Harvard architecture, rather than Princeton architecture. However,
Harvard architecture requires 2 separate storage units -- the program memory and the data memory. Some Harvard
architecture machines, such as "Mark's TTL microprocessor", don't even have an instruction register -- in those
machines, the address in the program counter is always applied to the program memory, and the data coming out of
the program memory directly controls everything that goes on in the CPU until the program counter changes. Alas,
Harvard architecture makes storing new programs into the program memory a bit tricky.
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microcode architecture
See Microprocessor Design/Microcodes.

Assembly Tips
...

"I don't recommend that anybody but total crazies wirewrap their own machines out of loose chips anymore,
although it was a common enough thing to do in the mid- to late Seventies". -- Jeff Duntemann [23]

Programming Tips
...

Further Reading
[1] "Touch the magic. By this I meant to gain a deeper understanding of how computers work" -- Bill Buzbee (http:/ / www. homebrewcpu. com/

)
[2] "To evaluate the 6800 architecture while the chip was being designed, Jeff's team built an equivalent circuit using 451 small scale TTL ICs on

five 10 by 10 inch (25 by 25 cm) circuit boards. Later they reduced this to 114 ICs on one board by using ROMs and MSI logic devices." --
w:Motorola_6800#Development_team

[3] http:/ / www. homebrewcpu. com/
[4] http:/ / www. holmea. demon. co. uk/ Mk1/ Architecture. htm
[5] http:/ / ixeelectronics. com/ Development/ Chipset/ CPU_Goals. html
[6] "The 74181 is a bit slice arithmetic logic unit (ALU)... The first complete ALU on a single chip ... Many computer CPUs and subsystems

were based on the '181, including ... the ... PDP-11 - Most popular minicomputer of all time" -- Wikipedia:74181
[7] "My Home-Built TTL Computer Processor (CPU)" (http:/ / cpuville. com/ Main_2. htm) by Donn Stewart
[8] "The basic algorithm executed by the instruction execution unit is most easily expressed if a memory address fits exactly in a word." -- "The

Ultimate RISC" (http:/ / www. cs. uiowa. edu/ ~jones/ arch/ risc/ ) by Douglas W. Jones
[9] "it just really sucks if the largest datum you can manipulate is smaller than your address size. This means that the accumulator needs to be the

same size as the PC -- 16-bits." -- "Computer Architecture" (http:/ / david. carybros. com/ html/ computer_architecture. html)
[10] Andrew Holme. "Mark 2 FORTH Computer" (http:/ / www. holmea. demon. co. uk/ Mk2/ Architecture. htm)
[11] GALU - A Gate Array Logic based ALU IC. (http:/ / sites. google. com/ site/ libby8dev/ ga)
[12] Bill Buzbee. "Magic-1 Microarchitecture" (http:/ / www. homebrewcpu. com/ microarchitecture. htm).
[13] Dieter Mueller. "Multiplexers: the tactical Nuke of Logic Design" (http:/ / www. 6502. org/ users/ dieter/ a1/ a1_4. htm) 2004.
[14] Rodney Moffitt. Micro Programmed Arithmetic Processor (http:/ / rod. info/ MicroProgram). 55 TTL chips. The core 4-bit adder/subtracter

has about 7 SSI chips. The ALU has about 7 additional SSI chips of logic around that core to support "and", "or", "xor", "increment",
"decrement". An instruction register and a micro-programmed sequencer around the ALU handle (4-bit) "multiply" and "divide".

[15] Dieter Mueller. ALU with Adder (http:/ / www. 6502. org/ users/ dieter/ a1/ a1_6. htm). 2004.
[16] LM3000 CPU (http:/ / wiki. bennington. edu/ mediawiki/ index. php/ LM3000)
[17] the VHS (http:/ / sub-zero. mit. edu/ fbyte/ hacks/ vhs/ ), a 32 bit CPU built by Kevin McCormick, Colin Bulthaup, Scott Grant and Eric

Prebys for their MIT 6.004 class.
[18] 6.004 Contest Photos (http:/ / www. bunniestudios. com/ bunnie/ 6004/ contest. html) (http:/ / www. xenatera. com/ bunnie/ 6004/ contest.

html)
[19] "Libby8" neo-retro computer (http:/ / sites. google. com/ site/ libby8dev/ libby8/ circuit) by Julian Skidmore
[20] Bill Buzbee. Magic-1 Homebrew CPU: Clocks (http:/ / www. homebrewcpu. com/ microarchitecture. htm#Clocks)
[21] "Intel's Atom Architecture: The Journey Begins" (http:/ / www. anandtech. com/ showdoc. aspx?i=3276& p=14) by Anand Lal Shimpi,

2008. In a large microprocessor, the power used to drive the clock signal can be over 30% of the total power used by the entire chip.
[22] Wikipedia:Two-phase_clock#cite_ref-MC6870_0-0
[23] http:/ / artematrix. org/ Projects/ TTL. processor/ processor. design. htm

http://artematrix.org/Projects/TTL.processor/processor.design.htm
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http://www.holmea.demon.co.uk/Mk1/Architecture.htm
http://ixeelectronics.com/Development/Chipset/CPU_Goals.html
http://en.wikipedia.org/wiki/74181
http://cpuville.com/Main_2.htm
http://www.cs.uiowa.edu/~jones/arch/risc/
http://david.carybros.com/html/computer_architecture.html
http://www.holmea.demon.co.uk/Mk2/Architecture.htm
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comparisons
• Svarychevski Michail Aleksandrovich. "Homemade CPU – from scratch" (http:/ / 3. 14. by/ en/ read/

homemade-cpus). Briefly compares a few notable hobbyist-built CPUs.

relay computers
• Harry Porter's Relay Computer (http:/ / web. cecs. pdx. edu/ ~harry/ Relay/ ) (415 Relays, all identical 4PDT)
• "Relay Computer Two" (http:/ / www. electronixandmore. com/ project/ relaycomputertwo/ index. html) by Jon

Stanley (281 relays, of 2 types: 177 SPDT, and 104 4PDT)
• Zusie - My Relay Computer (http:/ / nablaman. com/ relay/ ) by Fredrik Andersson (uses around 330 relays, of 2

types: 4-pole and 6-pole double-throw relays, plus ~30 integrated circuits for RAM and microcode)
• relay computers (http:/ / www. relaiscomputer. de/ ) by Kilian Leonhardt (in German): a "large computer" with

around 1500 relays and a program EEPROM, and a "small computer" with 171 relays.
• DUO 14 PREMIUM (http:/ / web. me. com/ teisenmann/ ostracod/ relay. html) by Jack Eisenmann (around 50

relays, including 4 addressable "crumbs" of RAM where each crumb is 2 bits, plus 48 bits of program ROM in
6x8-switch DIP switches. The only semiconductor components: 555 timer, decade counter, and transistors in the
clock generator. Each command has 6 bits, and the 8 commands in the program ROM are selected by a 3-bit
program counter).

• Wikipedia: Z3 (computer), designed by Konrad Zuse, the world's first working programmable, fully automatic
computing machine. built with 2,000 relays.

• Z3 Nachbau (http:/ / www. horst-zuse. homepage. t-online. de/ z3-nachbau-2001. html) (http:/ / www. zib. de/
zuse/ Inhalt/ Rep/ Z3/ Z3Rep/ index. html), Horst Zuse's (Konrad Zuse's son) and Raul Rojas' 2001 reconstruction
of the classic Z3. The 32-word, 22-bit-wide memory is also constructed entirely from relays, about 700 relays. (in
German)

• Horst Zuse's new Z3 reconstruction (http:/ / z3-computer. de/ ): Created 2010 for the 100 year anniversary of
Konrad Zuse's birth. About 2500 modern relays. (in German)

TTL computers
• A Minimal TTL Processor for Architecture Exploration (http:/ / www. zetetics. com/ bj/ papers/ piscedu2. htm)

by Bradford J. Rodriguez (aka PISC, the Pathetic Instruction Set Computer)
• Wikipedia:Apollo Guidance Computer
• V1648 (http:/ / ixeelectronics. com/ Development/ Chipset/ CPU_Goals. html): (16 bit data) (48 bit address bus?)
• "the Ultimate RISC" and "the Minimal CISC" (http:/ / www. cs. uiowa. edu/ ~jones/ arch/ )
• alt.comp.hardware.homebuilt FAQ (http:/ / www. faqs. org/ faqs/ homebuilt-comp-FAQ/ index. html)
• Mark's TTL microprocessor (http:/ / web. archive. org/ web/ 20050316211858/ http:/ / www. venturalink. net/

~jamesc/ ttl/ ) (uses only 8 chips ... "Without using the two PALs I used, it would be 16 chips.") (is there a better
URL for this?)

• "Prehistoric Cpu's & Octal Amps" (http:/ / www. jetnet. ab. ca/ users/ bfranchuk/ ) (18 bit data bus? 24 bit data
bus?)

http://3.14.by/en/read/homemade-cpus
http://3.14.by/en/read/homemade-cpus
http://web.cecs.pdx.edu/~harry/Relay/
http://www.electronixandmore.com/project/relaycomputertwo/index.html
http://nablaman.com/relay/
http://www.relaiscomputer.de/
http://web.me.com/teisenmann/ostracod/relay.html
http://en.wikipedia.org/wiki/Z3_(computer)
http://www.horst-zuse.homepage.t-online.de/z3-nachbau-2001.html
http://www.zib.de/zuse/Inhalt/Rep/Z3/Z3Rep/index.html
http://www.zib.de/zuse/Inhalt/Rep/Z3/Z3Rep/index.html
http://z3-computer.de/
http://www.zetetics.com/bj/papers/piscedu2.htm
http://en.wikipedia.org/wiki/Apollo_Guidance_Computer
http://ixeelectronics.com/Development/Chipset/CPU_Goals.html
http://www.cs.uiowa.edu/~jones/arch/
http://www.faqs.org/faqs/homebuilt-comp-FAQ/index.html
http://web.archive.org/web/20050316211858/http://www.venturalink.net/~jamesc/ttl/
http://web.archive.org/web/20050316211858/http://www.venturalink.net/~jamesc/ttl/
http://www.jetnet.ab.ca/users/bfranchuk/
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reviews
• other homemade CPUs (http:/ / www. holmea. demon. co. uk/ Links. htm#Homemade)
• yet more homemade CPUs (http:/ / david. carybros. com/ html/ computer_architecture. html#simple_cpu)

TTL computers
• "Viktor's Amazing 4-bit Processor" (http:/ / www. vttoth. com/ vicproc. htm) ... can re-program in-circuit using

manual switches. About 90 chips.
• Galactic 4 bit CPU (http:/ / www. galacticelectronics. com/ Simple4BitCPU. HTML) by Jon Qualey. Two, 2716

EPROMs are used to store the micro-instruction code and two, 2114 static RAMs are used for program memory.
25 ICs in all, 74LS TTL.

discrete transistor computers
• MT15 by Dieter Mueller (http:/ / freenet-homepage. de/ dieter. 02/ mt15. htm) is built almost entirely out of

(around 3000) individual SMT transistors ... also has some essays on microprogramming and ALU design (http:/ /
freenet-homepage. de/ dieter. 02/ ).

• The Q1 Computer (http:/ / joewing. net/ hardware/ q1/ ) by Joe Wingbermuehle. Built almost entirely out of
(3105) individual through-hole PN2222A transistors. "Clock phases are used so that transparent latches can be
used for registers to reduce transistor count at the price of speed." 8 bit data bus, 16 bit address bus.

TTL computers
• LM3000 CPU (http:/ / wiki. bennington. edu/ mediawiki/ index. php/ LM3000) designed and built by five

students at Bennington College, Vermont, using fifty-three integrated circuits.
• The D16/M by John Doran (http:/ / www. timefracture. org/ D16. html) is a 16-bit digital computer implemented

with SSI and MSI HCMOS integrated logic and constructed using wire-wrap techniques. Its timing and control
unit is microprogrammed (fully horizontal, with a 72-bit control word).

pneumatic computers
• "8 bit processor using logic gates made of pneumatic valves" (http:/ / blog. makezine. com/ archive/ 2009/ 09/

claims_of_pnuematic_processor_full. html) by Minsoung Rhee and Mark Burns

TTL computers
• BMOW 1 (Big Mess o' Wires) (http:/ / www. stevechamberlin. com/ ) by Steve Chamberlin is an 8 bit CPU built

from discrete 7400-series logic, and a few 22V10 and 20V8 GALs. All the digital electronics on a single large
Augat wire-wrap board to interconnect the 50 or so chips. BMOW 1 contains roughly 1250 wires connecting the
components. All data busses are 8 bit; the address bus is 24 bit. 3 parallel microcode ROMs generate the 24 bit
microcode word. VGA video output is 512×480 with two colors, or 128×240 with 256 colors. The microcode
emulates a 6502 (more or less). Uses two 4-bit 74LS181s to form the core 8 bit ALU.

• "Asychronous 40-bit TTL CPU" (http:/ / www. hanssummers. com/ ttlcpu. html) by Hans Summers 1992
• "a proprietary 8-bit engine built out 3 PROM's and a few dozen TTL chips" (http:/ / www. laughtonelectronics.

com/ arcana/ DiabloCPU. html) as described by Jeff Laughton.
• "One-bit Computing at 60 Hertz" (http:/ / www. laughtonelectronics. com/ arcana/ One-bit computer. html): a tiny

computer made from an EPROM and a few logic chips; designed by Jeff Laughton.
• "Bride of Son of Cheap Video - the KimKlone" (http:/ / www. laughtonelectronics. com/ arcana/ BrideOfSonPg1.

html): TTL chips and a EPROM add extra programmer-visible registers and instructions to a microcontroller (a
65C02).

http://www.holmea.demon.co.uk/Links.htm#Homemade
http://david.carybros.com/html/computer_architecture.html#simple_cpu
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http://www.galacticelectronics.com/Simple4BitCPU.HTML
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• The MyCPU - Project (http:/ / www. mycpu. eu/ ) (http:/ / mycpu. selfhost. it/ ): "everybody is invited to
participate and contribute to the project." The CPU is built from 65 integrated circuits on 5 boards. 1 MByte bank
switched RAM. Originally developed by Dennis Kuschel. Apparently several MyCPU systems have been built?
One MyCPU system runs a HTTP web server; another MyCPU system runs a (text-only) web browser).

• HJS22 - a homebrew TTL computer. (http:/ / www. ibmsystem3. nl/ hjs22/ ) Nice front panels with lots of lights
and switches.

• The Electronics Australia EDUC-8 microcomputer (http:/ / www. ljw. me. uk/ educ8/ ): "one of the first
build-it-yourself microcomputers". "The internal implementation is bit-serial which gives good economy of
components as most data paths are only 1 bit wide."

• "Homebrew CPUs/Low Level Design" (http:/ / electronics. stackexchange. com/ questions/ 18803/
homebrew-cpus-low-level-design) recommends a few books with low-level TTL CPU design information.

Microprocessor Design/Photolithography
Microprocessor Design

The current state-of-the-art process for manufacturing processors and small ICs in general is to use
photolithography. Photolithography is a complicated multi-step process.

Wafers
A wafer is a large circular disk, typically made of doped silicon. Each wafer can hold multiple chips arranged like
tiles. The number of chips per wafer is known as the yield.

Basic Photolithography
In photolithography, there are typically two important chemicals: an acid and a resist. A photo-negative of the design
is exposed to light, and the pattern is projected onto the wafer. Resist is applied to the wafer, and it sticks to the
portions of the wafer that are exposed to light. Once the resist is applied to the wafer, it is dipped in the acid. The
acid eats away a layer of everything that is not covered in resist. After the top layer has been disolved, the wafer is
washed (to remove any remaining acid and resist), and a new layer of doped silicon is applied to the top of the wafer.
Once the new layer of silicon has been applied, the process is repeated again.
The first two applications of resist are used to convert thin, carefully shaped regions of the base silicon wafer into
n-type and p-type w:doping (semiconductor) (no net material is added or taken away after these steps). Wait up -- I
thought doping occurred after the polysilicon was added? Is that an additional doping stage, or is doping not really
the first 2 stages?

After that, layers of polysilicon, silicon oxide, and metal are added, coating the entire wafer. After each layer of
desired material is added, resist and acid are used to "pattern" the layer, keeping the desired regions and removing
the undesired regions of that layer.

http://www.mycpu.eu/
http://mycpu.selfhost.it/
http://www.ibmsystem3.nl/hjs22/
http://www.ljw.me.uk/educ8/
http://electronics.stackexchange.com/questions/18803/homebrew-cpus-low-level-design
http://electronics.stackexchange.com/questions/18803/homebrew-cpus-low-level-design
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikipedia.org/wiki/doping_(semiconductor)
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packaging
After all the layers specified by the design have been applied, the wafer is "diced" into individual rectangular "die".
Then each die packaged.
... does testing happen before the wafer is diced? Before and after? ...

further reading
• MOSIS (Metal Oxide Semiconductor Implementation Service [1]) is probably the oldest (1981) integrated circuit

(IC) foundry service. Many VLSI students have sent their chips to MOSIS for fabrication.

References
[1] http:/ / www. mosis. com/

Microprocessor Design/Sockets and interfacing
Microprocessor Design

Form Factors

A Sharp Z80 microprocessor, with a Dual-Inline
Package (DIP) with 40 pins.

A matter that is peripheral to the subject of microprocessor design, but
not wholely unrelated is the subject of form factors, sockets, and
interfacing. When it comes to microprocessors and microcontrollers
there is no standard size or shape, no standard connectors, etc. An Intel
Pentium chip cannot plug into the same socket as an AMD Athalon
chip, even though they are both IA32 chips, and both of them can run
the same software. The size, shape, number of connectors and
orientation of the connectors are known collectively as the form factor
of the chip. Each separate form factor requires a specific interface for
the chip to connect to called a socket.

Connectors

The underside of an AMD Athlon processor,
showing the connector pins.

http://www.mosis.com/
http://www.mosis.com/
http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=File%3ASharp_LH0080A.jpg
http://en.wikibooks.org/w/index.php?title=File%3AAMD_Athlon_1.1Ghz_pins.jpg
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Sockets

A Socket 479, one of many different and
incompatible socket types.

http://en.wikibooks.org/w/index.php?title=File%3ASocket_479.jpg
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Advanced Topics

Microprocessor Design/Microcodes
Microprocessor Design

RISC units are typically faster and more efficient than CISC units. For this reason, many CISC processors have
complicated instruction decoders that actually convert the CISC machine code into a RISC-like set of internal
instructions known as microcodes. These microcodes are then fed into the internal core of the processor, which is
based on the RISC design.
The most common way[citation needed] to implement memory-memory architecture CPUs (even with single-chip
microprocessors, not just wire-wrapped machines) uses a small "control store" ROM. The output data bits of the
control store drive a "pipeline register". The clock signal determining the cycle time of the system primarily clocks
this pipeline register. The bits stored in the pipeline register directly control everything that goes on in the CPU.
Some of the bits in the pipeline register do nothing but drive some of the address bits of the control store. Those bits
-- that sub-field of the pipeline register -- is sometimes called the "microprogram counter", even though it is merely a
latch -- typically the control store is programmed such that those bits increment on every clock cycle, and reset to
zero when a new instruction is loaded into the instruction register. The instruction register directly drives some of the
address lines of the control store ROM. A few more address lines of the control store ROM are driven by status bits
such as the Z flag and the C flag.
Some CPUs, such as the ECOMIPS[1] , the Intel Core 2 and the Intel Xeon,[2] use "writable microcode" -- rather than
storing the microcode in ROM or hard-wired logic, the microcode is stored in a RAM called a Writable Control
Store or WCS.

further reading
• "Viktor's Amazing 4-bit Processor" [3] has microcode that he says *could* have been implemented with about 90

diodes in a traditional diode matrix; but instead he implemented microcode with a Flash memory chip he can
re-program in-circuit using manual switches.

• MT15 by Dieter Mueller [4] uses transistors instead of diodes in a big AND-OR PLA (programmable logic array)
matrix to implement the microcode.

[1] "ECOMIPS: An Economic MIPS CPU Design on FPGA" (http:/ / www. lixizhi. net/ download/ xizhil_ecomips. pdf) by Xizhi Li and Tiecai
Li

[2] Wikipedia: microcode#Writable_control_stores
[3] http:/ / www. vttoth. com/ vicproc. htm
[4] http:/ / freenet-homepage. de/ dieter. 02/ mt15. htm

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
http://en.wikibooks.org/w/index.php?title=Wikibooks:OR
http://www.vttoth.com/vicproc.htm
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http://en.wikipedia.org/wiki/microcode#Writable_control_stores
http://www.vttoth.com/vicproc.htm
http://freenet-homepage.de/dieter.02/mt15.htm
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Microprocessor Design/Cache
Microprocessor Design

Cache
A cache is a small amount of memory which operates more quickly than main memory. Data is moved from the
main memory to the cache, so that it can be accessed faster. Modern chip designers put several caches on the same
die as the processor; designers often allocate more die area to caches than the CPU itself. Increasing chip
performance is typically achieved by increasing the speed and efficiency of chip cache.
Cache works by storing a small subset of the external memory contents, typically out of it's original order. Data and
instructions that are being used frequently, such as a data array or a small instruction loop, are stored in the cache
and can be read quickly without having to access the main memory. Cache runs at the same speed as the rest of the
processor, which is typically much faster than the external RAM operates at. This means that if data is in the cache,
accessing it is faster than accessing memory.
Cache helps to speed up processors because it works on the principal of locality.

Principal of Locality
There are two types of locality, spatial and temporal. Modern computer programs are typically loop-based, and
therefore we have two rules about locality:
Spatial Locality

When a data item is accessed, it is likely that data items in sequential memory locations will also be accessed.
Consider the traversal of an array, or the act of storing local variables on a stack. In these cases, when one data
item is accessed, it is a good idea to load the surrounding memory area into the cache at the same time.

Temporal Locality
When data item is accessed, it is likely that the same data item will be accessed again. For instance, variables
are typically read and written to in rapid succession. If is a good idea to keep recently used items in the cache,
and not over-write data that has been recently used.

Hit or Miss
A hit when talking about cache is when the processor finds data in the cache that it is looking for. A miss is when
the processor looks for data in the cache, but the data is not available. In the event of a miss, the cache controller unit
must gather the data from the main memory, which can cost more time for the processor.

Flushing the Cache
When the processor needs data, it looks in the cache. If the data is not in the cache, it will then go to memory to find
the data. Data from memory is moved to the cache and then used by the processor. Sometimes the entire cache
contains useless or old data, and it needs to be flushed. Flushing occurs when the cache controller determines that
the cache contains more potential misses than hits. Flushing the cache takes several processor cycles, so much
research has gone into developing algorithms to keep the cache up to date.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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Cache Hierarchy
Cache is typically divided between multiple levels. The most common levels are L1, L2, and L3. L1 is the smallest
but the fastest. L3 is the largest but the slowest. Many chips do not have L3 cache. Some chips that do have an L3
cache actually have an external L3 module that exists on the motherboard between the microprocessor and the RAM.

Size of Cache

The Pentium Pro chip was one of the largest
microprocessors ever manufactured. It was so

large because it contained the largest cache of any
chip at the time.

There are a number of factors that affect the size of cache on a chip:
1. Moore's law provides an increasing number of transistors per chip.

After around 1989, more transistors are available per chip than a
designer can use to make a CPU. These extra transistors are easily
converted to large caches.

2. Processor components become smaller as transistors become
smaller. This means there is more area on the die for additional
cache.

3. More cache means fewer delays in accessing data, and therefore
better performance.

Because of these factors, chip caches tend to get larger and larger with
each generation of chip.

Cache Tagging
Cache can contain non-sequential data items in no particular order. A block of memory in the cache might be empty
and contain no data at all. In order for hardware to check the validity of entries in the cache, every cache entry needs
to maintain the following pieces of information:
1. A status bit to determine if the block is empty or full
2. The memory address of the data in the block
3. The data from the specified memory address
When the processor looks for data in the cache, it sends a memory address to the cache controller. the cache
controller checks the address against all the address fields in the cache. If there is a hit, the cache controller returns
the data. If there is a miss, the cache controller must pass the request to the next level of cache or to the main
memory unit.

http://en.wikibooks.org/w/index.php?title=File%3AIntel-pentium-pro-CPU.jpg
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The memory address of the data in the cache is known as the tag.

Memory Stall Cycles
If the cache misses, the processor will need to stall the current instruction until the cache can fetch the correct data
from a higher level. The amount of time lost by the stall is dependent on a number of factors. The number of
memory accesses in a particular program is denoted as Am; some of those accesses will hit the cache, and the rest
will miss the cache. The rate of misses, equal to the probability that any particular access will miss, is denoted rm.
The average amount of time lost for each miss is known as the miss penalty, and is denoted as Pm. We can calculate
the amount of time wasted because of cache miss stalls as:

Likewise, if we have the total number of instructions in a program, N, and the average number of misses per
instruction, MPI, we can calculate the lost time as:

If instead of lost time we measure the miss penalty in the amount of lost cycles, the calculation will instead produce
the number of cycles lost to memory stalls, instead of the amount of time lost to memory stalls.

Read Stall Times
To calculate the amount of time lost to cache read misses, we can perform the same basic calculations as above:

Ar is the average number of read accesses, rr is the miss rate on reads, and Pr is the time or cycle penalty associated
with a read miss.

Write Stall Times
Determining the amount of time lost to write stalls is similar, but an additional additive term that represents stalls in
the write buffer needs to be included:

Where Twb is the amount of time lost because of stalls in the write buffer. The write buffer can stall when the cache
attempts to synchronize with main memory.

http://en.wikibooks.org/w/index.php?title=File%3ACache%2Cbasic.svg
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Hierarchy Stall Times
In a hierarchical cache system, miss time penalties can be compounded when data is missed in multiple levels of
cache. If data is missed in the L1 cache, it will be looked for in the L2 cache. However, if it also misses in the L2
cache, there will be a double-penalty. The L2 needs to load the data from the main memory (or the L3 cache, if the
system has one), and then the data needs to be loaded into the L1. Notice that missing in two cache levels and then
having to access main memory takes longer than if we had just accessed memory directly.

Design Considerations
L1 cache is typically designed with the intent of minimizing the time it takes to make a hit. If hit times are
sufficiently fast, a sizable miss rate can be accepted. Misses in the L1 will be redirected to the L2 and that is still
significantly faster than accesses to main memory. L1 cache tends to have smaller block sizes, but benefits from
having more available blocks for the same amount of space. In order to make L1 hit times minimal, L1 are typically
direct-mapped or even narrowly 2-way set associative.
L2 cache, on the other hand, needs to have a lower miss rate to help avoid accesses to main memory. Accesses to L2
cache are much faster than accesses to memory, so we should do everything possible to ensure that we maximize our
hit rate. For this reason, L2 cache tends to be fully associative with large block sizes. This is because memory is
typically read and written in sequential memory cells, so large block sizes can take advantage of that sequentiality.
L3 cache further continues this trend, with larger block sizes, and minimized miss rate.

Associativity
In order to increase the read speed in a cache, many cache designers implement some level of associativity. An
associative cache creates a relationship between the original memory location and the location in the cache where
that data is stored. The relationship between the address in main memory and the location where the data is stored is
known as the mapping of the cache. In this way, if the data exists in the cache at all, the cache controller knows that
it can only be in certain locations that satisfy the mapping.

Direct-Mapped
A direct-mapped system uses a hashing algorithm to assign an identifier to a memory address. A common hashing
algorithm for this purpose is the modulo operation. The modulo operation divides the address by a certain number, p,
and takes the remainder r as the result. If a is the main memory address, and n is an arbitrary non-negative integer,
then the hashing algorithm must satisfy the following equation:

If p is chosen properly by the designer, data will be evenly distributed throughout the cache.

In a direct-mapped system, each memory address corresponds to only a single cache location, but a single cache 
location can correspond to many memory locations. The image above shows a simple cache diagram with 8 blocks. 
All memory addresses therefore are calculated as n mod 8, where n is the memory address to read into the cache.

http://en.wikibooks.org/w/index.php?title=File%3ACache_Block_Basic.svg
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Memory addresses 0, 8, and 16 will all map to block 0 in the cache. Cache performance is worst when multiple data
items with the same hash value are read, and performance is best when data items are close together in memory
(such as a sequential block of program instructions, or a sequential array).

2-Way Set Associative
In a 2-way set associative cache system, the data value is hashed, but each hash value corresponds to a set of cache
blocks. Each block contains multiple data cells, and a data value that is assigned to that block can be inserted
anywhere in the block. The read speeds are quick because the cache controller can immediately narrow down its
search area to the block that matches the address hash value.

2 way skewed associative
The 2-way skewed associative cache is "the best tradeoff for .... caches whose sizes are in the range 4K-8K bytes" --
André SeznecAndré Seznec. "A Case for Two-Way Skewed-Associative Caches" [1]. Retrieved 2007-12-13.</ref>[2]

Fully Associative
In a fully-associative cache, hash algorithms are not employed and data can be inserted anywhere in the cache that is
available. A typical algorithm will write a new data value over the oldest unused data value in the cache. This
scheme, however, requires the time an item is loaded or accessed to be stored, which can require lots of additional
storage.

Cache Misses
There are three basic types of misses in a cache:
1. Conflict Misses
2. Compulsory Misses
3. Capacity Misses

http://citeseer.ist.psu.edu/seznec93case.html


Microprocessor Design/Cache 108

Conflict Misses

A conflict miss occurs in a direct-mapped and 2-way set associative cache when two data items are mapped to the
same cache locations. In a data miss, a recently used data item is overwritten with a new data item.

Compulsory Misses

http://en.wikibooks.org/w/index.php?title=File%3ACache_Block_Basic_Conflict.svg
http://en.wikibooks.org/w/index.php?title=File:Cache_Block_Conflict_Compulsary.svg
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The image above shows the difference between a conflict miss and a compulsory miss. A compulsory miss is an
instance where the cache must miss because it does not contain any data. For instance, when a processor is first
powered-on, there is no valid data in the cache and the first few reads will always miss.
The compulsory miss demonstrates the need for a cache to differentiate between a space that is empty and one that is
full. Consider when we turn the processor on, and we reset all the address values to zero, an attempt to read a
memory location with a hash value of zero will hit. We do not want the cache to hit if the blocks are empty.

Capacity Misses
Capacity misses occur when the cache block is not large enough to hold the data item.

Write Policy
Data writes require the same time delay as a data read. For this reason, caching systems typically will write data to
the cache as well. However, when writing to the cache, it is important to ensure that the data is also written to the
main memory, so it is not overwritten by the next cache read. If data in the cache is overwritten without being stored
in main memory, the data will be lost.
It is imperative that caches write data to the main memory, but exactly when that data is written to the main memory
is called the write policy. There are two write policies: write through and write back.

Cache Writing
Write operations take as long to perform as read operations in main memory. Many cached processors therefore will
perform write operations on the cache as well as read operations. When data is written to memory, a write request is
sent simultaneously to the main memory and to the cache. This way, the result data is available in the cache before it
can be written (and then read again) from the main memory. When writing to the cache, it's important to make sure
the main memory and the cache are synchronized and they contain the same data.

Write Through
In a write through system, data that is written to the cache is immediately written to the main memory as well. If
many writes need to occur is sequential instructions, the write buffer may get backed up and cause a stall.

Write Back
In a write back system, the cache controller keeps track of which data items have been synchronized to main
memory. The data items which have not been synchronized are called "dirty", and the cache controller prevents dirty
data from being overwritten.
The cache controller will synchronize data during processor cycles where no other data is being written to the cache.
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Stale Data
It is possible for the data in main memory to be changed by a component besides the microcontroller. For instance,
many computer systems have memory-mapped I/O, or a DMA controller that can alter the data. It is important that
the cache controller check that data in the cache is correct. Data in the cache that is old and may be incorrect is called
"stale".

References
[1] http:/ / citeseer. ist. psu. edu/ seznec93case. html
[2] Micro-Architecture (http:/ / www. irisa. fr/ caps/ PROJECTS/ Architecture/ ) "Skewed-associative caches have ... major advantages over

conventional set-associative caches."

Further reading
• simulators available for download at University of Maryland: Memory-Systems Research: "Computational

Artifacts" (http:/ / www. ece. umd. edu/ ~blj/ memory/ artifacts. html) can be used to measure cache performance
and power dissipation for a microprocessor design without having to actually build it. This makes it much quicker
and cheaper to explore various tradeoffs involved in cache design. ("Given a fixed size chip, if I sacrifice some L2
cache in order to make the L1 cache larger, will that make the overall performance better or worse?" "Is it better
to use an extremely fast cycle time cache with low associativity, or a somewhat slower cycle time cache with high
associativity giving a better hit rate?")

Microprocessor Design/Virtual Memory
Microprocessor Design

Virtual Memory is a computer concept where the main memory is broken up into a series of individual pages.
Those pages can be moved in memory as a unit, or they can even be moved to secondary storage to make room in
main memory for new data. In essence, virtual memory allows a computer to use more RAM then it has available.

Implementation
Virtual memory can be implemented both in hardware and (to a lesser degree) in software, although many modern
implementations have both hard and soft components. We discuss virtual memory here because many modern PC
and server processors have virtual memory capabilities built in.
Pageing systems are designed to be transparent, that is the the programs running on the microprocessor do not need
to be explicitly aware of the paging mechanism to operate correctly.
Many processor systems give pages certain qualifiers to specify what kinds of data can be stored in the page. For
instance, many new processors specify whether a page contains instructions or data. Data pages may not be executed
as instructions.

Memory Accessing
Memory addresses correspond to a particular page, and an offset within that page. If a page is 212 bytes in a 32-bit
computer, then the first 22 bits of the memory address are the page address, and the lower 12 bits are the offset of the
data inside that page. The top 22 bits in this case will be separated from the address, and they will be replaced with
the current physical address of that page. If the page does not exist in main memory, the processor (or the paging
software) will retrieve the page from secondary storage, which can cause a significant delay.

http://citeseer.ist.psu.edu/seznec93case.html
http://www.irisa.fr/caps/PROJECTS/Architecture/
http://www.ece.umd.edu/~blj/memory/artifacts.html
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Pages
A page is a basic unit of memory, typically several kilobytes or larger. A page may be moved in memory to different
locations, or if it is not being used frequently it can be moved to secondary storage instead. The area in the secondary
storage is typically known as the page file, or as a "scratchpad" or something similar.

Page Table
The addresses of the various pages are stored in a paging table. The paging table itself can be stored in a memory
unit inside the processor, or it can reside in a dedicated area of main memory.

Page Faults
A page fault occurs when the processor cannot find a page in the page table.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is a small structure, similar to a cache, that stores the addresses of the most
recently used pages. Looking up a page in the TLB is much faster then searching for the page in the page table.
When the processor cannot find a particular page in the TLB, it is known as a "TLB Miss". When the TLB misses,
the processor looks for the page in the page table. If the page is not in the table either, there is a page fault.
Notice that even though the TLB is similar to the cache mechanism, the two are not related.

Microprocessor Design/Power Dissipation
Microprocessor Design

In addition to power and performance, another useful metric for examining processors is in terms of the amount of
power used. Power is a valuable commodity, especially in mobile or embedded environments, and in server farms.
Processors that utilize less power are more highly prized in these areas then processors with more capability and
better performance.
Reducing the amount of energy used, without reducing the performance of the computer system, is one of the Grand
Challenges in computer science.[1]

Gene's Law
Less well known then Moore's law is Gene's Law, named after Gene Frantz. According to Gene's law, the power
dissipation in embedded DSP processors will decrease by half every 18 months.

Two reasons to reduce power
The power used by a microprocessor causes 2 problems. Some techniques reduce only peak power; some other
techniques reduce only average power.

The peak power problem

• All the power used by a microprocessor is eventually converted to heat energy. If too much heat energy is allowed
to build up inside the microprocessor, the temperature will rise high enough to destroy the microprocessor.

This problem is solved by the cooling system, which replaces that problem with another problem:
• The higher the peak power used by a microprocessor, the more expensive the up-front cost of the cooling system

necessary to keep that processor from destroying itself.

http://en.wikibooks.org/w/index.php?title=Microprocessor_Design
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The average power problem

• The higher the average power used by a microprocessor, the higher the cost to the person who uses that
microprocessor. That person must not only pay for the electric power going into the microprocessor, but also pay
for cooling to pump waste heat energy all the way from the microprocessor to the outside environment.

In some situations, there are other reasons to reduce power:
• Laptop designers want a small, lightweight laptop. The higher the average power used by a microprocessor, the

heavier the battery must be for a given runtime.

Heat
In microprocessors, power is mostly dissipated as heat energy. This conversion to heat energy is a function of the
size of the wires and transistors, and the operating frequency of the processor.
As transistors get smaller, the depletion region gets smaller, and current leaks through the transistor even when it is
off. This leakage produces additional heat, and wastes additional power.
Heat can also cause materials to expand, which can alter the electrical characteristics of the tiny transistors and wires.
Many small microcontrollers don't need to worry about heat because they generate so little, but larger modern
general purpose processors typically need to be accompanied by heat sinks and fans to help cool the processor. If a
processor is running too hot, typically it can be slowed down to a lower clock rate to help prevent heat build up.
As power is a function of the square of the voltage, approximately, if you can reduce the power supply voltage by
half, you can reduce the power dissipation by possibly three quarters. Because of this, microprocessor chips are quite
often designed to run at what were once considered impossibly low voltages. The initial microprocessor chips, the
Intel 8080 and the Motorola MC6800, were designed to run at 5.0 volts. More modern microprocessors, like the
AMD Athlon K7 chips, are designed to run at 1.65 volts or even lower.
It should be noted that, in order to prevent uncontrollable heat buildup, many modern general-purpose
microprocessors dynamically turn off parts of the chip. A computer that is being used for purely integer calculations
does not need its floating point unit, and so power to the entire FPU, except possibly the register stack, is turned off.
Major sections of the microprocessor, then, can be turned on and off several times per millisecond. While this does
cut down average power draw and heat dissipation, it does put extraordinary demands on the power supply for the
chip, which can see power requirements that jump 50% in microseconds.

further reading
• How To Assemble A Desktop PC/Silencing describes some of the problems caused cooling fans, which wouldn't

be necessary if CPUs generated less heat.
[1] "Revitalizing Computer Architecture Research: Grand Research Challenges in Computer Science and Engineering" (http:/ / www. cra. org/

Activities/ grand. challenges/ architecture/ computer. architecture. pdf) edited by Mary Jane Irwin, John Paul Shen, 2005.
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