Ändringar mellan två versioner
Här visas ändringar i "ML Sessions 2018" mellan 2019-01-31 10:54 av Judith Butepage och 2019-03-08 14:21 av Judith Butepage.
Visa < föregående | nästa > ändring.
ML Sessions 2018
Interpretable ML #4 - 12. Dec. 2018 A Regularized Framework for Sparse and Structured Neural Attention
https://papers.nips.cc/paper/6926-a-regularized-framework-for-sparse-and-structured-neural-attention.pdf
Interpretable ML #3 - 29. Nov. 2018 Interpretable Explanations of Black Boxes by Meaningful Perturbation
https://www.robots.ox.ac.uk/~vedaldi//assets/pubs/fong17interpretable.pdf
Interpretable ML #2 - 15. Nov. 2018 Why should i trust you?: Explaining the predictions of any classifier.
https://arxiv.org/pdf/1602.04938v1.pdf
Interpretable ML #1 - 1. Nov. 2018 Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning
https://arxiv.org/pdf/1806.00069.pdf
RNNs #5 - Applications - 18. Oct. 2018 Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Sofia Explainable Neural Computation via Stack Neural Module Networks Judith Pixel Recurrent Neural Networks Federico Matteo Deep Variational Reinforcement Learning for POMDPs (ICML2018) Rika Wisture: RNN-based Learning of Wireless Signals for Gesture Recognition in Unmodified Smartphones Sahar Dong Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN) Louise A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues Samuel Markus Social Scene Understanding: End-to-End Multi-Person Action Localization and Collective Activity Recognition Sarah Sanne Wavenet: A Generative Model for Raw Audio Isac Recurrent Neural Network for Multivariate Time Series with Missing Values Ruibo RNNs #5 - 04. Oct. 2018 Sequential Neural Models with Stochastic Layers
http://papers.nips.cc/paper/6039-sequential-neural-models-with-stochastic-layers.pdf
RNNs #4 - 20. Sep. 2018 An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
https://arxiv.org/pdf/1803.01271.pdf
RNNs #3 - 06. Sep. 2018 Neural Turing Machines
https://arxiv.org/pdf/1410.5401.pdf
RNNs #2 - 14. June. 2018 Sequence modeling: Recurrent and recursive nets (page: 388-415)
http://www.deeplearningbook.org/contents/rnn.html
RNNs #1 - 31. May. 2018 Sequence modeling: Recurrent and recursive nets (page: 367-388)
http://www.deeplearningbook.org/contents/rnn.html
-------------------------------------------------------------------------------- Something else - 17. May. 2018 The limits and potentials of deep learning for robotics
http://journals.sagepub.com/doi/full/10.1177/0278364918770733
Optimization for ML #5 - 03. May. 2018 The Supervised Learning No-Free-Lunch Theorems
web.mit.edu/6.435/www/Dempster77.pdf
Optimization for ML #5 - 19. Apr. 2018 Maximum Likelihood from Incomplete Data via the EM Algorithm
http://web.mit.edu/6.435/www/Dempster77.pdf
Optimization for ML #3 - 05. Apr. 2018 Sharp Minima Can Generalize For Deep Nets
https://arxiv.org/pdf/1703.04933.pdf
Optimization for ML #2 - 08. Mar. 2018 Support Vector Machines
http://cs229.stanford.edu/notes/cs229-notes3.pdf
Optimization for ML #1 - 22. Feb. 2018 Large-Scale Machine Learning with Stochastic Gradient Descent
https://link.springer.com/content/pdf/10.1007%2F978-3-7908-2604-3_16.pdf
-------------------------------------------------------------------------------- Probabilistic Deep Learning #6 - 08. Feb. 2018 Application Session
* Bayesian Recurrent Neural Networks
* Learning & policy search in stochastic dynamical systems with BNNs
* Deep Probabilistic Programming
* Neural Discrete Representation Learning
* Deep Bayesian Active Learning with Image Data
Probabilistic Deep Learning #5 - 25. Jan. 2018 Weight Uncertainty in Neural Networks
http://proceedings.mlr.press/v37/blundell15.pdf
Probabilistic Deep Learning #4 - 11. Jan. 2018 Priors for infinite networks
https://link.springer.com/content/pdf/10.1007%2F978-1-4612-0745-0_2.pdf
¶