
SF2822 Applied nonlinear optimization, final exam
Monday August 19 2024 8.00–13.00

Brief solutions

1. As g3(x
∗) > 0 we must have g3(x) ≥ 0. Therefore, by complementarity we must

have λ3 = 0 in first-order optimality conditions.

Since g1(x
∗) = 0, g2(x

∗) = 0, with ∇g1(x∗) and ∇g2(x∗) linearly independent,
it follows that x∗ is a regular point. Hence, the first-order necessary optimality
conditions must hold. We therefore try to find λ1 and λ2 such that
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There is a unique solution given by λ1 = 2 and λ2 = −3. Since λ1 > 0 and λ2 < 0, we
must have g1(x) ≥ 0 and g2(x) ≤ 0 for the first-order necessary optimality conditions
to hold.

We now investigate whether this choice gives a local minimizer. The Jacobian of the
active constraints at x∗ is given by(

1 −1 0

0 1 −1

)
.

As the first two columns form an invertible matrix, we may for example obtain Z
from
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Hence,

ZT(∇2f(x∗)− λ1∇2g1(x
∗)− λ2∇2g2(x

∗))Z =
(

1 1 1
)
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= −1,

which is not a positive semidefinite matrix. Therefore, x∗ is a regular point at which
strict complementarity holds, and the second-order sufficient optimality do not hold.
Therefore, x∗ is not a local minimizer to (NLP ). Consequently, there is no choice
of ”?” such that x∗ is a local minimizer to (NLP ).

2. (a) The quadratic programming subproblems must have nonnegative values on λ.
Since this is not the case in the prinout, the prinout cannot be correct.

(b) We have

f(x) = ex1 +
1

2
(x1 + x2 − 4)2 + (x1 − x2)2,

g(x) = −(x1 − 3)2 − x22 + 9,

∇f(x) =

(
ex1 + 3x1 − x2 − 4

−x1 + 3x2 − 4

)
, ∇g(x) =

(
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)
,

∇2f(x) =
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)
, ∇2g(x) =
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)
.
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Insertion of numerical values in the expressions above gives the first QP-problem
according to

minimize 1
2p

THp+ cTp

subject to Ap ≥ b,

with

H =

(
4 −1

−1 3

)
, c =

(
−3

−4

)
, A =

(
6 0

)
, b =

(
0
)
.

This is a convex quadratic program. If we guess that the constraint is inactive,
we obtain

p = −H−1c =

(
13
11
19
11

)
.

For this p, it holds that Ap ≥ b, and hence we have the optimal solution to the
QP-problem, with λ = 0.

(c) The fact that the λ components from the prinout are negative suggests that
the inequality constraint is incorrectly treated as an equality, i.e., the printout
corresponds to

minimize ex1 + 1
2(x1 + x2 − 4)2 + (x1 − x2)2

subject to −(x1 − 3)2 − x22 + 9 = 0.

It can be seen that the norm of the gradient of the Lagrangian converges to
zero. We do not have printout of the constraint, but may estimate

−(0.7984− 3)2 − 2.03782 − 9 ≈ −2.22 − 2.02 + 9 = 0.16.

The constraint value is zero to numerical precision if more digits are added in
the calculation. Not required as you do not have calculator. Therefore, we
conclude that the first-order optimality conditions are satisfied.

Alternatively, the same conclusion could be drawn by assuming that the in-
equality had been set to −(x1 − 3)2 − x22 + 9 ≤ 0.

3. (a) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (4 0)T , which is feasible. At
this point, the multiplier of the constraint x2 ≥ 0 is negative, and the constraint
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is deleted from the active set. In the second iteration, the search direction points
at (5 3)T , but is limited by the constraint −x1−x2 ≥ −5, which is added. The
search direction now points at (7/2 3/2)T , which is feasible. The multiplier is
positive, and the problem is thus solved.

(b) The iterations are illustrated in the figure below:

In the first iteration the search direction points at (4 0)T , but the step is limited
by the constraint x2 − x1 ≥ −3, which is added. A zero step is taken, and the
multiplier for the constraint x2 ≥ 0 is negative. This constraint is deleted. The
new step is limited by the constraint −x1 − x2 ≥ −5, which is added. A zero
step is taken, and the multiplier for the constraint x2 − x1 ≥ −3 is negative.
This constraint is deleted, and the new step leads to the point (7/2 3/2)T ,
which is feasible. The multiplier is positive, and the problem is thus solved.

4. (See the course material.)

5. (a) The relaxed problem is a non-convex quadratic programming problem. To ob-
tain a lower bound of the original problem we do need to calculate a global
minimizer of this non-convex relaxed problem, which in general is not compu-
tationally tractable.

(b) If we let (SDP ′) be the problem arising as the constraint Y = xxT is added to
(SDP ) we can replace Y with xxT , which by (i) gives

(SDP ′)

min cTx+ 1
2x

THx

subject to

(
xxT x

xT 1

)
�
(

0 0

0 0

)
,

x2j = xj , j = 1, . . . , n.

By hint (ii) we can see that the constraint(
xxT x

xT 1

)
�
(

0 0

0 0

)
is always fulfilled, hence (SDP ′) may be written as

(SDP ′)
min cTx+ 1

2x
THx

x2j = xj , j = 1, . . . , n.
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But x2j = xj if and only if xj ∈ {0, 1}. Hence, (SDP ′) and (P ) are equivalent.


