
SF2822 Applied nonlinear optimization, final exam
Monday August 19 2024 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain thoroughly.

Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the nonlinear programing problem

(NLP )

minimize f(x)

subject to gi(x) ? 0, i = 1, . . . , 3,
x ∈ IR3,

where f : IR3 → IR and g : IR3 → IR3 are twice continuously differentiable and each
”?” is an inequality, either “≤” or “≥”. The inequalities can be of different type for
the different constraints.

Assume that we have a point x∗ such that

f(x∗) = 3, ∇f(x∗) =
(

2 −5 3
)T

, ∇2f(x∗) =


1 0 0

0 1 0

0 0 0

 ,

g1(x
∗) = 0, ∇g1(x∗) =

(
1 −1 0

)T
, ∇2g1(x

∗) =


0 0 0

0 0 0

0 0 0

 ,

g2(x
∗) = 0, ∇g2(x∗) =

(
0 1 −1

)T
, ∇2g2(x

∗) =


−2 0 0

0 2 0

0 0 −1

 ,

g3(x
∗) = 1, ∇g3(x∗) =

(
1 1 −2

)T
, ∇2g3(x

∗) =


2 3 0

3 2 1

0 1 0

 .

Is it possible to replace each “?” by either a “≤” or a “≥” so that x∗ becomes a
local minimizer to (NLP )? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)
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2. Consider the nonlinear optimization problem (NLP ) defined as

(NLP )
minimize ex1 + 1

2(x1 + x2 − 4)2 + (x1 − x2)2

subject to −(x1 − 3)2 − x22 + 9 ≥ 0.

You have obtained a printout from a sequential quadratic programming solver for
this problem. The initial point is x = (0 0)T and λ = 0. Six iterations, without
linesearch, have been performed. The printout, where the floating point numbers
are given with four decimal places, reads:

It x1 x2 λ ‖∇f(x)−∇g(x)λ‖
0 0 0 0 5.0000

1 0 1.3333 −0.7222 1.9259

2 1.0117 2.9430 −0.5596 1.1891

3 0.7084 2.1240 −0.4384 0.2028

4 0.7990 2.0422 −0.3294 0.0335

5 0.7983 2.0378 −0.3227 0.0001

6 0.7984 2.0378 −0.3227 0.0000

(a) Why cannot the above printout be correct? Give a reason that does not need
any calculations in addition to the printout above. . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Formulate the first QP problem. Solve this QP problem by any method, that
need not be systematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(c) All numerical values given in the table are correct for a problem related to
(NLP ). Make a qualified guess as to which problem this might be and motivate
the answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Note: According to the convention of the book we define the Lagrangian L(x, λ) as
L(x, λ) = f(x)−λTg(x), where f(x) the objective function and g(x) is the constraint
function, where the inequality constraint is written as g(x) ≥ 0.

3. Consider the quadratic program (QP ) defined by

(QP )

minimize 3x21 − 2x1x2 + 3x22 − 24x1 − 8x2

subject to −x1 − x2 ≥ −5,
x1 ≥ 0,
x2 ≥ 0.

The problem may be illustrated geometrically in the figure below,



SF2822 Final exam August 19 2024 Page 3 of 5

(a) Solve (QP ) by an active-set method. Start at x = (1 0)T with the constraint
x2 ≥ 0 active. You need not calculate any exact numerical values, but you may
utilize the fact that problem is two-dimensional, and make a pure geometric
solution. Illustrate your iterations in the figure corresponding to Exercise 3a
which can be found at the last sheet of the exam. Motivate each step carefully.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) Assume that the constraint x2 − x1 ≥ −3 is added to (QP ), so that we obtain
the problem (QP ′) according to

(QP ′)

minimize 3x21 − 2x1x2 + 3x22 − 24x1 − 8x2

subject to −x1 − x2 ≥ −5,
x1 ≥ 0,
x2 ≥ 0,
x2 − x1 ≥ −3.

Solve (QP ′) by an active-set method. Start at x = (1 0)T with the constraint
x2 ≥ 0 active. You need not calculate any exact numerical values, but you may
utilize the fact that problem is two-dimensional, and make a pure geometric
solution. Add the constraint x2 − x1 ≥ −3 and illustrate your iterations in the
figure corresponding to Exercise 3b which can be found at the last sheet of the
exam. Motivate each step carefully. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

4. Consider the nonlinear programming problem

(P )
minimize f(x)

subject to g(x) ≥ 0,

where f : IRn → IR and g : IRn → IRm are continuously differentiable.

A barrier transformation of (P ) for a fixed positive barrier parameter µ gives the
problem

(Pµ) minimize f(x)− µ
m∑
i=1

ln(gi(x)).
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(a) Show that the first-order necessary optimality conditions for (Pµ) are equivalent
to the system of nonlinear equations

∇f(x)−∇g(x)λ = 0,

gi(x)λi − µ = 0, i = 1, . . . ,m,

assuming that g(x) > 0 and λ > 0 is kept implicitly. . . . . . . . . . . . . . . . . . . . . (4p)

(b) Let x(µ), λ(µ) be a solution to the primal-dual nonlinear equations of (4a)
such that gi(x(µ)) > 0, i = 1, . . . ,m, and λ(µ) > 0. Show that x(µ) is a global
minimizer to (Pµ) if f and −gi, i = 1, . . . ,m, are convex functions on IRn. (2p)

(c) Derive the system of linear equations that results when the primal-dual nonlin-
ear equations of (4a) are solved by Newton’s method. . . . . . . . . . . . . . . . . . . . (4p)

5. Consider the optimization problem (P ) defined by

(P )
minimize cTx+ 1

2x
THx

subject to xj ∈ {0, 1}, j = 1, . . . , n,

where H is an indefinite symmetric matrix. Problems of this type arise within
combinatorial optimization, and the interest is to find a global minimizer.

One may compute lower bounds on the optimal value of (P ) by considering relaxed
problems.

(a) One way to relax (P ) is to replace the constraints xj ∈ {0, 1}, j = 1, . . . , n,
with 0 ≤ xj ≤ 1, j = 1, . . . , n. This gives a relaxed problem without discrete
variables, according to

minimize cTx+ 1
2x

THx

subject to 0 ≤ xj ≤ 1, j = 1, . . . , n,

Explain way this relaxed problem is not very interesting in practise. . . . . (3p)

(b) An alternative way to create a relaxation to (P ) is to introduce a symmetric
matrix Y and formulate the semidefinite programming problem

(SDP )

minimize cTx+ 1
2 trace(HY )

subject to

(
Y x

xT 1

)
�
(

0 0

0 0

)
,

Y = Y T ,
yjj = xj , j = 1, . . . , n.

Show that if the constraint Y = xxT is added to (SDP ), one obtains a problem
which is equivalent to (P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

Hint: The following two results, which may be used without proof, might be
useful:

(i) If H is an n× n-matrix and x is an n-vector, then trace(HxxT ) = xTHx.
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(ii) If Y is a symmetric n× n-matrix and x is an n-vector, then(
Y x

xT 1

)
�
(

0 0

0 0

)
if and only if Y − xxT � 0.

Good luck!





Name: . . . . . . . . . . . . . . . . Personal number: . . . . . . . . . . . . . . . . Sheet nummer: . . . . . . . . . . . . . . . .

Figure for Exercise 3a:

Figure for Exercise 3b:


