
Magnus O. Myreen, CSE, Chalmers, June 2024

Guest Lecture: Introduction to HOL

Interactive Theorem Proving with Dependent Types (FID3217)

Magnus O. Myreen, CSE, Chalmers, June 2024

Guest Lecture: Introduction to HOL

Interactive Theorem Proving with Dependent Types (FID3217)

… but HOL provers do not
have dependent types.

HOL provers are ITPs …

Here’s one reason:

Why learn about HOL?

Both Apple and AWS have independently
started projects on verification of
low-level code. Both chose Isabelle/HOL.

Why didn’t they choose Coq / Lean / Agda?

History of HOL ITPs

Lecture outline:

My work in a HOL ITP

A closer look at HOL4 (demos)

History of HOL ITPs

Lecture outline:

My work in a HOL ITP

A closer look at HOL4 (demos)

Motivation

You can prove that it satisfies the spec.

How can I know my software satisfies a spec?

How do I know my proof isn’t flawed?

By strictly following the rules of a formal logic,
you can be sure the proof is sound.

What is a formal logic and how can I be sure I follow its rules?

A formal logic is a formal system with limited
vocabulary and exact syntactic rules for

deducing new facts from other facts in the system.

You can be sure to follow its rules if you use software, called
interactive theorem provers (ITPs), to create and check your proofs.

Wait… How can I trust the correctness of these ITPs?

ITPs are very defensively programmed.

By strictly following the rules of a formal logic,
you can be sure the proof is sound.

What is a formal logic and how can I be sure I follow its rules?

Late 1960s & Early 1970s

Automath
Boyer-Moore
Theorem Prover

LCF

Nicolaas Govert
de Bruijn

Bob Boyer J Moore Robin Milner

Historically significant early ITPs:

Late 1960s & Early 1970s

Historically significant early ITPs:

Automath
Boyer-Moore
Theorem Prover

LCF

Nicolaas Govert
de Bruijn

Bob Boyer J Moore Robin Milner

first practical system that used the
Curry–Howard correspondence

Lisp programming language as a logic,
strong simplifier, automatic induction LCF = logic of

computable functions
(logic by Dana Scott)

Robin Milner

Standford LCF

team: Robin Milner and Whitfield Diffie

Diffie taught Milner Lisp

key features: goal manager and powerful simplifier

shortcomings:
(1) size of proofs was limited by memory

(2) fixed set of proof commands

who later took an interest in cryptography

Edinburgh LCF (1973 onwards)

Robin Milner, Lockwood Morris, Malcolm Newey

Milner tackled shortcomings (1) and (2)

Robin Milner

key features: goal manager and powerful simplifier

shortcomings:
(1) size of proofs was limited by memory

(2) fixed set of proof commands

Edinburgh LCF (1973 onwards)

Robin Milner, Lockwood Morris, Malcolm Newey

Milner tackled shortcomings (1) and (2)

Key idea:

System should only remember results of proofs (→ 1)

User should be able to program new tactics (→ 2)

abstract data type thm: predefined values were axioms
and operations over thm were inference rules of the logic

strict type checking ensured that all values of type thm
are axioms or follow by inference rules

Implementation: a new programming language, called ML

Robin Milner

Implementation: a new programming language, called ML

ML = Meta Language

→ Chris Wadsworth and Mike Gordon joined the effort

In 1975, Morris and Newey moved away

POPL’78

Implementation: a new programming language, called ML

ML = Meta Language

→ Chris Wadsworth and Mike Gordon joined the effort

In 1975, Morris and Newey moved away

Mike Gordon (and Milner) moved to Cambridge

Cambridge LCF

Larry Paulson was hired as a postdoc in early 1980s

Larry and Gérard Huet produced an ML compiler that
sped up LCF by factor for 20

behind CamlLarry significantly improved
many parts of Cambridge LCF

Larry Paulson

Mike Gordon

The HOL theorem prover
Mike was doing hardware verification in LCF

LCF’s foundations in domain theory were overkill

Ben Moskowski (then a postdoc) showed Mike how
Mike's hardware descriptions could be encoded
nicely in higher-order logic (HOL)

Church’s simple type theory (extended with polymorphic types)

→ Mike cloned Cambridge LCF and
 adjusted the thm type to implement HOL

HOL provers:

HOL88, HOL90, HOL4 and also Proof Power, Isabelle/HOL, HOL Light

Break for questions!
I like lots of questions.

History of HOL ITPs

Lecture outline:

My work in a HOL ITP

A closer look at HOL4 (demos)

Prior to my PhD

Mike hired Anthony Fox as a postdoc

Anthony continued Mike’s hardware verification

Ambitious project: prove functional correctness of
ARM processor down to RTL level

ARM6 RTL design was in the public domain

By product: an extensive definition of the how ARM
machine code executes (ISA specification)

Can Anthony’s ARM model be used?

His tooling produced theorems that describe ARM,
e.g. ARM instruction add r0,r0,r0 is described by:

Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ^ ¬state.undefined)
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL

Informal syntax for this talk:

(aR 0w x * aPC p)

{R0 x ⇤ PC p }

{(p,0xE0800000w)}

p : E0800000

(aR 0w (x+x) * aPC (p+4w))

{R0 (x+x) ⇤ PC (p+4) }

encoding of
add r0,r0,r0

Infrastructure in HOL4

During my PhD, I developed the following infrastructure:

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple

. . . each part will be explained in the next slides.

My PhD (2005-08)

Decompiler illustratedBasic idea

Example: Given some hard-to-read (ARM) machine code,

0: E3A00000 mov r0, #0
4: E3510000 L: cmp r1, #0
8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]
16: 1AFFFFFB bne L

The decompiler produces a readable HOL4 function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)

Decompilation, correct?

Decompiler automatically proves a certificate, which states that
f describes the e↵ect of the ARM code:

fpre(r0, r1,m))

{ (R0, R1, M) is (r0, r1,m) ⇤ PC p ⇤ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1,m) ⇤ PC (p + 20) ⇤ S }

Read informally as:
if initially reg 0, reg 1 and memory described by (r0, r1,m), then
the code terminates with reg 0, reg 1 and memory as f (r0, r1,m)

Decompiler illustrated (cont.)

LISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc.

ARM, x86, PowerPC code
and certificate theorems

machine-code Hoare triple

my tooling was extensible

My PhD (2005-08)

It was a lot of funLISP interpreter in use

Example: paper gives a definition of pascal-triangle, for which:

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)
(1 5 10 10 5 1)
(1 4 6 4 1)
(1 3 3 1)
(1 2 1)
(1 1)
(1))

Timings: ARM 0.090 ms, x86 0.001 ms, PowerPC 0.004 ms

LISP interpreter in use

To execute verified machine code, we:

1. wrote C wrapper around verified machine code,

2. compiled using gcc,

3. checked with hexdump that gcc didn’t alter the machine code,

4. ran code on real hardware:

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

The verified code was run on several platforms:

Most important lesson learnt:

Developing custom automation

and mixing that with interactive proving

leads to

high quality results (quickly)
and a lot of fun.

My PhD (2005-08)

Cambridge ARM model

detailed model of C code

low-level design

high-level design

Haskell prototype

real C code

or
ig

in
al

 L
4.

ve
ri

fie
d

w
or

k

seL4 machine code

ne
w

 e
xt

en
si

on

gcc (not trusted)

machine code as functions

decompilation

refinement proof

Verified seL4 OS

My contribution
to the stack

Received the 2023
ACM Software System Award

Thomas Sewell’s PhD

Break for questions!
I like lots of questions.

Connection to Boyer Moore

Boyer-Moore
Theorem Prover

Bob Boyer J Moore

Milawa

Jared Davis
(formerly Moore’s PhD student)

Email: can I try
running Milawa on
your verified Lisp?

core derived rules

decision
 procedures

LCF vs Milawa

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core can be replaced by a

new one at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools

case splitting

rewriting

‘auto’ tactics
...

...

Jitawa
verified
LISP

Lisp implementation (x86)
(approx. 7000 64-bit x86 instructions)

semantics of Milawa’s logic

inference rules of Milawa’s logic

Lisp semantics

semantics of x86-64 machine

Milawa theorem prover
(kernel approx. 2000 lines of Milawa Lisp)

verification of a Lisp
implementation
[ITP’11]

Soundness of
Milawa ITP
[ITP’14]

I proved Milawa sound

The CakeML project

Cambridge and Kent ML

Has produced a significant
verified compiler for ML

CakeML’s First Major Result

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK

2 Canberra Research Lab, NICTA, Australia‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust

† supported by the Royal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL’14

36 years after original ML paper

Received the 2024 ACM SIGPLAN Most
Influential POPL Paper Award

Proving a HOL prover sound

Candle: A Verified Implementation of HOL Light
Oskar Abrahamsson �

Chalmers University of Technology, Gothenburg, Sweden

Magnus O. Myreen �

Chalmers University of Technology, Gothenburg, Sweden

Ramana Kumar �

London, UK

Thomas Sewell �

University of Cambridge, UK

Abstract
This paper presents a fully verified interactive theorem prover for higher-order logic, more specifically:
a fully verified clone of HOL Light. Our verification proof of this new system results in an end-to-end
correctness theorem that guarantees the soundness of the entire system down to the machine code
that executes at runtime. Our theorem states that every exported fact produced by this machine-code
program is valid in higher-order logic. Our implementation consists of a read-eval-print loop (REPL)
that executes the CakeML compiler internally. Throughout this work, we have strived to make the
REPL of the new system provide a user experience as close to HOL Light’s as possible. To this end,
we have, e.g., made the new system parse the same variant of OCaml syntax as HOL Light. All of
the work described in this paper has been carried out in the HOL4 theorem prover.

2012 ACM Subject Classification Software and its engineering æ Software verification

Keywords and phrases Prover soundness, Higher-order logic, Interactive theorem proving

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.3

Supplementary Material Software (Proofs and Prebuilt Binaries): https://cakeml.org/candle

Funding Oskar Abrahamsson: Swedish Foundation for Strategic Research.
Magnus O. Myreen: Swedish Foundation for Strategic Research.

Acknowledgements We want to thank Freek Wiedijk and Yong Kiam Tan. We are grateful for
Freek Wiedijk’s question at ITP’11. Following a presentation about the verification of a runtime for
Milawa [10] at ITP’11, Wiedijk asked: “Can you do the same for HOL Light, please?” Wiedijk’s
question can be seen as the seed that set us thinking about the possibility of a verified HOL Light
implementation and eventually lead us to construct the verified Candle ITP, presented in this paper.
We want to thank Yong Kiam Tan for helping with some proofs involving the the CakeML type
inferencer. These proofs were part of the proof of safety of CakeML’s new read-eval-print loop.

1 Introduction

Interactive theorem provers (ITPs) for higher-order logic, such as HOL4, HOL Light, Isa-
belle/HOL and ProofPower, are designed to be as sound as possible. Their implementations
follow an LCF-style architecture, which means that each prover has a small kernel that
implements the inference rules of the hosted logic (higher-order logic) and the rest of the
system is set up in such a way that all soundness-critical inferences must be performed by
the functions inside the small kernel. The beauty of this approach is that there is not much
soundness-critical source code, which means that this code can quite easily be manually
inspected (or even verified). As a result, soundness bugs in these ITPs are very rare.

© Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas Sewell;

licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).

Editors: June Andronick and Leonardo de Moura; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ITP’22

Wait… How can I trust the correctness of these ITPs?

ITPs are very defensively programmed.

Some are even proved to be sound.

Proved with an unverified ITP?

Yes, but see Yang el al. [PLDI’11]

Motivation continued

Break for questions!
I like lots of questions.

History of HOL ITPs

Lecture outline:

My work in a HOL ITP

A closer look at HOL4 (demos)

Trust story

Coq HOL provers

Proving produces proof
terms that are checked by
a trusted proof checker.

Proving produces values of
type thm using a trusted
LCF-style kernel.

One benefit:
Proofs are not kept around.
Proofs don’t occupy space.

HOL logic

HOL logic is really simple

https://github.com/jrh13/hol-light/blob/master/fusion.ml

Kernel of the HOL light theorem prover

https://github.com/jrh13/hol-light/blob/master/fusion.ml

Break for questions!
I like lots of questions.

Demo

Example taken from lecture on
compiler verification.

Syntax

 exp = Num num
 | Var name
 | Plus exp exp

Source:

Target ‘machine code’:

 inst = Const name num
 | Move name name
 | Add name name name

Target program consists of list of inst

Source semantics (big-step)

Big-step semantics as relation ↓ defined by rules, e.g.

(Num n, env) ↓ n (Var s, env) ↓ v

lookup s in env finds v

(Plus x1 x2, env) ↓ v1 + v2

(x1, env) ↓ v1 (x2, env) ↓ v2

called “big-step”: each step ↓ describes complete evaluation

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

 step (Const s n) state = state[s ↦ n]
 step (Move s1 s2) state = state[s1 ↦ state s2]
 step (Add s1 s2 s3) state = state[s1 ↦ state s2 + state s3]

 steps [] state = state
 steps (x::xs) state = steps xs (step x state)

Compiler function

 compile (Num k) n = [Const n k]

 compile (Var v) n = [Move n v]

 compile (Plus x1 x2) n =
 compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]

generated code stores
result in register name (n)

given to compiler

generated code stores
result in register name (n)

given to compiler

generated code stores
result in register name (n)

given to compiler

Uses names above n as temporaries.

Relies on variable names in
source to match variables

names in target.

Correctness statement

∀x env res.
 (x, env) ↓ res ⇒
 ∀state k.
 (∀i v. (lookup env i = SOME v) ⇒ (state i = v) ∧ i < k) ⇒
 (let state' = steps (compile x k) state in
 (state' k = res) ∧
 ∀i. i < k ⇒ (state' i = state i))

For every evaluation in the source …

for target state and k, such that …

k greater than all var
names and state in sync

with source env …

… in that case, the result res will be stored at
location k in the target state after execution

… and lower part of state left untouched.

Proved using proof assistant — demo!

open HolKernel Parse boolLib bossLib stringTheory combinTheory
 arithmeticTheory finite_mapTheory pairTheory;

val _ = new_theory "demo";

Type name = ``:num``;

(* -- SYNTAX -- *)

(* source *)

Datatype:
 exp = Num num
 | Var name
 | Plus exp exp
End

(* target *)

Datatype:
 inst = Const name num
 | Move name name
 | Add name name name
End

(* -- SEMANTICS -- *)

(* source *)

Inductive eval:
 (T
 ⇒
 eval (Num n, env) n)
 ∧
 ((FLOOKUP env s = SOME v)
 ⇒
 eval (Var s, env) v)
 ∧
 (eval (x1,env) v1 ∧ eval (x2,env) v2
 ⇒
 eval (Plus x1 x2, env) (v1+v2))
End

(* target *)

Definition step_def:
 step (Const s n) state = (s =+ n) state ∧
 step (Move s1 s2) state = (s1 =+ state s2) state ∧
 step (Add s1 s2 s3) state = (s1 =+ state s2 + state s3) state
End

Definition steps_def:
 steps [] state = state ∧
 steps (x::xs) state = steps xs (step x state)
End

(* -- COMPILER -- *)

Definition compile_def:
 compile (Num k) n = [Const n k] ∧
 compile (Var v) n = [Move n v] ∧
 compile (Plus x1 x2) n =
 compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]
End

(* verification proof *)

Theorem steps_append[simp]:
 ∀xs ys state. steps (xs ++ ys) state = steps ys (steps xs state)
Proof
 Induct \\ fs [steps_def]
QED

Theorem eval_ind = eval_ind |> Q.SPEC ‘λ(x,y) z. P x y z’
 |> SIMP_RULE (srw_ss()) [FORALL_PROD] |> GEN_ALL;

Theorem compile_correct:
 ∀x env res.
 eval (x, env) res ⇒
 ∀k state.
 (∀i v. (FLOOKUP env i = SOME v) ⇒ (state i = v) ∧ i < k) ⇒
 let state' = steps (compile x k) state in
 (state' k = res) ∧
 ∀i. i < k ⇒ (state' i = state i)
Proof
 ho_match_mp_tac eval_ind \\ rpt strip_tac
 \\ fs [compile_def,steps_def,step_def,APPLY_UPDATE_THM]
 \\ last_x_assum $ drule_then strip_assume_tac \\ simp []
 \\ last_x_assum $ qspecl_then [‘k+1’,‘steps (compile x k) state’] mp_tac
 \\ impl_tac >- (rw [] \\ res_tac \\ fs [])
 \\ strip_tac \\ simp []
QED

val _ = export_theory();

Code for the demo:

Break for questions!
I like lots of questions.

Other demos

Operational semantics for Haskell-like language.

The n-bit word type in HOL.

Break for questions!
I like lots of questions.

History of HOL ITPs

Lecture outline:

My work in a HOL ITP

A closer look at HOL4 (demos)

End of lecture

