Guest Lecture: Introduction to HOL

Interactive Theorem Proving with Dependent Types (FID3217)

Magnus O. Myreen, CSE, Chalmers, June 2024

[HOL provers are ITPs ...]

V
Guest Lecture: Introduction to HOL

Interactive Theorem Proving withll Dependent Types fFID3217)
A
~
... but HOL provers do not
have dependent types.

J

Magnus O. Myreen, CSE, Chalmers, June 2024

Why learn about HOL?

Here’s one reason:

Both Apple and AWS have independently
started projects on verification of

low-level code. Both chose Isabelle/HOL.

)

(Why didn’t they choose Coq / Lean / Agda!?)

Lecture outline:
History of HOL ITPs

My work ina HOL ITP

A closer look at HOL4 (demos)

Lecture outline:

History of HOL ITPs

My work ina HOL ITP

A closer look at HOL4 (demos)

Motivation

2 How can | know my software satisfies a spec!)
(You can prove that it satisfies the spec. &

2 How do | know my proof isn’t flawed?)

-

By strictly following the rules of a formal logic,
you can be sure the proof is sound.

_

2 What is a formal logic and how can | be sure | follow its rules!?)

IJI w Wi I\-\—II IVII\JVVIII6 GiiWw 1 MiWwd Wi ,VI I N4 l\lSl\u’
L you can be sure the proof is sound.

a

What is a formal logic and how can | be sure | follow its rules!?)

4)
A formal logic is a formal system with limited

vocabulary and exact syntactic rules for
deducing new facts from other facts in the system.

N ,x
\
You can be sure to follow its rules if you use software, called
interactive theorem provers (ITPs), to create and check your proofs.

N ,x

-

Wait... How can | trust the correctness of these ITPs?)

[ITPs are very defensively programmed. g

Late 1960s & Early 1970s

Historically significant early ITPs:

Boyer-Moore

Theorem Prover LCF

Automath

Nicolaas Govert
de Bruijn

Bob Boyer] Moore Robin Milner

-

G

first practical system that used the
Curry—Howard correspondence

Hist

Automath

Nicolaas Govert

-

_

Lisp programming language as a logic,
strong simplifier, automatic induction

J

rically significant early

de Bruijn

Boyer-Moore
Theorem Prover

Bob Boyer

TPs:

] Moore

arly 1970s

-

_

LCF = logic of
computable functions
(logic by Dana Scott)

~

J

Robin Milner

[who later took an interest in cryptography j
Standford LCF \/

team: Robin Milner and Whitfield Diffie
Diffie taught Milner Lisp

Robin Milner key features: goal manager and powerful simplifier

shortcomings:
(1) size of proofs was limited by memory

(2) fixed set of proof commands

Edinburgh LCF (1973 onwards)

Robin Milner, Lockwood Morris, Malcolm Newey

Milner tackled shortcomings (1) and (2)

shortcomings:
(1) size of proofs was limited by memory

(2) fixed set of proof commands

Edinburgh LCF (1973 onwards)

Robin Milner Robin Milner, Lockwood Morris, Malcolm Newey

Milner tackled shortcomings (1) and (2)

System should only remember results of proofs (— |)

User should be able to program new tactics (— 2)

Key idea: abstract data type thm: predefined values were axioms
and operations over thm were inference rules of the logic

strict type checking ensured that all values of type thm
are axioms or follow by inference rules

Implementation: a new programming language, called ML

Implementation: a new programming language, called ML

A

ML = Meta Language

In 1975, Morris and Newey moved away

Robin Milner — Chris Wadsworth and Mike Gordon joined the effort

Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

POPL’78

A Metalanguage for Interactive Proof in LCF*

M. Gordon, R. Milner
University of Edinburgh

L. Morris
Syracuse University

M. Newey
Australian National University

C. Wadsworth
University of Edinburch

Introduction computing system) of ML and PPA began over three
years ago at Edinburgh; for about two years the
system has been usable, and its development is now
virtually camplete. Recently it has been used in
various studies concerning formal semantics:

ICF (Logic for Camputable Functions) is a
proof generating system consisting of an inter-
active programming language ML (MetaLanguage) for

e Y et i 2k DY DAY c vt 2 o Drerrd @ v

Implementation: a new programming language, called ML

A
[ML = Meta Language j

In 1975, Morris and Newey moved away

— Chris Wadsworth and Mike Gordon joined the effort

Cambridge LCF

Mike Gordon (and Milner) moved to Cambridge
Larry Paulson was hired as a postdoc in early 1980s

Larry and Geérard Huet produced an ML compiler that
sped up LCF by factor for 2

Larry significantly improved
many parts of Cambridge LCF

behind Caml j

Larry Paulson

The HOL theorem prover

Mike was doing hardware verification in LCF

LCF’s foundations in domain theory were overkill

H e Ben Moskowski (then a postdoc) showed Mike how
0 W ,’ 2 Mike's hardware descriptions could be encoded
Mike Gordon nicely in higher-order logic (HOL)

A

[Church’s simple type theory (extended with polymorphic types) j

— Mike cloned Cambridge LCF and
adjusted the thm type to implement HOL

HOL provers:
HOL88, HOL90, HOL4 and also Proof Power, Isabelle/HOL, HOL Light

Break for questions!

| like lots of questions.

Lecture outline:

History of HOL ITPs

My work ina HOL ITP

A closer look at HOL4 (demos)

Prior to my PhD

Mike hired Anthony Fox as a postdoc

Anthony continued Mike’s hardware verification

Ambitious project: prove functional correctness of
ARM processor down to RTL level

(\ARM6 RTL design was in the public domain j

By product: an extensive definition of the how ARM
machine code executes (ISA specification)

Can Anthony’s ARM model be used?

His tooling produced theorems that describe ARM,
e.g.ARM instruction add r0,r0,r0 is described by:

|- (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state

r

.

encodine of 0xE0800000w) A —state.undefined =
dd r0 g 0 (NEXT_ARM_MMU cp state =
aca oy ARM_WRITE_REG 15w (ARM_READ REG 15w state + 4w)

(ARM_WRITE_REG Ow
(ARM_READ_REG Ow state + ARM_READ REG Ow state) state))

My PhD (2005-08)

During my PhD, | developed the following infrastructure:

func -------- >[compiler } ————— - (code,thm)
code ----- ->[decompiler } ----p (func,thm)
[machine-code Hoare triple J

Decompiler illustrated

Example: Given some hard-to-read (ARM) machine code,

O: E3A00000 mov r0O, #0

4: E3510000 L: cmp rl, #0O

8: 12800001 addne r0, r0, #1
12: 15911000 ldrne r1, [ri]
16: 1AFFFFFB bne L

The decompiler produces a readable HOL4 function:

f(ro,ri,m) = let o =0in g(rg, rp, m)
g(rg,ri,m) = if n =0 then (rg, 1, m) else
let o = rp+1 in

let 1 = m(ry) in
g(ro, r1, m)

Decompiler illustrated (cont.)

Decompiler automatically proves a certificate, which states that
f describes the effect of the ARM code:

fore(1o, r1, m) =

{(RO,R1,M) is (rg,r1,m)* PCpxS}

p : E3A0O0000 E3510000 12800001 15911000 1AFFFFFB
{(RO,R1,M) is f(rg,rn,m)* PC(p+20)*S}

My PhD (2005-08)

[my tooling was extensible j

v

verified code for LISP primitives car, cdr, cons, etc.

v
HOL4 functions for . ARM, x86, PowerPC code
) _—— I - _ y y
LISP parse, eval, print ’[comprier } > and certificate theorems
[decompiler J
(machine-code Hoare triple J

[ARM [xX86 J PowerPC]

It was a lot of fun

Example: paper gives a definition of pascal-triangle, for which:
(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)
(1510 10 5 1)

(1464 1)

(133 1) .

(12 1) The verified code was run on several platforms:
(1 1)

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

My PhD (2005-08)

Most important lesson learnt:

Developing custom automation

and mixing that with interactive proving

leads to

high quality results (quickly)
and a lot of fun.

original L4.verified work

Verified sel_4 OS

high-level design

1

I

detailed model of C code

1 refinement proof

machine code as functions

1 decompilation

seL4 machine code | «

Cambridge ARM mode

_

Received the 2023

ACM Software System Award

J

low-level design > CLTTTTTIPIPPE

Haskell prototype

real C code

? Thomas Sewell’s PhD]

" gec (not trusted)

My contribution
to the stack

~

Break for questions!

| like lots of questions.

Connection to Boyer Moore

Boyer-Moore
Theorem Prover ----- » Milawa

ool

A
Bob Boyer] Moore Jared Davis

Email: can | try
running Milawa on
your verified Lisp!?

J

(formerly Moore’s PhD student)

work by Jared Davis

LCF vs Milawa

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

rewriting

case splitting

core derived rules

the Milawa approach

* all proofs must pass the core
* the core can be replaced by a
new one at runtime

| proved Milawa sound

- “
semantics of Milawa’s logic
N\ y
r “
inference rules of Milawa’s logic Soundness of
B - J :
) Milawa ITP
| Milawa theorem prover [ITP’14]
(kernel approx. 2000 lines of Milawa Lisp)
[Lisp semantics j ¢ o

‘l’ta.wa Lisp implementation (x86)
Verl fled (approx. 7000 64-bit x86 instructions)

semantics of x86-64 machine j ®

verification of a Lisp

implementation
[ITP 1]

Values L Tr
Parse concrete syntax
Infer types, exit if fail
CakeML " types, exit i fai
source AST Lift some Lets to top level
Introduce globals vars,
(eliminate modules &
replace constructor
FlatLang: names with numbers
a language for
compiling Global dead code elim.

away high-level
lang. features

S
)

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values

ClosLang:
flow & inline small functions

last language

with closures

(has multi-arg
closures)

Introduce C-style fast
calls wherever possible

Remove deadcode
Annotate closure creations

abstract values incl. closures and ref pointers

Perform closure conv.

Inline small functions

BVL:
functional Fold constants and
language shrink Lets
without Split over-sized functions
closures into many small functions
Compile global vars into a
dynamically resized array
BVI: Optimise Let-expressions
8 onegicoal Make some functions tail-
z variable recursive using an acc.
S
2 . .
2 Switch to imperative style
8 DatalLang: Reduce caller-saved vars
° p o
S imperative Combine adjacent
s language memory allocations
Remove data abstraction
Simplify program
Select target instructions
WordLang:
imperative Perform SSA-like renaming

language with

Force two-reg code (if req.
machine words, 9 (if req.)

memory and Common subexp. elim.
a GC primitive
e Remove deadcode
Allocate register names
Concretise stack
Introduce (raw) calls past
StackLang: function preambles
imperative Implement GC primitive
language
q ' Turn stack accesses into
with array-like memory acceses
stack and
optional GC Rename registers to match

arch registers/conventions

Flatten code

\VAVAVAAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVILVAVAVAVAVAVAVAVAVAVILVAVARRVAVAVAV)

Delete no-ops (Tick, Skip)

machine words and code labels

Encode program as
concrete machine code

32-bit

words words

‘|’ (ARMv8) (x86-64) (MIPS-64) (RISC-V)
Hardware below this line
Silver CPU
as HOL functions

Proof-pi ing
Verilog generator <

64-bit

Implements

CakeML project

Cambridge and Kent ML

Has produced a significant

verified compiler for ML

C s Fi
akeML’s First Major Result

36
years after original ML pape
r

POPL’14 —

-

Received th
e 2024 ACM
. SI
Influential POPL Papele;szMost
r

~

Ramana Kumar +1 Magnus O Myreen* 1 Michael Norrish 2 §cott Owens
1 Computer Laboratory University of Cambridge, UK
2 Canberra Researc ab, N CTA, Austrahax
3 gchool of Computing, University of Kent,
Abstract 1. Introduction
We have Jeveloped and mechanica\\y yerified an ML system called The last decade has seen a strong interest 10 verified compilation;
CakeML, which supports ubstantial subset of Standar ML and there have been significant, high—proﬁle results, many based
CakeML 18 imp\emented as an interactive read—eval—pﬁnt loop on the CompCert compiler for 1, 14, 16, 29). This interest 18
REPL) 10 x86-64 machine c0de: Our correctn€ss theorem ensures easy tO justify: in th context of program yerification, i unverifie
that this REPL implementaﬁon prints only thos€ results permitted compiler forms a 1argeé and complex part of the trusted computing
by the semantics © CakeML. Our veriﬁcation effort touches On base. However, to our know\edge, pone of the existing work on
a breadth of topics including lexing, parsing type checking, in- verified compilers for general—pur ose languages has addressed all
ntal and dynamic compilation, garbage collection, arbitrary- aspects of a mpiler along tWO dimensions: one, the compilation
ic, and compiler bootstrappi g algorithm for converting @ progra from a Source string to list of
simply in build- pumbers represem'mg achine code, and twWO, the execution of that
algorithm a5 imp\emented in machine code.
this paper is to explain now we have verified
es dimensions for a

creme
T . arithmetic,

e 1d. The first 18
C atin o

that each
B Our purpose in
P A eeone of poth of th
O Our language 18
- 1

Proving a HOL prover sound

Candle: A Verified Implementation of HOL Light

Oskar Abrahamsson &
Chalmers University of Technology, Gothenburg, Sweden

Magnus O. Myreen &
Chalmers University of Technology, Gothenburg, Sweden

Ramana Kumar &
London, UK

Th Sewell
Uriversty of Cambrids, UK ITP’22

—— Abstract

This paper presents a fully verified interactive theorem prover for higher-order logic, more specifically:
a fully verified clone of HOL Light. Our verification proof of this new system results in an end-to-end
correctness theorem that guarantees the soundness of the entire system down to the machine code
that executes at runtime. Our theorem states that every exported fact produced by this machine-code

program is valid in higher-order logic. Our implementation consists of a read-eval-print loop (REPL)
+that aovortitoe +tho ('al-aMNMT carmnilor vnvtorvnallyy ThrAatiaobatit +thic wnarl v hayra acfvrivioed 4 rvmal-o +ho

Motivation continued

2 Wiait... How can | trust the correctness of these ITPs?]
[ITPs are very defensively programmed. g

[Some are even proved to be sound. &

2 Proved with an unverified ITP?)

[Yes, but see Yang el al. [PLDI’I 1] g

Break for questions!

| like lots of questions.

Lecture outline:
History of HOL ITPs

My work ina HOL ITP

A closer look at HOL4 (demos)

Trust story

Cogqg HOL provers
Proving produces proof Proving produces values of
terms that are checked by type thm using a trusted
a trusted proof checker. LCF-style kernel.

4)
One benefit:

Proofs are not kept around.

Proofs don’t occupy space.
_ J

HOL logic

HOL logic is really simple

https://github.com/jrh | 3/hol-light/blob/master/fusion.ml

A

[Kernel of the HOL light theorem prover]

https://github.com/jrh13/hol-light/blob/master/fusion.ml

Break for questions!

| like lots of questions.

Demo

Example taken from lecture on
compiler verification.

Syntax

Source:

exp = Num num
| Var name
| Plus exp exp

Target ‘machine code’:

inst = Const name num
” | Move name name
| Add name name name

CTarget program consists of list of 1hst)

Source semantics (big-step)

Big-step semantics as relation 1 defined by rules, e.g.

lookup s in env finds v

(Num n, env) ! n (Var s, env) 1 v

(x1, env) | vl (x2, env) | VvZ

(Plus x1 x2, env) {1 vl + VvZ

|

(called “big-step”: each step ! describes complete evaluation)

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

step (Const s n) state = state[s » n]
step (Move sl s2) state = state[sl » state sZ2]
step (Add sl sZ2 s3) state = state[sl » state sZ2 + state s3]

steps [] state = state
steps (X::xs) state = steps xs (step x state)

Compiler function

-

~

generated code stores
result in register name (n)
given to compiler

compile (Num k) n = [Const n k 4

[Move n vi——

compile (Var v) n

-

Relies on variable names in

source to match variables
names in target.

~

compile (Plus x1 x2) n =

compile x1 n ++ compile x2 (n+l) ++ [Add n n (n+1)]

|

(Uses names above

n as temporaries.)

Correctness statement

Proved using proof assistant — demo!

For every evaluation in the source ...)
VX env res. for target state and k, such that ...)
(x, env) ! res
Vstate k.
(Vi v. (lookup env 1 = SOME v) = (state 1 =v) A1 < k) =
(let state' = steps (compile x k) state in A
(state' k = res) a 4 h

k greater than all var
names and state in sync
with source env ...

\ - Y,
4 \
... in that case, the result res will be stored at

location k in the target state after execution
\ J

C ... and lower part of state left untouched.)

Vi. 1 < k =» [state' 1 = state 1))

Code for the demo:

open HolKernel Parse boolLib bossLib stringTheory combinTheory
arithmeticTheory finite_mapTheory pairTheory;

val _ = new_theory "demo";

Type name = "~ :num’ "

(* -- SYNTAX -- *)
(* source *)

Datatype:
exp = Num num
| Var name
| Plus exp exp
End

(* target *)

Datatype:
inst = Const name num
| Move name name
| Add name name name
End

(* -- SEMANTICS -- *)
(* source *)

Inductive eval:
a

eval (Num n, env) n)
A
((FLOOKUP env s = SOME v)

eval (Var s, env) v)
A
(Ceval (x1,env) vl A eval (x2,env) v2

eval (Plus x1 x2, env) (v1+v2))
End

(* target *)

Definition step_def:

step (Const s n) state = (s =+ n) state A

step (Move sl s2) state = (sl =+ state s2) state A

step (Add sl s2 s3) state = (sl =+ state s2 + state s3) state
End

Definition steps_def:

steps [] state = state A

steps (x::xs) state = steps xs (step x state)
End

(* -- COMPILER -- *)

Definition compile_def:
compile (Num k) n = [Const n k] A
compile (Var v) n = [Move n v] A
compile (Plus x1 x2) n =
compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]
End

(* verification proof *)

Theorem steps_append[simp]:

Vxs ys state. steps (xs ++ ys) state = steps ys (steps xs state)
Proof

Induct \\ fs [steps_def]
QED

Theorem eval_ind = eval_ind |> Q.SPEC ‘A(X,y) z. P xy z’
> SIMP_RULE (srw_ss()) [FORALL_PROD] I> GEN_ALL;

Theorem compile_correct:
Vx env res.
eval (x, env) res =
Vk state.
(Vi v. (FLOOKUP env i = SOME v) = (state i = V) A 1 < k) =
let state' = steps (compile x k) state in
(state' k = res) A
Vi. i < k = (state' i = state 1)
Proof
ho_match_mp_tac eval_ind \\ rpt strip_tac
\\ fs [compile_def,steps_def,step_def,APPLY_UPDATE_THM]
\\ last_x_assum $ drule_then strip_assume_tac \\ simp []
\\ last_x_assum $ gspecl_then [‘k+1’,‘steps (compile x k) state’] mp_tac
\\ impl_tac >- (rw [] \\ res_tac \\ fs [])
\\ strip_tac \\ simp []
QED

val _ = export_theory(Q);

Break for questions!

| like lots of questions.

Other demos

Operational semantics for Haskell-like language.

The n-bit word type in HOL.

Break for questions!

| like lots of questions.

Lecture outline:
History of HOL ITPs

My work ina HOL ITP

A closer look at HOL4 (demos)

End of lecture

