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SF2822 Applied nonlinear optimization, final exam
Thursday May 30 2024 8.00-13.00
Brief solutions

GAMS has terminated successfully with model status ¢ ‘Locally Optimal’’,
meaning that a point 2* and Lagrange multiplier vector X* that together satisfy
the first-order necessary optimality conditions for (VL P) have been computed.
From ¢‘LEVEL’’ of ‘‘VAR x’’, we obtain the solution

*

£ z(—moo 0.000 —0.707)T.

Analogously, the Lagrange multipliers of the constraints are given by ¢ ‘MARGIN’’
of ‘‘EQU consl’’, ‘‘EQU cons2’’, and ‘‘VAR x’’ associated with €¢j1°°
and ‘“j2°7, as

* T
A %(0.000 45.752 24.488 285.643) .

We have f(z) = fi(x1 + 2z2 + 23 + 5) + fo(221 + 3 — 4) for f1(y) = y* and
f2(y) = y%. Then, f/'(y) = 12y*> > 0 and f5(y) = 2 > 0, so that f; and f, are
convex functions on IR. As linear tranformations preserve convexity, we obtain
f as a sum of two convex functions, hence convex. As g;(2*) > 0, constraint
one is not active at 2, so we may consider the problem

minimize  f(x)
(NLP') subject to —z% — 223 +2 =0,
z1+1>0,
i) 2 0.

Problem (/N LP) is not convex, due to a nonlinear equality constraint. However,
as X; > 0, it follows that z* together with \* satisfy the first-order optimality
conditions for the problem (N LP"), where the constraint —z% — 223 +2 = 0 is
replaced by —z% — 223 +2 >0, i.e.,
minimize  f(x)
(NLP”) subject to —:c% — 256% +22>0,
r+12> Oa
T9 > 0.

Now, ga(7) = —2% —222+2 is a concave function. Therefore, the feasible region
of (NLP") is convex, so that 2™ is a global minimizer to (NLP"). As (NLP")
is a relaxation of (NLP), 2 is a global minimizer to (NLP) as well.

(A less insightful answer is that global optimality cannot be concluded directly
from the first-order necessary optimality conditions as (NLP) is not a convex
problem.)

The expected change in the objective function is given by the Lagrange multi-
plier, up to first order, hence 162.5591 — 45.752¢ for the second constraint and
162.5591 — 24.488t for the third constraint. Therefore, the second constraint is
to be preferred.

Problem (QP) is a convex quadratic program with objective function %xTH T+
c'x for H =TI and ¢ = 0, and constraint Az > b for A = (1 1) and b = 2. The
primal-dual nonlinear equations take the form

Hr+c— AT\ =0

(Az —b)A — = 0.
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Insertion of numerical values gives

3331—)\:0,
To — A =0,

8
(331+x2—§))\—u20.

We may express 1 and x3 in A from the first two equations as

A
= g, T2 = >‘7
which inserted in the third equation gives
A 8
—+A—)A—p=0.
(3HA-3)A—n
This is equivalent to
3
M =2\ - Sp=0.
4#
Therefore,

3
)\(u)zl—i-\/l—i-zu.

The plus sign is chosen as A(u) > 0. Then,

xl(u)=A(3/“L)=;<1+\/1+iu>, Ta(p) = M) =1+ 1+zu-

(As a check, we may verify lim, 0+ (1) = (2/3 2)7 = 2 and lim,, o4 A(p) =
2=2")

The Newton step Az, A\ is given by linearization of the primal-dual nonlinear
equations as

H —AT Az '\ Hzx +c— AT)

M Az —b )\ AN (Az =) —p )’
where the right-hand side is evaluated at the particular iterate x, .
Insertion of numerical values gives

30 -1\ (A ~10
0 1 -1 || Az |=]| 2

4 5
2 2 4 AX -3

3. If the problem is put on the form

minimize  f(z)

subject to g(x) >0, z € IR?,

we obtain
To I
Vf(l")T:(xl-l-fb‘Q—i-% $1+SE2—%)7 VQ(JU)T: I 01,
0 1

1 1-—
V2 Lz, ) = ( A1 ) .
1—X\ 1
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With 2(9 = (2 )T and A(©) = (1 0 0)7 the first QP-problem becomes

1 0
minimize %(m p2)<0 1)(?)4-(4 —2)(?)
2 2
3 2 0
. b1
subject to 10 < > > -2
0 1 p2 _%

The optimal solution of the QP-problem is given by the feasible point which is
closest, in 2-norm, to (—4 2)7. This may for example be solved graphically:

/
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The solution is p{®) = (=2 2) with constraint 2 active. The Lagrange multiplier
/\él) of the active constraint is given by

() ()= ()

ie., /\(21) = 2. Thus, we have \(!) = (0 2 0)7, and 2 is given by z(}) = 2(0) 4p(0) =
(05/2)T.

4. (See the course material.)

5. (a) We may let M = >"" , Uyw; — V. Then, M —¢I > 0 ensures ¢t < nmin(M) and
sI — M = 0 ensures s > Nyax(M). We may then formulate the problem as

minimize s—t¢
s,t,w

(P) subject to sl — > Ujw; +V =0,
iy Uiy =V —tI = 0.

(b) We may derive the dual by Lagrangian relaxation. Let Y and Z be positive
semidefinite symmetric m x m matrices. Then,

L(s,t,w,Y,Z)=s—1t— trace(Y (sI — Zle—kV ) — trace(Z ZUU}Z V —tI))

= trace(VZ) — trace(V)Z/)l—i— s(1 — trace(Y)) — t(l - trace(Z))
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+ Xn: wj(trace(U;Y) — trace(U;V)).

i=1
We obtain
trace(V Z) — trace(VY) if 1 —trace(Y)=0,1— trace(Z) =0,
rrlltin L(s,t,w,Y,Z) = trace(U;Y) — trace(U;V) =0,i=1,...
s,taw

—00 otherwise.

The dual problem is therefore obtained as

ma%(/irznize trace(V Z) — trace(VY)

)

(D) trace(Z) = 1,

(The dual could equivalently be derived by reformulating the primal problem
to the form given in the hint and use the corresponding dual problem.)



