
SF2822 Applied nonlinear optimization, final exam
Thursday May 30 2024 8.00–13.00

Brief solutions

1. (a) GAMS has terminated successfully with model status ‘‘Locally Optimal’’,
meaning that a point x∗ and Lagrange multiplier vector λ∗ that together satisfy
the first-order necessary optimality conditions for (NLP ) have been computed.
From ‘‘LEVEL’’ of ‘‘VAR x’’, we obtain the solution

x∗ ≈
(
−1.000 0.000 −0.707

)T
.

Analogously, the Lagrange multipliers of the constraints are given by ‘‘MARGIN’’

of ‘‘EQU cons1’’, ‘‘EQU cons2’’, and ‘‘VAR x’’ associated with ‘‘j1’’

and ‘‘j2’’, as

λ∗ ≈
(

0.000 45.752 24.488 285.643
)T

.

(b) We have f(x) = f1(x1 + 2x2 + x3 + 5) + f2(2x1 + x3 − 4) for f1(y) = y4 and
f2(y) = y2. Then, f ′′1 (y) = 12y2 ≥ 0 and f ′′2 (y) = 2 ≥ 0, so that f1 and f2 are
convex functions on IR. As linear tranformations preserve convexity, we obtain
f as a sum of two convex functions, hence convex. As g1(x

∗) > 0, constraint
one is not active at x∗, so we may consider the problem

(NLP ′)

minimize f(x)

subject to −x21 − 2x23 + 2 = 0,
x1 + 1 ≥ 0,
x2 ≥ 0.

Problem (NLP ) is not convex, due to a nonlinear equality constraint. However,
as λ∗2 ≥ 0, it follows that x∗ together with λ∗ satisfy the first-order optimality
conditions for the problem (NLP ′′), where the constraint −x21 − 2x23 + 2 = 0 is
replaced by −x21 − 2x23 + 2 ≥ 0, i.e.,

(NLP ′′)

minimize f(x)

subject to −x21 − 2x23 + 2 ≥ 0,
x1 + 1 ≥ 0,
x2 ≥ 0.

Now, g2(x) = −x21−2x23+2 is a concave function. Therefore, the feasible region
of (NLP ′′) is convex, so that x∗ is a global minimizer to (NLP ′′). As (NLP ′′)
is a relaxation of (NLP ), x∗ is a global minimizer to (NLP ) as well.

(A less insightful answer is that global optimality cannot be concluded directly
from the first-order necessary optimality conditions as (NLP ) is not a convex
problem.)

(c) The expected change in the objective function is given by the Lagrange multi-
plier, up to first order, hence 162.5591− 45.752t for the second constraint and
162.5591− 24.488t for the third constraint. Therefore, the second constraint is
to be preferred.

2. (a) Problem (QP ) is a convex quadratic program with objective function 1
2x

THx+
cTx for H = I and c = 0, and constraint Ax ≥ b for A = (1 1) and b = 2. The
primal-dual nonlinear equations take the form

Hx+ c−ATλ = 0

(Ax− b)λ− µ = 0.
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Insertion of numerical values gives

3x1 − λ = 0,

x2 − λ = 0,

(x1 + x2 −
8

3
)λ− µ = 0.

We may express x1 and x2 in λ from the first two equations as

x1 =
λ

3
, x2 = λ,

which inserted in the third equation gives

(
λ

3
+ λ− 8

3
)λ− µ = 0.

This is equivalent to

λ2 − 2λ− 3

4
µ = 0.

Therefore,

λ(µ) = 1 +

√
1 +

3

4
µ.

The plus sign is chosen as λ(µ) > 0. Then,

x1(µ) =
λ(µ)

3
=

1

3

(
1 +

√
1 +

3

4
µ

)
, x2(µ) = λ(µ) = 1 +

√
1 +

3

4
µ.

(As a check, we may verify limµ→0+ x(µ) = (2/3 2)T = x∗ and limµ→0+ λ(µ) =
2 = λ∗.)

(b) The Newton step ∆x, ∆λ is given by linearization of the primal-dual nonlinear
equations as(

H −AT

λA Ax− b

)(
∆x

∆λ

)
= −

(
Hx+ c−ATλ
(Ax− b)λ− µ

)
,

where the right-hand side is evaluated at the particular iterate x, λ.

Insertion of numerical values gives
3 0 −1

0 1 −1

2 2 4
3



∆x1

∆x2

∆λ

 =


−10

2

−5
3

 .

3. If the problem is put on the form

minimize f(x)

subject to g(x) ≥ 0, x ∈ IR2,

we obtain

∇f(x)T =
(
x1 + x2 + 3

2 x1 + x2 − 9
2

)
, ∇g(x)T =


x2 x1

1 0

0 1

 ,
∇2
xxL(x, λ) =

(
1 1− λ1

1− λ1 1

)
.
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With x(0) = (2 1
2)T and λ(0) = (1 0 0)T , the first QP-problem becomes

minimize 1
2

(
p1 p2

)( 1 0

0 1

)(
p1

p2

)
+
(

4 −2
)( p1

p2

)

subject to


1
2 2

1 0

0 1


(
p1

p2

)
≥


0

−2

−1
2

 .
The optimal solution of the QP-problem is given by the feasible point which is
closest, in 2-norm, to (−4 2)T . This may for example be solved graphically:

The solution is p(0) = (−2 2)T with constraint 2 active. The Lagrange multiplier

λ
(1)
2 of the active constraint is given by(

−2

2

)
+

(
4

−2

)
=

(
1

0

)
λ
(1)
2 ,

i.e., λ
(1)
2 = 2. Thus, we have λ(1) = (0 2 0)T , and x(1) is given by x(1) = x(0)+p(0) =

(0 5/2)T .

4. (See the course material.)

5. (a) We may let M =
∑n
i=1 Uiwi − V . Then, M − tI � 0 ensures t ≤ ηmin(M) and

sI −M � 0 ensures s ≥ ηmax(M). We may then formulate the problem as

(P )

minimize
s,t,w

s− t
subject to sI −

∑n
i=1 Uiwi + V � 0,∑n

i=1 Uiwi − V − tI � 0.

(b) We may derive the dual by Lagrangian relaxation. Let Y and Z be positive
semidefinite symmetric m×m matrices. Then,

L(s, t, w, Y, Z) = s− t− trace(Y (sI −
n∑
i=1

Uiwi + V ))− trace(Z(
n∑
i=1

Uiwi − V − tI))

= trace(V Z)− trace(V Y ) + s(1− trace(Y ))− t(1− trace(Z))
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+
n∑
i=1

wi(trace(UiY )− trace(UiV )).

We obtain

min
s,t,w

L(s, t, w, Y, Z) =


trace(V Z)− trace(V Y ) if 1− trace(Y ) = 0, 1− trace(Z) = 0,

trace(UiY )− trace(UiV ) = 0, i = 1, . . . , n,
−∞ otherwise.

The dual problem is therefore obtained as

(D)

maximize
Y,Z

trace(V Z)− trace(V Y )

subject to trace(Y ) = 1,
trace(Z) = 1,
trace(UiY ) = trace(UiV ), i = 1, . . . , n,
Y = Y T � 0,
Z = ZT � 0.

(The dual could equivalently be derived by reformulating the primal problem
to the form given in the hint and use the corresponding dual problem.)


