1. (a) GAMS has terminated successfully with model status ' Locally Optimal', meaning that a point x^{*} and Lagrange multiplier vector λ^{*} that together satisfy the first-order necessary optimality conditions for $(N L P)$ have been computed. From ''LEVEL') of '(VAR x'), we obtain the solution

$$
x^{*} \approx\left(\begin{array}{lll}
-1.000 & 0.000 & -0.707
\end{array}\right)^{T}
$$

Analogously, the Lagrange multipliers of the constraints are given by 'MARGIN', of '(EQU cons1'', ' $E Q U$ cons2'', and '(VAR x'' associated with '‘j1'' and '(j2'), as

$$
\lambda^{*} \approx\left(\begin{array}{llll}
0.000 & 45.752 & 24.488 & 285.643
\end{array}\right)^{T}
$$

(b) We have $f(x)=f_{1}\left(x_{1}+2 x_{2}+x_{3}+5\right)+f_{2}\left(2 x_{1}+x_{3}-4\right)$ for $f_{1}(y)=y^{4}$ and $f_{2}(y)=y^{2}$. Then, $f_{1}^{\prime \prime}(y)=12 y^{2} \geq 0$ and $f_{2}^{\prime \prime}(y)=2 \geq 0$, so that f_{1} and f_{2} are convex functions on \mathbb{R}. As linear tranformations preserve convexity, we obtain f as a sum of two convex functions, hence convex. As $g_{1}\left(x^{*}\right)>0$, constraint one is not active at x^{*}, so we may consider the problem

$$
\begin{array}{lll}
& \text { minimize } & f(x) \\
\left(N L P^{\prime}\right) & \text { subject to } & -x_{1}^{2}-2 x_{3}^{2}+2=0 \\
& x_{1}+1 \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Problem ($N L P$) is not convex, due to a nonlinear equality constraint. However, as $\lambda_{2}^{*} \geq 0$, it follows that x^{*} together with λ^{*} satisfy the first-order optimality conditions for the problem $\left(N L P^{\prime \prime}\right)$, where the constraint $-x_{1}^{2}-2 x_{3}^{2}+2=0$ is replaced by $-x_{1}^{2}-2 x_{3}^{2}+2 \geq 0$, i.e.,

$$
\begin{array}{rll}
& \text { minimize } & f(x) \\
\left(N L P^{\prime \prime}\right) & \text { subject to } & -x_{1}^{2}-2 x_{3}^{2}+2 \geq 0 \\
& x_{1}+1 \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Now, $g_{2}(x)=-x_{1}^{2}-2 x_{3}^{2}+2$ is a concave function. Therefore, the feasible region of $\left(N L P^{\prime \prime}\right)$ is convex, so that x^{*} is a global minimizer to $\left(N L P^{\prime \prime}\right)$. As $\left(N L P^{\prime \prime}\right)$ is a relaxation of $(N L P), x^{*}$ is a global minimizer to $(N L P)$ as well.
(A less insightful answer is that global optimality cannot be concluded directly from the first-order necessary optimality conditions as $(N L P)$ is not a convex problem.)
(c) The expected change in the objective function is given by the Lagrange multiplier, up to first order, hence $162.5591-45.752 t$ for the second constraint and $162.5591-24.488 t$ for the third constraint. Therefore, the second constraint is to be preferred.
2. (a) Problem $(Q P)$ is a convex quadratic program with objective function $\frac{1}{2} x^{T} H x+$ $c^{T} x$ for $H=I$ and $c=0$, and constraint $A x \geq b$ for $A=\left(\begin{array}{ll}1 & 1\end{array}\right)$ and $b=2$. The primal-dual nonlinear equations take the form

$$
\begin{aligned}
& H x+c-A^{T} \lambda=0 \\
& (A x-b) \lambda-\mu=0
\end{aligned}
$$

Insertion of numerical values gives

$$
\begin{aligned}
3 x_{1}-\lambda & =0 \\
x_{2}-\lambda & =0 \\
\left(x_{1}+x_{2}-\frac{8}{3}\right) \lambda-\mu & =0
\end{aligned}
$$

We may express x_{1} and x_{2} in λ from the first two equations as

$$
x_{1}=\frac{\lambda}{3}, \quad x_{2}=\lambda
$$

which inserted in the third equation gives

$$
\left(\frac{\lambda}{3}+\lambda-\frac{8}{3}\right) \lambda-\mu=0
$$

This is equivalent to

$$
\lambda^{2}-2 \lambda-\frac{3}{4} \mu=0
$$

Therefore,

$$
\lambda(\mu)=1+\sqrt{1+\frac{3}{4} \mu} .
$$

The plus sign is chosen as $\lambda(\mu)>0$. Then,

$$
x_{1}(\mu)=\frac{\lambda(\mu)}{3}=\frac{1}{3}\left(1+\sqrt{1+\frac{3}{4} \mu}\right), \quad x_{2}(\mu)=\lambda(\mu)=1+\sqrt{1+\frac{3}{4} \mu} .
$$

(As a check, we may verify $\lim _{\mu \rightarrow 0+} x(\mu)=\left(\begin{array}{ll}2 / 3 & 2\end{array}\right)^{T}=x^{*}$ and $\lim _{\mu \rightarrow 0+} \lambda(\mu)=$ $2=\lambda^{*}$.)
(b) The Newton step $\Delta x, \Delta \lambda$ is given by linearization of the primal-dual nonlinear equations as

$$
\left(\begin{array}{cc}
H & -A^{T} \\
\lambda A & A x-b
\end{array}\right)\binom{\Delta x}{\Delta \lambda}=-\binom{H x+c-A^{T} \lambda}{(A x-b) \lambda-\mu}
$$

where the right-hand side is evaluated at the particular iterate x, λ.
Insertion of numerical values gives

$$
\left(\begin{array}{rrr}
3 & 0 & -1 \\
0 & 1 & -1 \\
2 & 2 & \frac{4}{3}
\end{array}\right)\left(\begin{array}{r}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta \lambda
\end{array}\right)=\left(\begin{array}{r}
-10 \\
2 \\
-\frac{5}{3}
\end{array}\right)
$$

3. If the problem is put on the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \geq 0, \quad x \in \mathbb{R}^{2}
\end{array}
$$

we obtain

$$
\begin{aligned}
& \nabla f(x)^{T}=\left(x_{1}+x_{2}+\frac{3}{2} \quad x_{1}+x_{2}-\frac{9}{2}\right), \quad \nabla g(x)^{T}=\left(\begin{array}{cc}
x_{2} & x_{1} \\
1 & 0 \\
0 & 1
\end{array}\right), \\
& \nabla_{x x}^{2} \mathcal{L}(x, \lambda)=\left(\begin{array}{cc}
1 & 1-\lambda_{1} \\
1-\lambda_{1} & 1
\end{array}\right) .
\end{aligned}
$$

With $x^{(0)}=\left(\begin{array}{ll}2 & \frac{1}{2}\end{array}\right)^{T}$ and $\lambda^{(0)}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$, the first QP-problem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}+\left(\begin{array}{ll}
4 & -2
\end{array}\right)\binom{p_{1}}{p_{2}} \\
\text { subject to } & \left(\begin{array}{ll}
\frac{1}{2} & 2 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}} \geq\left(\begin{array}{r}
0 \\
-2 \\
-\frac{1}{2}
\end{array}\right) .
\end{array}
$$

The optimal solution of the QP-problem is given by the feasible point which is closest, in 2-norm, to $\left(\begin{array}{ll}-4 & 2\end{array}\right)^{T}$. This may for example be solved graphically:

The solution is $p^{(0)}=\left(\begin{array}{ll}-2 & 2\end{array}\right)^{T}$ with constraint 2 active. The Lagrange multiplier $\lambda_{2}^{(1)}$ of the active constraint is given by

$$
\binom{-2}{2}+\binom{4}{-2}=\binom{1}{0} \lambda_{2}^{(1)}
$$

i.e., $\lambda_{2}^{(1)}=2$. Thus, we have $\lambda^{(1)}=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$, and $x^{(1)}$ is given by $x^{(1)}=x^{(0)}+p^{(0)}=$ $(05 / 2)^{T}$.
4. (See the course material.)
5. (a) We may let $M=\sum_{i=1}^{n} U_{i} w_{i}-V$. Then, $M-t I \succeq 0$ ensures $t \leq \eta_{\min }(M)$ and $s I-M \succeq 0$ ensures $s \geq \eta_{\max }(M)$. We may then formulate the problem as

$$
\begin{array}{ll}
\underset{s, t, w}{\operatorname{minimize}} & s-t \\
\text { subject to } & s I-\sum_{i=1}^{n} U_{i} w_{i}+V \succeq 0, \tag{P}\\
& \sum_{i=1}^{n} U_{i} w_{i}-V-t I \succeq 0 .
\end{array}
$$

(b) We may derive the dual by Lagrangian relaxation. Let Y and Z be positive semidefinite symmetric $m \times m$ matrices. Then,

$$
\begin{aligned}
L(s, t, w, Y, Z) & =s-t-\operatorname{trace}\left(Y\left(s I-\sum_{i=1}^{n} U_{i} w_{i}+V\right)\right)-\operatorname{trace}\left(Z\left(\sum_{i=1}^{n} U_{i} w_{i}-V-t I\right)\right) \\
& =\operatorname{trace}(V Z)-\operatorname{trace}(V Y)+s(1-\operatorname{trace}(Y))-t(1-\operatorname{trace}(Z))
\end{aligned}
$$

$$
+\sum_{i=1}^{n} w_{i}\left(\operatorname{trace}\left(U_{i} Y\right)-\operatorname{trace}\left(U_{i} V\right)\right)
$$

We obtain
$\min _{s, t, w} L(s, t, w, Y, Z)= \begin{cases}\operatorname{trace}(V Z)-\operatorname{trace}(V Y) \quad \text { if } \quad 1-\operatorname{trace}(Y)=0,1-\operatorname{trace}(Z)=0, \\ & \quad \operatorname{trace}\left(U_{i} Y\right)-\operatorname{trace}\left(U_{i} V\right)=0, i=1, \ldots, n, \\ -\infty & \text { otherwise } .\end{cases}$
The dual problem is therefore obtained as

$$
\begin{array}{cl}
\underset{Y, Z}{\operatorname{maximize}} & \operatorname{trace}(V Z)-\operatorname{trace}(V Y) \\
\text { subject to } & \operatorname{trace}(Y)=1 \\
& \operatorname{trace}(Z)=1 \\
& \operatorname{trace}\left(U_{i} Y\right)=\operatorname{trace}\left(U_{i} V\right), \quad i=1, \ldots, n \\
& Y=Y^{T} \succeq 0 \\
& Z=Z^{T} \succeq 0
\end{array}
$$

(The dual could equivalently be derived by reformulating the primal problem to the form given in the hint and use the corresponding dual problem.)

