Examiner: Anders Forsgren, tel. 08-790 7127.
Allowed tools: Pen/pencil, ruler and eraser.
Note! Calculator is not allowed.
Solution methods: Unless otherwise stated in the text, the problems should be solved by systematic methods, which do not become unrealistic for large problems. Motivate your conclusions carefully. If you use methods other than what have been taught in the course, you must explain thoroughly.
Note! Personal number must be written on the title page. Write only one exercise per sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For $20-21$ points, a completion to a passing grade may be made within three weeks from the date when the results of the exam are announced.

1. Consider the nonlinear programming problem

$$
\begin{array}{rll}
& \text { minimize } & \left(x_{1}+2 x_{2}+x_{3}+5\right)^{4}+\left(2 x_{1}+x_{3}-4\right)^{2} \\
(N L P) \quad \text { subject to } & -x_{1} x_{2} \geq-4, \\
& -x_{1}^{2}-2 x_{3}^{2}=-2, \\
& x_{1} \geq-1, \\
& x_{2} \geq 0 .
\end{array}
$$

A GAMS model of the problem has been created. The GAMS input file can be found at the end of the exam, and a partial GAMS output file reads:

S O L VE S UMMARY

MODEL	nlpmodel	OBJECTIVE	obj
TYPE	NLP	DIRECTION	MINIMIZE
SOLVER	SNOPT	FROM LINE	26

```
**** SOLVER STATUS 1 Normal Completion
**** MODEL STATUS 2 Locally Optimal
**** OBJECTIVE VALUE 162.5591
\begin{tabular}{llc} 
RESOURCE USAGE, LIMIT & 0.003 & 10000000000.000 \\
ITERATION COUNT, LIMIT & 4 & 2147483647 \\
EVALUATION ERRORS & 0 & 0
\end{tabular}
```

	LOWER	LEVEL	UPPER	MARGINAL
---- EQU objfun	-INF	.	.	-1.000
---- EQU cons1	-4.000	.	+INF	.
---- EQU cons2	-2.000	-2.000	-2.000	45.752
	LOWER	LEVEL	UPPER	MARGINAL
---- VAR obj	-INF	162.559	+INF	.

---- VAR x

	LOWER	LEVEL	UPPER	MARGINAL
j1	-1.000	-1.000	+INF	24.488
j2	.	.	+INF	285.643
j3	-INF	-0.707	+INF	.

(a) Use the GAMS output file to give a point x^{*} and Lagrange multiplier vector λ^{*} that together satisfy the first-order necessary optimality conditions for $(N L P)$.

(b) Is x^{*} a global minimizer to $(N L P)$?
(c) Assume that for a small positive parameter t, you may either change the second constraint from $-x_{1}^{2}-2 x_{3}^{2}=-2$ to $-x_{1}^{2}-2 x_{3}^{2}=-2-t$ or the third constraint from $x_{1} \geq-1$ to $x_{1} \geq-1-t$. Which choice would you make in order to improve the optimal optimal value of the corresponding nonlinear program as much as possible?
2. Consider the quadratic programming problem $(Q P)$ defined as

$$
\begin{array}{lll}
(Q P) & \text { minimize } & \frac{3}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2} \\
& \text { subject to } & x_{1}+x_{2} \geq \frac{8}{3}
\end{array}
$$

For a positive barrier parameter μ, consider the barrier transformed problem $\left(Q P_{\mu}\right)$, given by

$$
\left(Q P_{\mu}\right) \quad \text { minimize } \quad \frac{3}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}+x_{2}-\frac{8}{3}\right)
$$

with the associated implicit constraint $x_{1}+x_{2}>\frac{8}{3}$.
(a) Formulate the primal-dual system of nonlinear equations associated with a primal-dual interior point method for solving $(Q P)$. You may assume that the initial point $x^{(0)}$ is strictly feasible with respect to the implict constraint, so that no slack variable is required. Use these equations to find the optimal solution $x(\mu)$ and the corresponding Lagrange multiplier $\lambda(\mu)$ of the barriertransformed problem $\left(Q P_{\mu}\right)$. It is possible to obtain analytical expressions for this small problem.
(b) Formulate the system of linear equations to be solved in the first iteration of a primal-dual interior point method associated with $(Q P)$. You may again assume that the initial point $x^{(0)}$ is strictly feasible with respect to the implicit constraint, so that no slack variable is required. Formulate the general form, and then insert the specific values $x^{(0)}=(40)^{T}, \lambda^{(0)}=2$, for initial barrier parameter $\mu^{(0)}=1$
3. Consider the nonlinear programming problem ($N L P$) defined by

$$
\begin{array}{lll}
& \text { minimize } & \frac{1}{2}\left(x_{1}+x_{2}\right)^{2}+\frac{3}{2} x_{1}-\frac{9}{2} x_{2} \\
(N L P) & \text { subject to } & x_{1} \cdot x_{2}-1 \geq 0 \\
& & x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

We want to solve $(N L P)$ by sequential quadratic programming. Let $x^{(0)}=\left(2 \frac{1}{2}\right)^{T}$, $\lambda^{(0)}=(100)^{T}$ and perform one iteration, i.e., calculate $x^{(1)}$ and $\lambda^{(1)}$. You may solve the subproblem in an arbitrary way that need not be systematic, e.g. graphically, and you do not need to perform any linesearch.
Note: According to the convention of the textbook we define the Lagrangian $\mathcal{L}(x, \lambda)$ as $\mathcal{L}(x, \lambda)=f(x)-\lambda^{T} g(x)$, where $f(x)$ is the objective function and $g(x)$ is the constraint function, with the inequality constraints written as $g(x) \geq 0$.
4. Derive the expression for the BFGS quasi-Newton update, stating B_{k+1} for a given B_{k}, where B_{k} is symmetric and positive definite. First derive the expression for a strictly convex quadratic function, and then generalize to a general nonlinear function. Finally, state and prove a sufficient condition for B_{k+1} to be positive definite.
(10p)
5. Let V and $U_{i}, i=1, \ldots, n$, be given symmetric $m \times m$ matrices.
(a) Formulate the problem of finding $w \in \mathbb{R}^{n}$ such that the difference between the largest and the smallest eigenvalue of the matrix $\sum_{i=1}^{n} U_{i} w_{i}-V$ is minimized as a semidefinite program.
Hint: It may be helpful to observe that for a symmetric matrix M, it holds that $M-t I \succeq 0$ if and only if $t \leq \eta_{\min }(M)$, where $\eta_{\min }(M)$ denotes the smallest eigenvalue of M.
(b) Formulate the corresponding dual semidefinite program.

Hint: It may be helpful to note that a primal-dual pair (P) and (D) of semidefinite programs may be written as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \sum_{j=1}^{n} A_{j} x_{j} \succeq B, \\
\text { maximize } & \operatorname{trace}(B Y) \\
\text { subject to } & \operatorname{trace}\left(A_{j} Y\right)=c_{j}, \quad j=1, \ldots, n, \tag{D}\\
& Y=Y^{T} \succeq 0 .
\end{array}
$$

GAMS file for Question 1:

```
sets
j / j1*j3 /;
variables
obj
x(j) ;
equations
    objfun
    cons1
cons2 ;
objfun .. power(x("j1")+2*x("j2")+x("j3")+5,4)+power(2*x("j1")+x("j3")-4,2) =l= obj;
cons1 .. -x("j1")*x("j2") =g= -4;
cons2 .. -power(x("j1"),2)-2*power(x("j3"),2) =e= -2;
x.lo("j1")=-1;
x.lo("j2") = 0;
model nlpmodel / all /;
solve nlpmodel using nlp minimizing obj;
```

