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• Il y a plusieurs façons de plumer un canard

Tactics in Coq
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Theorem P_if_P: 
  forall P, 
    P -> P. 
Proof. 
  intros P HP. 
  apply HP. 
(* Any of the following tactics will work 
  exact HP. 
  assumption. 
  trivial. 
  auto. 
  eauto. 
  intuition. 
*) Qed.

“There are many ways to pluck a duck”



• In general a tactic is applied to a goal and either 
• Produces zero or more subgoals 
• Fails 

• Some tactics never fail, e.g., simpl, auto, idtac… 
• Some tactics fail if more than zero subgoals are produced, e.g. reflexivity 
• Some tactics fail if an identical subgoal is produced, e.g. rewrite 
• One tactic always fails, namely fail 
• Useful when writing tactics of your own

Goals and Subgoals
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• When there are one or more subgoals, you can focus the proof with bullets 

• Available bullets are -, +, *, --, ++, **, etc.

Focusing with Bullets
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Theorem n_plus_Z: 
  forall n, 
    n + 0 = n. 
Proof. 
  intros n. 
  induction n. 
  (* Base case *) 
    reflexivity. 
  (* Inductive case *) 
    simpl. rewrite IHn. 
    reflexivity. 
Qed.

Theorem n_plus_Z: 
  forall n, 
    n + 0 = n. 
Proof. 
  intros n. 
  induction n. 
  - (* Base case *) 
    reflexivity. 
  - (* Inductive case *) 
    simpl. rewrite IHn. 
    reflexivity. 
Qed.

Subgoals on the same level must 
begin with the same kind of bullet



• You can focus on a single goal with braces

Focusing with Braces
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Theorem n_plus_Z: 
  forall n, 
    n + 0 = n. 
Proof. 
  intros n. 
  induction n. 
  { (* Base case *) 
    reflexivity. 
  } 
  (* Inductive case *) 
    simpl. rewrite IHn. 
    reflexivity. 
Qed.

Theorem n_plus_Z: 
  forall n, 
    n + 0 = n. 
Proof. 
  intros n. 
  induction n. 
  2: { (* Inductive case *) 
    simpl. rewrite IHn. 
    reflexivity. 
  } 
  (* Base case *) 
  reflexivity. 
Qed.



• Use bullets whenever you have more than one goal 
• Use braces when you are side-stepping the “main story” of the proof

Advice Regarding Focus
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Theorem wf_expr_eval: 
  forall n, 
    wf_expr (length env) e -> 
    exists n, eval_expr env e = Some n. 
Proof. 
  (* … *) 
  - (* Case Var *) 
    assert (Hex: exists n, nth_error env x = Some n). 
    { destruct (nth_error env x). 
      - exists n. reflexivity. 
      - exfalso. apply H. reflexivity. 
    } 
  (* … *) 
Qed.

“Here, we know that x has some value n 
(which we can show by case analysis on…)”



Running Example: An SSA Language
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r0 := 1 + 2; 
r1 := r0 * 3; 
r2 := isZero r1? 2: 3; 
r2 * 2;

 e ::= n | ri | e + e | e * e | isZero e? e : e

p ::= e; p | e Register numbering 
is implicit

 
 

env : ℕ ↪ ℕ
eval_expr : env → e ↪ ℕ
eval_ program : p ↪ ℕ

Main theorem: 
⊢ p ⟹ ∃n . eval_ program p = n

Well-formedness: 
  only mentions assigned variables⊢ p ⟺ p



• Naming things is a hassle, but relying on generated names is worse 
• Adding a hypothesis to your proof can offset your H0, H1… 
• Updating your Coq version can change the numbering scheme(!)

Naming Things
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• Most tactics that introduce new terms and hypothesis support naming 
• destruct n as [| n’] 
• induction l as [| x xs] 
• assert (Hlen: length l < 10) 

• The way you declare data types matters

How to Name Things
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Inductive expr := 
| ENat : nat -> expr 
| EVar : var -> expr 
| EAdd : expr -> expr -> expr. 

Inductive expr := 
| ENat : (n : nat) 
| EVar : (x : var) 
| EAdd : (e1 e2 : expr).

Running destruct will give the names n, v and e/e0

Running destruct will give the names n, x and e1/e2



• Sometimes you introduce something just to immediately forget it 

• Wherever an introduction pattern is used, you can immediately rewrite! 

• With enough automation, you can find hypothesis automatically 
• A heavy alternative is match goal with (see later slides)

How to Avoid Naming Things
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destruct IHHwf as [n Heq]. 
rewrite Heq. (* Heq is no longer used *)

destruct IHHwf as [n ->]. 
(* Implicitly does rewrite -> Heq. clear Heq. *)



• Tacticals are tactics taking other tactics as arguments 
• tactic1; tactic2 — run tactic2 on all subgoals generated by tactic1 
• tactic1 || tactic2 — run tactic1, and if it fails run tactic2 
• try tactic — run tactic but ignore if it fails 
• repeat tactic — run tactic until it fails or generates an identical subgoal 
• do n tactic — run tactic n times 
• progress tactic — run tactic and require that it produces a new subgoal 
• solve tactic — run tactic and fail if it generates more than zero subgoals 
• n: tactic — run tactic on the nth goal in focus (1-indexed, can have ranges) 
• all: tactic — run tactic on all goals in focus

Tacticals
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• Some tacticals work with lists of tactics 
• tactic1; [tac1 | … | tacn] — run taci on the ith subgoal of tactic1 
• solve [tac1 | … | tacn] — try solving with all listed tactics (in order) 
• first [tac1 | … | tacn] — run the first listed tactic that does not fail 

• Two useful patterns: 
• Solve an assert without focusing: assert (H: …); [ apply foo; auto|]. 
• Solving similar goals without accidentally touching other goals: 
    induction e; 
      try solve [assumption 
                |apply foo; auto 
                |some_other_tactic].

Tacticals (cont.)
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Questions so far?



• The automation tactics search by applying hypotheses recursively 
• Is the current goal a hypotheses? If so, apply it and be done 
• Is the current goal the conclusion of a hypothesis? If so, apply it 

• Will also unfold (when told), intros and simpl when possible 

• auto [with hint_db] — proof search with simple apply 
• eauto [with hint_db] — proof search with simple eapply 
• intuition [tactic] — specialised for logic (can use tactic) 
• Can destruct branching hypotheses:

Automation
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Hint Resolve my_pretty_lemma : hint_db.

Hint Unfold my_pretty_fixpoint : hint_db.

P ∨ Q ⟹ Q ∨ P
NB: will update 

the goal!



• Tactics can inspect the current proof state 

• Can express “something containing ” with context[ ]e e

Matching on the Goal
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match goal with 
| [hypotheses] |- [conclusion] => tactic 
end.

match goal with 
| H : wf_expr _ _ |- _ => apply wf_expr_eval in H as [n ->] 
end.

match goal with 
| _ : _ |- context[match ?e with | _ => _ end] => destruct e 
end.



• Matching on the goal is a great way of writing custom tactics 

• Let auto (and friends) use your new tactic with some cost:

Extending Automation with Custom Tactics
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Ltac destruct_ex := 
  let n := fresh "n" in 
  let Heq := fresh "Heq" in 
  match goal with 
  | H : exists n, _ = _ |- _ => 
      destruct H as [n Heq]; 
      try ((rewrite -> Heq in * || rewrite <- Heq in *); 
           clear Heq) 
  end.

Generate fresh names to 
avoid collisions

Hint Extern 1 => destruct_ex : hint_db.



• A manual version together with an automatic

Extending Automation with Custom Tactics
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Ltac destruct_ex H := 
  let n := fresh "n" in 
  let Heq := fresh "Heq" in 
  match type of H with 
  | exists n, _ = _ => 
      destruct H as [n Heq]; 
      try ((rewrite -> Heq in * || rewrite <- Heq in *); 
           clear Heq) 
  | _ => fail “Not an existential equality” 
  end.

Ltac auto_destruct_ex := 
 match goal with 
  | exists n, _ = _ |- _ => destruct_ex H 
  | _ |- _ => fail “No existential equalities in context” 
 end.



• The LibTactics chapter of Software Foundations has custom tactics 
• These are from an external library called TLC by Arthur Charguéraud 
• Custom tactics that removes boilerplate 
• Alternative standard library (lists, sets, maps…) 
• Uses type classes heavily to reuse notations 
• NB: Assumes classical logic! 

• One of my favourite tactics is introv:

Using External Tactic Libraries
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Theorem transitivity: 
  forall P Q R, (P -> Q) -> (Q -> R) -> P -> R. 
Proof. 
  introv PtoQ QtoR. (* same as intros P Q R PtoQ QtoR *) 
  ...



• Most new tactics end with an “s” to distinguish them from originals 
• simpls — like simpl, but better at unfolding 
• substs — like subst, but handles circular equalities 
• inverts H — like inversion H, but does substs and clear H 
• applys H — like apply H, but better at handling quantifiers 

• Automation makes it easy to say “and then do proof search” 
• tactic~ — run tactic and then use “auto” on subgoals 
• tactic* — run tactic and then use “eauto” on subgoals

Syntactic Conventions in TLC
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Actually slightly more involvedinduction~ n. 
simpls. rewrites~ IHn.



• There are introduction patterns that handle nesting better

Introduction Patterns in TLC
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Theorem foo: 
  forall A B (P Q : A -> B -> Prop), 
    (exists x y, P x y /\ Q x y) -> 
    ~(forall x y, ~(P x y /\ Q x y)). 
Proof. 
  introv Hex. 
  destruct* Hex as (x & y & HP & HQ). 
Qed.

Instead of 
destruct Hex as [x [y [HP HQ]]]

Could also do destructs* 4 Hex



• Forward reasoning made simpler through two tactics 
• lets H: my_lemma arg1 … argn — instantiate my_lemma as H 
• forwards H: my_lemma [arg1 … argn] — like lets, but introduce existentials 

• Together with automation they get rid of a lot of boilerplate

Forward Reasoning in TLC
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Lemma wf_program'_eval: 
  forall env p, 
    wf_program' (dom env) p -> 
    exists n, eval_program' env p = Some n. 
Proof. 
  introv Hwf. 
  inductions Hwf; simpls*. 
  forwards~ (n & ->): wf_expr_eval. 
Qed.



• TLC is one alternative to the Coq standard library and tactics 
• https://www.chargueraud.org/softs/tlc 

• The Iris project includes std++ 
• https://gitlab.mpi-sws.org/iris/stdpp 

• The SSReflect proof language uses a completely different style 
• https://inria.hal.science/inria-00407778/document

Other Brands Exist
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https://www.chargueraud.org/softs/tlc
https://gitlab.mpi-sws.org/iris/stdpp
https://inria.hal.science/inria-00407778/document


Time for a break!



The Locally Nameless Representation



• We typically represent variables by using their names 

• This is natural when using pen and paper, but brings formal issues: 

• Names do not mean anything, -equivalence instead of syntactic equality 

• The same name can be bound multiple times (shadowing)

α

Representing Variables
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λf . λx . f x
λx . λy . y λfst . λsnd . snd

λfst . λsnd . fst

λx . λy . x (λx . x y)
x1 x1 x2 x2



• In informal proofs we usually assume that all variables 
are distinct or can be renamed to avoid problems 
• This is after Henk Barendregt who (quite literally) wrote 

the book on the lambda calculus 
• Barendregt in turn attributes this to Thomas Ottman 

• When working in proof assistants, we are not this lucky…

The Barendregt Convention
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• When substituting names,  we need to check for shadowing: 

• -reduction can use substitution

tm[x ↦ u]

β

Capture-Avoiding Substitution
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                 , if  

      
     , if  

  

(x)[x ↦ u] = u
(y)[x ↦ u] = y x ≠ y
(λx . tm)[x ↦ u] = λx . tm
(λy . tm)[x ↦ u] = λx . (tm[x ↦ u]) x ≠ y
(tm1 tm2)[x ↦ u] = (tm1[x ↦ u]) (tm2[x ↦ u])

(λx . tm) v → tm[x ↦ v]



• A typing environment maps variables to types 

• Assuming no duplicates, order in the environment doesn’t matter 

• Weakening is straightforward

Typing Environments
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Γ ⊢ x : T
x : T ∈ Γ

Γ1, Γ2 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

dom(Γ1) ∩ dom(Γ2) = ∅ ⟹
Γ1 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

Γ ⊢ λx . tm : T1 → T2

Γ, x : T1 ⊢ tm : T2



• An alternative representation comes from Nicolaas de Bruijn 

• A variable is an index, the distance to its -binder 

• Equivalent terms are syntactically equivalent! Shadowing not an issue:

λ

Nameless Representation
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λf . λx . f x

λx . λy . y λfst . λsnd . snd

λfst . λsnd . fst
λ . λ.1 0 λ . λ.1

λ . λ.0 λ . λ.0

λx . λy . x (λx . x y)
λ . λ.1 (λ.0 1)



• When manipulating terms, we need to handle indices with care 

• -reduction becomes a lot trickier!β

Substitution and Shifting
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                , if  

         
  

(n)[n ↦ u] = u
(m)[n ↦ u] = m m ≠ n
(λ . tm)[n ↦ u] = λx . (tm[n + 1 ↦ ↑1

0 u])
(tm1 tm2)[n ↦ u] = (tm1[n ↦ u]) (tm2[n ↦ u])

(λ . tm) v → ↑−1
0 (tm[0 ↦ ↑1

0 v])

                        , if  
                        , if  

         
  

↑i
c (n) = n + i n ≥ c

↑i
c (n) = n n < c

↑i
c (n)(λ . tm) = λx . ( ↑i

c+1 tm)
↑i

c (n)(tm1 tm2) = ( ↑i
c tm1) ( ↑i

c tm2)



Typing Environments
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• A typing environment is a list of types 

• The order in the environment very much matters! 
• Weakening needs to update all indices 

• Our jobs as theoreticians gets harder!

Γ ⊢ n : T
Γ[n] = T

Γ1 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ ↑|Γ2|
0 tm : T

Γ ⊢ λ . tm : T1 → T2

T1, Γ ⊢ tm : T2



• Good introduction in paper by Arthur Charguéraud (but concept older) 
• Idea: 
• Use nameless representation for bound variables 
• Use named representation for free variables 

• As soon as we “look under a ”, introduce a fresh variableλ

Middle Ground: Locally Nameless
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{} ⊢ λ . λ.1 0
{f} ⊢ λ . f 0
{f, x} ⊢ f x



• Substitution of free variables no longer needs to care about shadowing! 

• We substitute bound variables by opening terms, tmu = tm{0 ↦ u}

Opening and Substitution
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                 , if  
                  

         
  

(x)[x ↦ u] = u
(y)[x ↦ u] = y x ≠ y
(n)[x ↦ u] = n
(λ . tm)[x ↦ u] = λ . (tm[x ↦ u])
(tm1 tm2)[x ↦ u] = (tm1[x ↦ u]) (tm2[x ↦ u])

                  
               , if  

                  
         

  

(n){n ↦ u} = u
(m){n ↦ u} = m m ≠ n
(x){n ↦ u} = x
(λ . tm){n ↦ u} = λx . (tm{n + 1 ↦ u})
(tm1 tm2){n ↦ u} = (tm1{n ↦ u}) (tm2{n ↦ u})



• Substitution of free variables no longer needs to care about shadowing! 

• We substitute bound variables by opening terms,  

• -reduction uses opening, but  we can prove equivalence with substitution

tmu = tm{0 ↦ u}

β

Opening and Substitution
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                 , if  
                  

         
  

(x)[x ↦ u] = u
(y)[x ↦ u] = y x ≠ y
(n)[x ↦ u] = n
(λ . tm)[x ↦ u] = λ . (tm[x ↦ u])
(tm1 tm2)[x ↦ u] = (tm1[x ↦ u]) (tm2[x ↦ u])

                  
                , if  

                  
         

  

(n){n ↦ u} = u
(m){n ↦ u} = m m ≠ n
(x){n ↦ u} = x
(λ . tm){n ↦ u} = λx . (tm{n + 1 ↦ u})
(tm1 tm2){n ↦ u} = (tm1{n ↦ u}) (tm2{n ↦ u})

(λ . tm) v → tmv

x ∉ fv(tm) ⟹ tmu = tmx[x ↦ u]



• Typing environments map variables to types, but we pick the names! 

•  is cofinite quantification: we show the rule for any  not in some finite set  

• Since we can always pick fresh names, order in the environment doesn’t matter 

• Weakening is straightforward, as before

∀x ∉ L x L

Typing Environments
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Γ ⊢ x : T
x : T ∈ Γ

Γ ⊢ λ . tm : T1 → T2

∀x ∉ L Γ, x : T1 ⊢ tmx : T2

Γ1, Γ2 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

dom(Γ1) ∩ dom(Γ2) = ∅ ⟹
Γ1 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T



• Since we open terms by need, indices are never “out of bounds” 

• Terms like  are meaningless 

• We can formalise terms being locally closed as the relation  

• With locally closed terms, we get a bunch of useful facts, for example

λ.1
lc

Locally Closed Terms
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lc x
lc tm1
lc(tm1 tm2)

lc tm2
lc(λ . tm)

lc tmx∀x ∉ L

lc u ∧ x ≠ y ⟹ (tmy)[x ↦ u] = (tm[x ↦ u])y

lc u ⟹ (tmv)[x ↦ u] = (tm[x ↦ u])v[x↦u]

lc tm ⟹ tmu = tm



Questions before we go back to Coq?



• Automation is what makes large proof developments feasible 
• Avoids spending time on trivial subgoals 
• Makes your development more robust to change 

• Having a good standard library makes a big difference 
• Having to prove mundane things e.g. lists is surprisingly common 

• Dealing with name binding and substitution is boring and technical 
• Locally nameless is one way to make definitions simpler 
• Having good library support helps a lot too!

Conclusions
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