Interactive Theorem Proving
Lecture 3: Tactics, Locally Nameless Representation

Elias Castegren and David Broman
23 May 2024

Tactics in Coq

* Il y a plusieurs facons de plumer un canard
“There are many ways to pluck a duck”

Theorem P_if P:
forall P,
P -> P.
Proof.
intros P HP.
apply HP.
(* Any of the following tactics will work
exact HP.
assumption.
trivial.
auto.
eauto. o
intuition. 2U§££?n
*) Qed.

Goals and Subgoals

* In general a tactic is applied to a goal and either
* Produces zero or more subgoals
* Fails
* Some tactics never fail, e.g., simp1, auto, idtac...
* Some tactics fail if more than zero subgoals are produced, e.g. ref lexivity
* Some tactics fail if an identical subgoal is produced, e.g. rewrite
* One tactic always fails, namely fail

* Useful when writing tactics of your own

apias’
3 uPPsALA
UNIVERSITET

Focusing with Bullets

* When there are one or more subgoals, you can focus the proof with bullets

Theorem n_plus_/Z: Theorem n_plus_Z:
forall n, forall n,
n+ 0 = n. n+ 0 = n.
Proof. Proof.
intros n. intros n.
induction n. induction n.
(* Base case *) - (* Base case *) Subgoals on the same level must
reflexivity. reflexivity. begin with the same kind of bullet
(* Inductive case *) - (* Inductive case *)
simpl. rewrite IHn. simpl. rewrite IHn.
reflexivity. reflexivity.
Qed. Qed.

* Available bullets are -, +, *, --, ++, ** etc. 4 urrsuia

UNIVERSITET

Focusing with Braces

* You can focus on a single goal with braces

Theorem n_plus_/: Theorem n_plus_/:
forall n, forall n,
n+ 0 = n. n+ 0 =n.
Proof. Proof.
intros n. intros n.
induction n. induction n.
{ (* Base case *) 2: { (* Inductive case *)
reflexivity. simpl. rewrite IHn.
1 reflexivity.
(* Inductive case *) }
simpl. rewrite IHn. (* Base case *)
reflexivity. reflexivity.

Qed. Qed.

UNIVERSITET

Advice Regarding Focus

* Use bullets whenever you have more than one goal
* Use braces when you are side-stepping the “main story” of the proof

Theorem wf_expr_eval:
forall n,
wf_expr (length env) e ->
exists n, eval_expr env e = Some n.
Proof.
(* ... ™)
- (* Case Var *)
assert (Hex: exists n, nth_error env x = Some n). “Here, we know that x has some value n

{ destruct (nth_error env x). (which we can show by case analysis on...)”
- exists n. reflexivity.

- exfalso. apply H. reflexivity.

(* .)
e UNIVERSITET

Qed.

Running Example: An SSA Language

r0 := 1 + 2;
rl := 0 * 3;
r2 := isZero rl? 2: 3;
2 * 2;
e:=n|r|et+e|e*e|isZeroe? e:e Well-formedness:
. beri - p < ponly mentions assigned variables

pu=ep|e Re.glste.rr.num ering

iIs implicit

Main theorem:

env: N S N Fp = dn.eval_program p =n

eval_expr : enyv — e & N
eval_program : p < N

UNIVERSITET

Naming Things

@ Leon Bambrick
=

There are 2 hard problems in computer science: cache invalidation,

naming things, and off-by-1 errors.

Oversatt inlagget

* Naming things is a hassle, but relying on generated names is worse
* Adding a hypothesis to your proof can offset your HO, H1...

* Updating your Coq version can change the numbering scheme(!)

8 urpsaLA
UNIVERSITET

How to Name Things

* Most tactics that introduce new terms and hypothesis support naming
« destruct nas [| n']
* induction 1 as [| x xs]
« gssert (Hlen: length 1 < 10)

* The way you declare data types matters

Inductive expr := Running destruct will give the names n, v and e/e0
| ENat : nat -> expr

| EVar : var -> expr

| EAdd : expr -> expr -> expr.

Inductive expr :-= Running destruct will give the namesn, x and el1/e2
| ENat : (n : nat)

| EVar : (x : var) .
| EAdd : (el e2 : expr). UNIVERSITET

How to Avoid Naming Things

* Sometimes you introduce something just to immediately forget it

destruct IHHwE as [n Heq].
rewrite Heq. (* Heg is no longer used *)

* Wherever an introduction pattern is used, you can immediately rewrite!

destruct IHHwE as [n ->].
(* Implicitly does rewrite -> Heq. clear Heq. *)

* With enough automation, you can find hypothesis automatically

* A heavy alternative ismatch goal with (see later slides)

UNIVERSITET

Tacticals

 Tacticals are tactics taking other tactics as arguments

tacticl; tactic2—runtactic2on all subgoals generated by tacticl
tacticl || tactic2 —runtacticl, andifitfailsruntactic2

try tactic —run tactic butignoreifitfails

repeat tactic — run tactic untilitfails or generates an identical subgoal
do n tactic —runtactic ntimes

progress tactic —run tactic and require thatit produces a new subgoal
solve tactic —runtactic and failif it generates more than zero subgoals

n: tactic —run tactic onthe nth goalin focus (1-indexed, can have ranges)...

all: tactic —runtacticonallgoalsinfocus

Tacticals (cont.)

e Some tacticals work with lists of tactics

e tacticl; [tacl | .. | tacn] —runtaci onthe ith subgoal of tacticl
« solve [tacl | .. | tacn] —trysolving with all listed tactics (in order)
« first [tacl | .. | tacn] —runthefirst listed tactic that does not fail

« Two useful patterns:
* Solve an assert without focusing: assert (H: ...); [apply foo; auto]].

 Solving similar goals without accidentally touching other goals:
induction e;
try solve [assumption
apply foo; auto
some_other _tactic].

UNIVERSITET

Questions so far?

UPPSALA
UNIVERSITET

Automation

The automation tactics search by applying hypotheses recursively
* Isthe current goal a hypotheses? If so, apply it and be done
* Isthe current goal the conclusion of a hypothesis? If so, apply it
Hint Resolve my_pretty_ lemma : hint_db.
* Willalso unfold (whentold), intros and simpl when possible
Hint Unfold my_pretty_ fixpoint : hint_db.
e guto [with hint_db] — proof search with simple apply
* equto [with hint_db] — proof search with simple eapply
* intuition [tactic] — specialised for logic (can use tactic) NB: will update g
* Candestruct branching hypotheses: PV O —> OV P the goall 140“%H

Matching on the Goal

* Tactics can inspect the current proof state

match goal with
| [hypotheses] |- [conclusion] => tactic
end.

match goal with
| H : wf_expr _ _ |- _ => apply wf_expr_eval in H as [n ->]
end.

» Can express “something containing e” with context|e]

match goal with
| _ ¢ _ |- context[match ?e with | _ => _ end] => destruct e
end.

UNIVERSITET

Extending Automation with Custom Tactics

* Matching on the goal is a great way of writing custom tactics

Ltac destruct_ex :=
let n := fresh "n" in Generate fresh names to
let Heq := fresh "Heq" in avoid collisions
match goal with

| H: exists n, _ = _ |- _ =>
destruct H as [n Heq];
try ((rewrite -> Heq in * || rewrite <- Heq in *);
clear Heq)
end.

* Let guto (and friends) use your new tactic with some cost:

Hint Extern 1 => destruct ex : hint db.

UNIVERSITET

Extending Automation with Custom Tactics

* A manual version together with an automatic

Ltac destruct _ex H :=
let n := fresh "n" in
let Heq := fresh "Heqg" in
match type of H with
| exists n, _ = _ =>
destruct H as [n Heq];
try ((rewrite -> Heq in * || rewrite <- Heq in *);
clear Heq)
| _ => fail “Not an existential equality”
end.

Ltac auto_destruct_ex :=
match goal with
| exists n, _ = _ |- _ => destruct_ex H

| _ |- _ => fail "No existential equalities in context”

end.

UNIVERSITET

Using External Tactic Libraries

The LibTactics chapter of Software Foundations has custom tactics
* These are from an external library called TLC by Arthur Charguéraud
* Custom tactics that removes boilerplate -
 Alternative standard library (lists, sets, maps...)
* Uses type classes heavily to reuse notations

* NB: Assumes classical logic!

* One of my favourite tactics is introv:

Theorem transitivity:
forall PQ R, (P ->Q) -> (@ ->R) -> P ->R.
Proof.
introv PtoQ QtoR. (* same as intros P Q R PtoQ QtoR *)

UNIVERSITET

Syntactic Conventions in TLC

* Most new tactics end with an “s” to distinguish them from originals
e simpls — like simpl, but better at unfolding
* substs — like subst, but handles circular equalities
e inverts H—likeinversion H, butdoes substsand clear H
* applys H—likeapply H, but better at handling quantifiers

* Automation makes it easy to say “and then do proof search”
* tactic~—run tactic and then use “auto” on subgoals

* tactic™ —run tactic and then use “eauto” on subgoals

induction~ n. Actually slightly more involved

simpls. rewrites~ IHn.

UNIVERSITET

Introduction Patterns in TLC

* There are introduction patterns that handle nesting better

Theorem foo:
forall AB (PQ : A ->B -> Prop),
(exists x vy, Pxy /AN Q xy) ->
~(forall x y, ~(P xy /\ Q x vy)).

Proof.

introv Hex. Instead of

destruct* Hex as (x & y & HP & Ha). destruct Hex as [x [y [HP HOJ]]
Qed.

Could alsodo destructs™ 4 Hex

UNIVERSITET

Forward Reasoning in TLC

* Forward reasoning made simpler through two tactics
 lets H: my_lemma argl .. argn — instantiate my_lemma asH
e forwards H: my_lemma [argl .. argn] — like lets, butintroduce existentials

* Together with automation they get rid of a lot of boilerplate

Lemma wf_program'_eval:
forall env p,
wf_program' (dom env) p ->
exists n, eval_program' env p = Some n.
Proof.
introv Hwft.
inductions Hwf; simpls™.
forwards~ (n & ->): wf_expr_eval.
Qed.

UNIVERSITET

Other Brands Exist

* TLC is one alternative to the Coq standard library and tactics

* https://www.chargueraud.org/softs/tlc

* The lris project includes std++
* https://gitlab.mpi-sws.org/iris/stdpp

* The SSReflect proof language uses a completely different style

* https://inria.hal.science/inria-00407778/document

UNIVERSITET

https://www.chargueraud.org/softs/tlc
https://gitlab.mpi-sws.org/iris/stdpp
https://inria.hal.science/inria-00407778/document

Time for a break!

UPPSALA
UNIVERSITET

The Locally Nameless Representation

UPPSALA
UNIVERSITET

Representing Variables

* We typically represent variables by using their names

A Ax.f X Afst. Asnd . fst
gx AY.Y Afst . Asnd . Sﬂdj

* This is natural when using pen and paper, but brings formal issues:

« Names do not mean anything, a-equivalence instead of syntactic equality
* The same name can be bound multiple times (shadowing)

AX. Ay . x (Ax.x y)
X X1 A2 A

The Barendregt Convention

* In informal proofs we usually assume that all variables
are distinct or can be renamed to avoid problems

* This is after Henk Barendregt who (quite literally) wrote
the book on the lambda calculus

* Barendregt in turn attributes this to Thomas Ottman

UNIVERSITET

Capture-Avoiding Substitution

« When substituting names, tm|x — u] we need to check for shadowing:

(xX)[x — u] u

(Vx = u] =y,ifx#y

(Ax.tm)[x » u] =Ax.tm

Ay.tm)[x = u] =Ax.(tm[x — ul]),ifx #y
(tm, tmy)[x = u]l=(@m[x = u]) tm,[x — ul)

* [f-reduction can use substitution

(Ax.tm) v = tm|x — V]

Typing Environments

* Atyping environment maps variables to types

x:Tel Iox: T/ =tm: T,
I'Ex:T I'EAx.tm: T, - T,

* Assuming no duplicates, order in the environment doesn’t matter
I ,btm:T = T, -tm: T

* Weakening is straightforward
dom(I';) ndom(,) =0 =
I'Ftm: T = 1,11/ Ftm: T

Nameless Representation

* An alternative representation comes from Nicolaas de Bruijn

« Avariableis an index, the distance to its A-binder

M Ax . fx Afst . Asnd . fst
A.4.10 A.A.1

AX. Ay.y Afst . Asnd . snd
A.4.0 A.4.0

* Equivalent terms are syntactically equivalent! Shadowing not an issue:

AX. Ay.x (Ax.x y)
A.A1 (1.0 1)

Substitution and Shifting

* When manipulating terms, we need to handle indices with care

(n)[n — u] =u Té(n) =n+1iifn>c
(m)[n — u] =m,ifm#n Té(n) =n,ifn<c
A.tm)n—u]l =ix.(tmn+1m+- T(l) 1)) Ti m)A.tm) =ix.(T2+1 tm)

(tmy tmy)[n = u] = (tmy[n = ul) tmyln = ul) 1L () (Emy tmy) = (1L tmy) (1% tmy)

* [-reduction becomes a lot trickier!

(A.tm) v > 151 (tm[0 — 1§ v])

Typing Environments

* Atyping environment is a list of types

I'ln]=T I, I'Etm:T,

I'Fn:T I'EA.tm: T, - T,

* The order in the environment very much matters!

* Weakening needs to update all indices
Fbm:T = T E10 2 m: T

* Our jobs as theoreticians gets harder!

Middle Ground: Locally Nameless

 Good introduction in paper by Arthur Charguéraud (but concept older)
* |dea:
* Use nameless representation for bound variables

* Use named representation for free variables

« As soon as we “look under a A”, introduce a fresh variable

(VF21.10

JiE4.f0
ixhEfx

Opening and Substitution

* Substitution of free variables no longer needs to care about shadowing!

X)[x — u] =u
Mx — u] =y, ifx #y
(m[x = u] =n

A.tm)x > u] =Ai.0m[x - ul
(tm; tmy)[x = u] = (@Em[x = u]) tm,[x — u])

« We substitute bound variables by opening terms, tm" = tm{0 — u}

(m){in — u} =u
(m){n - u} =m,ifm#n
(){n — u} =X

A.tm){n—> u} =Ax.(tm{n+1m- u})
(tm; tmy){n = u}=0m{n - u}) (tmy{n - u})

Opening and Substitution

* Substitution of free variables no longer needs to care about shadowing!

« We substitute bound variables by opening terms, tm" = tm{0 — u}

(O[x - u] =u (m){n - uj =u

M[x — u] =y,ifx #y (m){n — u} =m,ifm+#n

(n)[x — u] =n x){n - u} =X

A.tm)x— ul =A.0m[x - ul) A.tm){n—>u} =AiAx.(tm{n+1m- u})

(tm; tmy)[x = u]l =(@m[x = u]) (tm,[x — u)) (tm; tmy){n = u}=0m{n - u}) (tmy{n - u})

* p-reduction uses opening, but we can prove equivalence with substitution
g
(A.tm) v —> tm"’

X & fv(itm) = tm" =tm'[x — u]

Typing Environments

* Typing environments map variables to types, but we pick the names!

x:Tel VxgL I,x:T,Fm*:T,
I'Ex:T I'HA.tm: T, - T,

« Vx & Lis cofinite quantification: we show the rule for any x not in some finite set L

* Since we can always pick fresh names, order in the environment doesn’t matter
I'pyIoEtm: T — 1,1 Htm: T

* Weakening is straightforward, as before

dom(I')) ndom(l,) = @ =
1—‘II_ZLWL:T=> rz,rﬂ—tm:T % L

Locally Closed Terms

* Since we open terms by need, indices are never “out of bounds”
« Terms like 4.1 are meaningless

« We can formalise terms being locally closed as the relation Ic

lc tm; lctm, Vx&L Ictm*
lc x lc(tmy tm,) [c(A.tm)

* With locally closed terms, we get a bunch of useful facts, for example
lc tm = tm" =1tm

lcunx#y = (m”)[x — u] = (tm[x — u])’

lc u = (tm")[x ~ u] = (tm[x — u])’*4

Questions before we go back to Coq?

IIIIIIIIIII

Conclusions

* Automation is what makes large proof developments feasible

* Avoids spending time on trivial subgoals

* Makes your development more robust to change
* Having a good standard library makes a big difference

* Having to prove mundane things e.g. lists is surprisingly common
* Dealing with name binding and substitution is boring and technical

* Locally nameless is one way to make definitions simpler

* Having good library support helps a lot too!

UNIVERSITET

