

Interactive Theorem Proving

Lecture 3: Tactics, Locally Nameless Representation

Elias Castegren and David Broman

23 May 2024

• Il y a plusieurs façons de plumer un canard

Tactics in Coq

2

Theorem P_if_P:
 forall P,
 P -> P.
Proof.
 intros P HP.
 apply HP.
(* Any of the following tactics will work
 exact HP.
 assumption.
 trivial.
 auto.
 eauto.
 intuition.
*) Qed.

“There are many ways to pluck a duck”

• In general a tactic is applied to a goal and either
• Produces zero or more subgoals
• Fails

• Some tactics never fail, e.g., simpl, auto, idtac…
• Some tactics fail if more than zero subgoals are produced, e.g. reflexivity
• Some tactics fail if an identical subgoal is produced, e.g. rewrite
• One tactic always fails, namely fail
• Useful when writing tactics of your own

Goals and Subgoals

3

• When there are one or more subgoals, you can focus the proof with bullets

• Available bullets are -, +, *, --, ++, **, etc.

Focusing with Bullets

4

Theorem n_plus_Z:
 forall n,
 n + 0 = n.
Proof.
 intros n.
 induction n.
 (* Base case *)
 reflexivity.
 (* Inductive case *)
 simpl. rewrite IHn.
 reflexivity.
Qed.

Theorem n_plus_Z:
 forall n,
 n + 0 = n.
Proof.
 intros n.
 induction n.
 - (* Base case *)
 reflexivity.
 - (* Inductive case *)
 simpl. rewrite IHn.
 reflexivity.
Qed.

Subgoals on the same level must
begin with the same kind of bullet

• You can focus on a single goal with braces

Focusing with Braces

5

Theorem n_plus_Z:
 forall n,
 n + 0 = n.
Proof.
 intros n.
 induction n.
 { (* Base case *)
 reflexivity.
 }
 (* Inductive case *)
 simpl. rewrite IHn.
 reflexivity.
Qed.

Theorem n_plus_Z:
 forall n,
 n + 0 = n.
Proof.
 intros n.
 induction n.
 2: { (* Inductive case *)
 simpl. rewrite IHn.
 reflexivity.
 }
 (* Base case *)
 reflexivity.
Qed.

• Use bullets whenever you have more than one goal
• Use braces when you are side-stepping the “main story” of the proof

Advice Regarding Focus

6

Theorem wf_expr_eval:
 forall n,
 wf_expr (length env) e ->
 exists n, eval_expr env e = Some n.
Proof.
 (* … *)
 - (* Case Var *)
 assert (Hex: exists n, nth_error env x = Some n).
 { destruct (nth_error env x).
 - exists n. reflexivity.
 - exfalso. apply H. reflexivity.
 }
 (* … *)
Qed.

“Here, we know that x has some value n
(which we can show by case analysis on…)”

Running Example: An SSA Language

7

r0 := 1 + 2;
r1 := r0 * 3;
r2 := isZero r1? 2: 3;
r2 * 2;

 e ::= n | ri | e + e | e * e | isZero e? e : e

p ::= e; p | e Register numbering
is implicit

env : ℕ ↪ ℕ
eval_expr : env → e ↪ ℕ
eval_ program : p ↪ ℕ

Main theorem:
⊢ p ⟹ ∃n . eval_ program p = n

Well-formedness:
 only mentions assigned variables⊢ p ⟺ p

• Naming things is a hassle, but relying on generated names is worse
• Adding a hypothesis to your proof can offset your H0, H1…
• Updating your Coq version can change the numbering scheme(!)

Naming Things

8

• Most tactics that introduce new terms and hypothesis support naming
• destruct n as [| n’]
• induction l as [| x xs]
• assert (Hlen: length l < 10)

• The way you declare data types matters

How to Name Things

9

Inductive expr :=
| ENat : nat -> expr
| EVar : var -> expr
| EAdd : expr -> expr -> expr.

Inductive expr :=
| ENat : (n : nat)
| EVar : (x : var)
| EAdd : (e1 e2 : expr).

Running destruct will give the names n, v and e/e0

Running destruct will give the names n, x and e1/e2

• Sometimes you introduce something just to immediately forget it

• Wherever an introduction pattern is used, you can immediately rewrite!

• With enough automation, you can find hypothesis automatically
• A heavy alternative is match goal with (see later slides)

How to Avoid Naming Things

10

destruct IHHwf as [n Heq].
rewrite Heq. (* Heq is no longer used *)

destruct IHHwf as [n ->].
(* Implicitly does rewrite -> Heq. clear Heq. *)

• Tacticals are tactics taking other tactics as arguments
• tactic1; tactic2 — run tactic2 on all subgoals generated by tactic1
• tactic1 || tactic2 — run tactic1, and if it fails run tactic2
• try tactic — run tactic but ignore if it fails
• repeat tactic — run tactic until it fails or generates an identical subgoal
• do n tactic — run tactic n times
• progress tactic — run tactic and require that it produces a new subgoal
• solve tactic — run tactic and fail if it generates more than zero subgoals
• n: tactic — run tactic on the nth goal in focus (1-indexed, can have ranges)
• all: tactic — run tactic on all goals in focus

Tacticals

11

• Some tacticals work with lists of tactics
• tactic1; [tac1 | … | tacn] — run taci on the ith subgoal of tactic1
• solve [tac1 | … | tacn] — try solving with all listed tactics (in order)
• first [tac1 | … | tacn] — run the first listed tactic that does not fail

• Two useful patterns:
• Solve an assert without focusing: assert (H: …); [apply foo; auto|].
• Solving similar goals without accidentally touching other goals:
 induction e;
 try solve [assumption
 |apply foo; auto
 |some_other_tactic].

Tacticals (cont.)

12

Questions so far?

• The automation tactics search by applying hypotheses recursively
• Is the current goal a hypotheses? If so, apply it and be done
• Is the current goal the conclusion of a hypothesis? If so, apply it

• Will also unfold (when told), intros and simpl when possible

• auto [with hint_db] — proof search with simple apply
• eauto [with hint_db] — proof search with simple eapply
• intuition [tactic] — specialised for logic (can use tactic)
• Can destruct branching hypotheses:

Automation

14

Hint Resolve my_pretty_lemma : hint_db.

Hint Unfold my_pretty_fixpoint : hint_db.

P ∨ Q ⟹ Q ∨ P
NB: will update

the goal!

• Tactics can inspect the current proof state

• Can express “something containing ” with context[]e e

Matching on the Goal

15

match goal with
| [hypotheses] |- [conclusion] => tactic
end.

match goal with
| H : wf_expr _ _ |- _ => apply wf_expr_eval in H as [n ->]
end.

match goal with
| _ : _ |- context[match ?e with | _ => _ end] => destruct e
end.

• Matching on the goal is a great way of writing custom tactics

• Let auto (and friends) use your new tactic with some cost:

Extending Automation with Custom Tactics

16

Ltac destruct_ex :=
 let n := fresh "n" in
 let Heq := fresh "Heq" in
 match goal with
 | H : exists n, _ = _ |- _ =>
 destruct H as [n Heq];
 try ((rewrite -> Heq in * || rewrite <- Heq in *);
 clear Heq)
 end.

Generate fresh names to
avoid collisions

Hint Extern 1 => destruct_ex : hint_db.

• A manual version together with an automatic

Extending Automation with Custom Tactics

17

Ltac destruct_ex H :=
 let n := fresh "n" in
 let Heq := fresh "Heq" in
 match type of H with
 | exists n, _ = _ =>
 destruct H as [n Heq];
 try ((rewrite -> Heq in * || rewrite <- Heq in *);
 clear Heq)
 | _ => fail “Not an existential equality”
 end.

Ltac auto_destruct_ex :=
 match goal with
 | exists n, _ = _ |- _ => destruct_ex H
 | _ |- _ => fail “No existential equalities in context”
 end.

• The LibTactics chapter of Software Foundations has custom tactics
• These are from an external library called TLC by Arthur Charguéraud
• Custom tactics that removes boilerplate
• Alternative standard library (lists, sets, maps…)
• Uses type classes heavily to reuse notations
• NB: Assumes classical logic!

• One of my favourite tactics is introv:

Using External Tactic Libraries

18

Theorem transitivity:
 forall P Q R, (P -> Q) -> (Q -> R) -> P -> R.
Proof.
 introv PtoQ QtoR. (* same as intros P Q R PtoQ QtoR *)
 ...

• Most new tactics end with an “s” to distinguish them from originals
• simpls — like simpl, but better at unfolding
• substs — like subst, but handles circular equalities
• inverts H — like inversion H, but does substs and clear H
• applys H — like apply H, but better at handling quantifiers

• Automation makes it easy to say “and then do proof search”
• tactic~ — run tactic and then use “auto” on subgoals
• tactic* — run tactic and then use “eauto” on subgoals

Syntactic Conventions in TLC

19

Actually slightly more involvedinduction~ n.
simpls. rewrites~ IHn.

• There are introduction patterns that handle nesting better

Introduction Patterns in TLC

20

Theorem foo:
 forall A B (P Q : A -> B -> Prop),
 (exists x y, P x y /\ Q x y) ->
 ~(forall x y, ~(P x y /\ Q x y)).
Proof.
 introv Hex.
 destruct* Hex as (x & y & HP & HQ).
Qed.

Instead of
destruct Hex as [x [y [HP HQ]]]

Could also do destructs* 4 Hex

• Forward reasoning made simpler through two tactics
• lets H: my_lemma arg1 … argn — instantiate my_lemma as H
• forwards H: my_lemma [arg1 … argn] — like lets, but introduce existentials

• Together with automation they get rid of a lot of boilerplate

Forward Reasoning in TLC

21

Lemma wf_program'_eval:
 forall env p,
 wf_program' (dom env) p ->
 exists n, eval_program' env p = Some n.
Proof.
 introv Hwf.
 inductions Hwf; simpls*.
 forwards~ (n & ->): wf_expr_eval.
Qed.

• TLC is one alternative to the Coq standard library and tactics
• https://www.chargueraud.org/softs/tlc

• The Iris project includes std++
• https://gitlab.mpi-sws.org/iris/stdpp

• The SSReflect proof language uses a completely different style
• https://inria.hal.science/inria-00407778/document

Other Brands Exist

22

https://www.chargueraud.org/softs/tlc
https://gitlab.mpi-sws.org/iris/stdpp
https://inria.hal.science/inria-00407778/document

Time for a break!

The Locally Nameless Representation

• We typically represent variables by using their names

• This is natural when using pen and paper, but brings formal issues:

• Names do not mean anything, -equivalence instead of syntactic equality

• The same name can be bound multiple times (shadowing)

α

Representing Variables

25

λf . λx . f x
λx . λy . y λfst . λsnd . snd

λfst . λsnd . fst

λx . λy . x (λx . x y)
x1 x1 x2 x2

• In informal proofs we usually assume that all variables
are distinct or can be renamed to avoid problems
• This is after Henk Barendregt who (quite literally) wrote

the book on the lambda calculus
• Barendregt in turn attributes this to Thomas Ottman

• When working in proof assistants, we are not this lucky…

The Barendregt Convention

26

• When substituting names, we need to check for shadowing:

• -reduction can use substitution

tm[x ↦ u]

β

Capture-Avoiding Substitution

27

 , if

 , if

(x)[x ↦ u] = u
(y)[x ↦ u] = y x ≠ y
(λx . tm)[x ↦ u] = λx . tm
(λy . tm)[x ↦ u] = λx . (tm[x ↦ u]) x ≠ y
(tm1 tm2)[x ↦ u] = (tm1[x ↦ u]) (tm2[x ↦ u])

(λx . tm) v → tm[x ↦ v]

• A typing environment maps variables to types

• Assuming no duplicates, order in the environment doesn’t matter

• Weakening is straightforward

Typing Environments

28

Γ ⊢ x : T
x : T ∈ Γ

Γ1, Γ2 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

dom(Γ1) ∩ dom(Γ2) = ∅ ⟹
Γ1 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

Γ ⊢ λx . tm : T1 → T2

Γ, x : T1 ⊢ tm : T2

• An alternative representation comes from Nicolaas de Bruijn

• A variable is an index, the distance to its -binder

• Equivalent terms are syntactically equivalent! Shadowing not an issue:

λ

Nameless Representation

29

λf . λx . f x

λx . λy . y λfst . λsnd . snd

λfst . λsnd . fst
λ . λ.1 0 λ . λ.1

λ . λ.0 λ . λ.0

λx . λy . x (λx . x y)
λ . λ.1 (λ.0 1)

• When manipulating terms, we need to handle indices with care

• -reduction becomes a lot trickier!β

Substitution and Shifting

30

 , if

(n)[n ↦ u] = u
(m)[n ↦ u] = m m ≠ n
(λ . tm)[n ↦ u] = λx . (tm[n + 1 ↦ ↑1

0 u])
(tm1 tm2)[n ↦ u] = (tm1[n ↦ u]) (tm2[n ↦ u])

(λ . tm) v → ↑−1
0 (tm[0 ↦ ↑1

0 v])

 , if
 , if

↑i
c (n) = n + i n ≥ c

↑i
c (n) = n n < c

↑i
c (n)(λ . tm) = λx . (↑i

c+1 tm)
↑i

c (n)(tm1 tm2) = (↑i
c tm1) (↑i

c tm2)

Typing Environments

31

• A typing environment is a list of types

• The order in the environment very much matters!
• Weakening needs to update all indices

• Our jobs as theoreticians gets harder!

Γ ⊢ n : T
Γ[n] = T

Γ1 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ ↑|Γ2|
0 tm : T

Γ ⊢ λ . tm : T1 → T2

T1, Γ ⊢ tm : T2

• Good introduction in paper by Arthur Charguéraud (but concept older)
• Idea:
• Use nameless representation for bound variables
• Use named representation for free variables

• As soon as we “look under a ”, introduce a fresh variableλ

Middle Ground: Locally Nameless

32

{} ⊢ λ . λ.1 0
{f} ⊢ λ . f 0
{f, x} ⊢ f x

• Substitution of free variables no longer needs to care about shadowing!

• We substitute bound variables by opening terms, tmu = tm{0 ↦ u}

Opening and Substitution

33

 , if

(x)[x ↦ u] = u
(y)[x ↦ u] = y x ≠ y
(n)[x ↦ u] = n
(λ . tm)[x ↦ u] = λ . (tm[x ↦ u])
(tm1 tm2)[x ↦ u] = (tm1[x ↦ u]) (tm2[x ↦ u])

 , if

(n){n ↦ u} = u
(m){n ↦ u} = m m ≠ n
(x){n ↦ u} = x
(λ . tm){n ↦ u} = λx . (tm{n + 1 ↦ u})
(tm1 tm2){n ↦ u} = (tm1{n ↦ u}) (tm2{n ↦ u})

• Substitution of free variables no longer needs to care about shadowing!

• We substitute bound variables by opening terms,

• -reduction uses opening, but we can prove equivalence with substitution

tmu = tm{0 ↦ u}

β

Opening and Substitution

34

 , if

(x)[x ↦ u] = u
(y)[x ↦ u] = y x ≠ y
(n)[x ↦ u] = n
(λ . tm)[x ↦ u] = λ . (tm[x ↦ u])
(tm1 tm2)[x ↦ u] = (tm1[x ↦ u]) (tm2[x ↦ u])

 , if

(n){n ↦ u} = u
(m){n ↦ u} = m m ≠ n
(x){n ↦ u} = x
(λ . tm){n ↦ u} = λx . (tm{n + 1 ↦ u})
(tm1 tm2){n ↦ u} = (tm1{n ↦ u}) (tm2{n ↦ u})

(λ . tm) v → tmv

x ∉ fv(tm) ⟹ tmu = tmx[x ↦ u]

• Typing environments map variables to types, but we pick the names!

• is cofinite quantification: we show the rule for any not in some finite set

• Since we can always pick fresh names, order in the environment doesn’t matter

• Weakening is straightforward, as before

∀x ∉ L x L

Typing Environments

35

Γ ⊢ x : T
x : T ∈ Γ

Γ ⊢ λ . tm : T1 → T2

∀x ∉ L Γ, x : T1 ⊢ tmx : T2

Γ1, Γ2 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

dom(Γ1) ∩ dom(Γ2) = ∅ ⟹
Γ1 ⊢ tm : T ⟹ Γ2, Γ1 ⊢ tm : T

• Since we open terms by need, indices are never “out of bounds”

• Terms like are meaningless

• We can formalise terms being locally closed as the relation

• With locally closed terms, we get a bunch of useful facts, for example

λ.1
lc

Locally Closed Terms

36

lc x
lc tm1
lc(tm1 tm2)

lc tm2
lc(λ . tm)

lc tmx∀x ∉ L

lc u ∧ x ≠ y ⟹ (tmy)[x ↦ u] = (tm[x ↦ u])y

lc u ⟹ (tmv)[x ↦ u] = (tm[x ↦ u])v[x↦u]

lc tm ⟹ tmu = tm

Questions before we go back to Coq?

• Automation is what makes large proof developments feasible
• Avoids spending time on trivial subgoals
• Makes your development more robust to change

• Having a good standard library makes a big difference
• Having to prove mundane things e.g. lists is surprisingly common

• Dealing with name binding and substitution is boring and technical
• Locally nameless is one way to make definitions simpler
• Having good library support helps a lot too!

Conclusions

38

