

Interactive Theorem Proving

Lecture 2: The Curry-Howard Correspondence

Elias Castegren and David Broman

2 May 2024

• Consider the following (incomplete) grammar for propositional logic

• The grammar gives an inductive definition of the syntax of formulae

• Any formula must have one of the four forms above

• Allows case analysis
• The inductive structure is implicitly finite

• Allows proof by induction

ϕ

Inductive Definitions

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ

2

• When we write this…

• …what we’re actually defining is this:

Well-Founded Recursion

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ

ϕ0 = {T, F}

ϕ1 = {A ∧ B | A, B ∈ ϕ0} ∪ {A ∨ B | A, B ∈ ϕ0} ∪ ϕ0

ϕω = {A ∧ B | A, B ∈ ϕω−1} ∪ {A ∨ B | A, B ∈ ϕω−1} ∪ ϕω−1

…

3

(is the set of formulae with a maximum of connectives)ϕn n

Induction principle
We can prove for for any by proving:
1. for
2. , assuming and , for
3. , assuming and , for

1. proves for all of . 2. and 3. then gives , , …,

P(ϕ) ϕ ∈ ϕn n
P(A) A ∈ ϕ0
P(A ∧ B) P(A) P(B) A, B ∈ ϕk
P(A ∨ B) P(A) P(B) A, B ∈ ϕk

P ϕ0 ϕ1 ϕ2 ϕn

• Consider the definition of an algebraic data type

• This gives an inductive definition of the shape of lists
• Any value of type nat_list must have one of the two forms above

• Allows pattern matching
• Any value of type nat_list is finite

• Allows recursive functions

Algebraic Datatypes

Inductive nat_list :=
| Nil
| Cons (n: nat) (l : nat_list).

type nat_list
 =

| Nil
| Cons of nat

 * nat_list

data NatList = Nil
| Cons Nat NatList

(not looking at you, Haskell…)

4

• We can further define inductive relations over formulae, for example

• The relation above gives an inductive definition of its derivation trees

• Any proof of must have one of the four forms above

• Allows case analysis (inversion)
• The inductive structure of the derivation tree is implicitly finite

• Allows proof by induction

ϕ true

Inductive Definitions (again)

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true T true

5

• When we write this…

• …what we’re actually defining is this:

Well-Founded Recursion (again)

τ0 = { T true }
τ1 = { A true B true

A ∧ B true
| A true, B true ∈ τ0}⋃{ A true

A ∨ B true
| A true ∈ τ0}⋃{ B true

A ∨ B true
| B true ∈ τ0}⋃τ0

…

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true T true

τω = { A true B true
A ∧ B true

| A true, B true ∈ τω−1}⋃{ A true
A ∨ B true

| A true ∈ τω−1}⋃{ B true
A ∨ B true

| B true ∈ τω−1}⋃τω−1

(is the set of derivation trees for formulas in)τn ϕn

Induction principle
We can prove , for for any by proving
1. (came from)
2. assuming , , and
3. assuming and
4. assuming and

In cases 2-4 we are assuming , for any

ϕ true ⟹ P(ϕ) ϕ true ∈ τn n
P(T) ϕ true τ0
P(A ∧ B) A true B true P(A) P(B)
P(A ∨ B) A true P(A)
P(A ∨ B) B true P(B)

A true, B true ∈ τk k

• Both formulae and properties of these define syntactic structures

• Proving amounts to producing a derivation tree with as its root

• Proof that :

ϕ true τ ϕ true
T ∧ (F ∨ T) true

Syntactic Proofs

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true T trueτ ::= | | |

T true F ∨ T true
T ∧ (F ∨ T) true

T true

7

• Induction principles are procedures for building derivation trees

• Prove that

• By induction over the derivation tree of

1. Base case: trivially.

2. Case : By the induction hypotheses we get
and . These together give .

3. Similar to 2. but either rule for can be used.

ϕ megatrue ⟹ ϕ true

ϕ megatrue
T true

A ∧ B megatrue A true
B true A ∧ B true

A ∨ B true

Syntactic Proofs (cont.)
A true B true

A ∧ B true
A true

A ∨ B true
B true

A ∨ B true T trueτ ::= | | |

A megatrue B megatrue
A ∧ B megatrue T megatrue

A megatrue B megatrue
A ∨ B megatrue

8

• Induction principles are procedures for building derivation trees

• Prove that

• By induction over the derivation tree of

1. Base case: trivially.

2. Case : By the induction hypotheses we get and
. These together give .

3. Similar to 2. but either rule for can be used.

ϕ megatrue ⟹ ϕ true

ϕ megatrue
T true

A ∧ B megatrue A true
B true A ∧ B true

A ∨ B true

Syntactic Proofs (cont.)
A true B true

A ∧ B true
A true

A ∨ B true
B true

A ∨ B true T trueτ ::= | | |

A megatrue B megatrue
A ∧ B megatrue T megatrue

A megatrue B megatrue
A ∨ B megatrue

σ ::=

 match with
 |

 |

 |

buildProof (σ : ϕ megatrue) : ϕ true =
σ

T megatrue ⇒ T true

⇒ A ∧ B true

⇒ A ∨ B true

A megatrue B megatrue
A ∧ B megatrue

A megatrue B megatrue
A ∨ B megatrue

buildProof (A megatrue) buildProof (B megatrue)

buildProof (A megatrue)

9

• Curry-Howard Isomorphism
• Curry-Howard Equivalence

• Proofs as programs
• Propositions as types

Curry-Howard Correspondence

Haskell Curry OCaml Howard

William Howard

10

A few Correspondences

11

In Logic In Programming
Propositions Types

Proofs Programs (terms)

Implication Function types

Conjunction Product types

Disjunction Sum types

Case analysis Pattern matching

True The unit type

False The empty type

A ⟹ B A -> B

A ∧ B A * B

A ∨ B A | B

• “Propositions as types” connects to writing syntactic proofs

• Prove x < x + 2

Propositions as Types

12

Lemma 1 : ∀n . n < n + 1

Lemma 2 : ∀m n . m < n ⟹ m < n + 1

Given any , Lemma 1 can produce a proof of
“Lemma 1 is a function from numbers to proofs of ”

n n < n + 1
n n < n + 1

If I have a proof of , Lemma 2 can give me a proof of
“Lemma 2 is a function from (a proof of) to (a proof of) ”

m < n m < n + 1
m < n m < n + 1

Using Lemma 1 with x, we get (Fact 1).
Using Lemma 2 with Fact 1, we get .
By properties of , we get .

x < x + 1
x < (x + 1) + 1

+ (x + 1) + 1 = x + 2 □

let Fact1 = Lemma1(x) in
let Fact2 = Lemma2(x, x+1, Fact1) in
simplify(Fact2)

• “Propositions as types” helps when writing syntactic proofs

• Prove x < x + 2

Propositions as Types

13

Lemma 1 : ∀n . n < n + 1

Lemma 2 : ∀m n . m < n ⟹ m < n + 1

Given any , Lemma 1 can produce a proof of n n < n + 1

If I have a proof of , Lemma 2 can give me a proof of
“Lemma 2 is a function from to ”

m < n m < n + 1
m < n m < n + 1

Using Lemma 1 with x, we get (Fact 1).
Using Lemma 2 with Fact 1, we get .
By properties of , we get .

x < x + 1
x < (x + 1) + 1

+ (x + 1) + 1 = x + 2 □

function create_log_entry(s: String): LogEntry =

end

function certify_log_entry(e: LogEntry): Certificate[LogEntry] =

end

function verify_operation(op: Operation): Certificate[LogEntry] =
 var s_op = to_string(op)
 var entry = create_log_entry(s_op)
 return certify_log_entry(entry)
end

…

…

“Hm, if I had a log entry I could build
a certificate… ”

• The proposition corresponds to the unit type

• There is a single constructor () carrying no information

• We can always produce a proof of

• The proposition corresponds to the empty type

• There are no constructors

• We can never produce a proof of

True

True
False

False

True and False

14

 match with
 (* End of proof *)

exFalsoQuodlibet(p : False) : Anything =
p

• There are many more instances of the Curry-Howard correspondence
• System F — Polymorphic Lambda Calculus
• Modal logic — Monads
• Linear Logic — Session Types
• …

• See (e.g.)“Propositions as types“ by Philip Wadler
• Talk: https://www.youtube.com/watch?v=aeRVdYN6fE8

Curry-Howard goes Deep

15

https://www.youtube.com/watch?v=aeRVdYN6fE8

Questions so far?

• The tactics we write in Coq actually produce proof objects
• Proof objects reify the Curry-Howard correspondence
• Inductive definitions are inductive data types
• Proofs explicitly build proof objects
• Case analysis (destruct) turns into pattern matching

• The proof object of an implication is a function from to

• The function builds the proof object given a proof object

• Induction shows up as (guarded) recursive functions

A ⟹ B A B
B A

Proof Objects in Coq

17

Questions?

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

19

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat := ?Goal)

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

20

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat :=
 match f with
 | T => ?Goal
 | F => ?Goal0
 | And phi1 phi2 => (fun f1 f2 : phi => ?Goal1) phi1 phi2
 | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2
 end)

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

21

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat :=
 match f with
 | T => 0
 | F => ?Goal0
 | And phi1 phi2 => (fun f1 f2 : phi => ?Goal1) phi1 phi2
 | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2
 end)

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

22

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat :=
 match f with
 | T => 0
 | F => 1
 | And phi1 phi2 => (fun f1 f2 : phi => ?Goal1) phi1 phi2
 | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2
 end)

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

23

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat :=
 match f with
 | T => 0
 | F => 1
 | And phi1 phi2 => count_false f1 + count_false f2
 | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2
 end)

(Cheating somewhat for clarity)

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

24

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat :=
 match f with
 | T => 0
 | F => 1
 | And phi1 phi2 => count_false f1 + count_false f2
 | Or phi1 phi2 => count_false f1 + count_false f2
 end)

(Cheating somewhat for clarity)

• Tactics build proof objects…
• Proof objects are programs…
• Can we build programs using tactics?

Tactics and Program Synthesis

25

Fixpoint count_false (f: phi): nat.
 destruct f.
 - apply 0.
 - apply 1.
 - apply (count_false f1 + count_false f2).
 - apply (count_false f1 + count_false f2).
Defined.

(fix count_false (f : phi) : nat :=
 match f with
 | T => 0
 | F => 1
 | And phi1 phi2 => count_false f1 + count_false f2
 | Or phi1 phi2 => count_false f1 + count_false f2
 end)

(Cheating somewhat for clarity)

Ending with “Defined” allows computation

• Let’s go back to the induction principle for formulae from before:

Induction Principles

26

Induction principle
We can prove for any by proving
1.
2.
3. , assuming and
4. , assuming and

P(ϕ) ϕ
P(T)
P(F)
P(A ∧ B) P(A) P(B)
P(A ∨ B) P(A) P(B)

…we will get a proof of: ∀ϕ . P(ϕ)If we can provide these proofs…

Indϕ : ∀P . P(T) → P(F) →
(∀A, B . P(A) → P(B) → P(A ∧ B)) →
(∀A, B . P(A) → P(B) → P(A ∨ B)) →

∀ϕ . P(ϕ)

• We can write this induction principle by hand

• …but Coq generates it for us
automatically!

Induction Principles

27

Fixpoint phi_ind (P : phi -> Prop)
 (case_t : P T) (case_f : P F)
 (case_and : forall A B, P A -> P B -> P (And A B))
 (case_or : forall A B, P A -> P B -> P (Or A B))
 (f : phi)
 : P f :=
 match f with
 | T => case_t
 | F => case_f
 | And A B => case_and A B
 (phi_ind P case_t case_f case_and case_or A)
 (phi_ind P case_t case_f case_and case_or B)
 | Or A B => case_or A B
 (phi_ind P case_t case_f case_and case_or A)
 (phi_ind P case_t case_f case_and case_or B)
 end.

Indϕ : ∀P . P(T) → P(F) →
(∀A, B . P(A) → P(B) → P(A ∧ B)) →
(∀A, B . P(A) → P(B) → P(A ∨ B)) →

∀ϕ . P(ϕ)

• Sometimes the generated induction principle is not very useful

• A more useful principle would be:

Custom Induction Principles

28

Inductive rose_tree (A: Type) :=
| Node (elem: A) (children: list (rose_tree A)).

Generated induction principle has type

∀(A : Type) (P : rose_tree A → Prop) .
(∀e, ts . P(Node A e ts)) →
∀t, P(t)

If you can prove that holds for a node
with any element and children, then

 holds for any tree

P

P t

∀(A : Type) (P : rose_tree A → Prop) .
(∀e, ts . ∀t′￼∈ ts . P(t′￼) → P(Node A e ts)) →
∀t, P(t)

We can write this by hand (or even
better, generate it using tactics!)

Custom Induction Principles

29

Fixpoint rose_tree_ind' (A: Type) (P: rose_tree A -> Prop)
 (case_node: forall e ts, Forall P ts -> P (Node A e ts))
 (t: rose_tree A) : P t :=
 match t with
 | Node _ e ts =>
 case_node e ts
 (list_ind (Forall P)
 (Forall_nil P)
 (fun x xs (IH: Forall P xs) => Forall_cons x (rose_tree_ind'' A P case_node x) IH) ts)
 end.

Ugh…

Fixpoint rose_tree_ind’’ (A: Type) (P: rose_tree A -> Prop)
 (case_node: forall e ts, Forall P ts -> P (Node A e ts))
 (t: rose_tree A) : P t.
Proof with auto.
 destruct t. apply case_node.
 induction children...
 apply Forall_cons...
 apply rose_tree_ind’’...
Defined.

This is nicer to write
(but obviously doesn’t make
sense without following the
proof interactively)

• It is possible to write proofs directly as fixpoints:

• The final Qed checks that the resulting proof object is terminating
• Proof search will sometimes be overly optimistic…

Fixpoints instead of Theorems

30

Fixpoint rebuild_id' (A: Type) (t: rose_tree A):
 rebuild A t = t.
Proof with auto.
 destruct t. simpl.
 f_equal. induction children...
 simpl. rewrite rebuild_id'.
 rewrite IHchildren.
 reflexivity.
Qed.

Uses the theorem
in its own proof!

• The Curry-Howard equivalent of lambda calculus is intuitionistic logic
• Also known as constructive logic

• Rather than assign each proposition or , require evidence

• Excludes certain axioms present in classical logic
• Law of excluded middle
• Double negation elimination
• Peirce’s law
• (Each of these imply the others)

True False

Intuitionistic Logic

31

(¬A ⟹ A) ⟹ A

∀P . P ∨ ¬P

¬¬P ⟹ P

• If we prove by showing that leads to a contradiction we have
not produced evidence of

• We do not have a procedure for building the proof object for ,
only for building the proof object for

• Specific instances of classical axioms can be proved:

P ¬P
P

P
¬¬P

Proof by Contradiction

32

Theorem is_true_lem:
 forall f,
 is_true f \/ is_true f.
Proof.
 ...
Qed.

¬

Theorem is_true_dne:
 forall f,
 is_true f -> is_true f.
Proof.
 ...
Qed.

¬¬

Software Foundations also

has you prove that it is OK to

assume the law of excluded

middle: ∀P . ¬¬(P ∨ ¬P)

• The Curry-Howard correspondence connects logic and programming
• Coq embodies this connection explicitly
• Propositions are types
• Proofs are programs

• Most of the time, we program with Gallina and prove with tactics
• Sometimes it is useful to do it the other way around!

• In particular, we sometimes need custom induction principles

Conclusions

33

