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• Consider the following (incomplete) grammar for  propositional logic 

• The grammar gives an inductive definition of the syntax of formulae 

• Any formula  must have one of the four forms above 

• Allows case analysis 
• The inductive structure is implicitly finite 

• Allows proof by induction

ϕ

Inductive Definitions

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ
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• When we write this… 

• …what we’re actually defining is this:

Well-Founded Recursion

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ

ϕ0 = {T, F}

ϕ1 = {A ∧ B | A, B ∈ ϕ0} ∪ {A ∨ B | A, B ∈ ϕ0} ∪ ϕ0

ϕω = {A ∧ B | A, B ∈ ϕω−1} ∪ {A ∨ B | A, B ∈ ϕω−1} ∪ ϕω−1

…
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(  is the set of formulae with a maximum of  connectives)ϕn n

Induction principle 
We can prove  for  for any  by proving: 
1.  for  
2. , assuming  and , for  
3. , assuming  and , for   

1. proves  for all of . 2. and 3. then gives , , …, 

P(ϕ) ϕ ∈ ϕn n
P(A) A ∈ ϕ0
P(A ∧ B) P(A) P(B) A, B ∈ ϕk
P(A ∨ B) P(A) P(B) A, B ∈ ϕk

P ϕ0 ϕ1 ϕ2 ϕn



• Consider the definition of an algebraic data type 

• This gives an inductive definition of the shape of lists 
• Any value of type nat_list must have one of the two forms above 

• Allows pattern matching 
• Any value of type nat_list is finite 

• Allows recursive functions

Algebraic Datatypes

Inductive nat_list := 
| Nil 
| Cons (n: nat) (l : nat_list).

type nat_list
 = 

| Nil 
| Cons of nat

 * nat_list

data NatList =   Nil 
| Cons Nat NatList

(not looking at you, Haskell…)
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• We can further define inductive relations over formulae, for example 

• The relation above gives an inductive definition of its derivation trees 

• Any proof of  must have one of the four forms above 

• Allows case analysis (inversion) 
• The inductive structure of the derivation tree is implicitly finite 

• Allows proof by induction

ϕ true

Inductive Definitions (again)

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true T true
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• When we write this… 

• …what we’re actually defining is this:

Well-Founded Recursion (again)

τ0 = { T true }
τ1 = { A true B true

A ∧ B true
| A true, B true ∈ τ0}⋃{ A true

A ∨ B true
| A true ∈ τ0}⋃{ B true

A ∨ B true
| B true ∈ τ0}⋃τ0

…

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true T true

τω = { A true B true
A ∧ B true

| A true, B true ∈ τω−1}⋃{ A true
A ∨ B true

| A true ∈ τω−1}⋃{ B true
A ∨ B true

| B true ∈ τω−1}⋃τω−1

(  is the set of derivation trees for formulas in )τn ϕn

Induction principle 
We can prove , for  for any  by proving 
1.   (  came from ) 
2.  assuming , ,  and  
3.  assuming  and  
4.  assuming  and  

In cases 2-4 we are assuming , for any 

ϕ true ⟹ P(ϕ) ϕ true ∈ τn n
P(T ) ϕ true τ0
P(A ∧ B) A true B true P(A) P(B)
P(A ∨ B) A true P(A)
P(A ∨ B) B true P(B)

A true, B true ∈ τk k



• Both formulae and properties of these define syntactic structures 

• Proving  amounts to producing a derivation tree  with  as its root 

• Proof that :

ϕ true τ ϕ true
T ∧ (F ∨ T ) true

Syntactic Proofs

ϕ ::= T | F | ϕ ∧ ϕ | ϕ ∨ ϕ

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true T trueτ ::= | | |

T true F ∨ T true
T ∧ (F ∨ T ) true

T true
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• Induction principles are procedures for building derivation trees 

• Prove that  

• By induction over the derivation tree of  

1. Base case:  trivially. 

2. Case : By the induction hypotheses we get  
and . These together give . 

3. Similar to 2. but either rule for  can be used.

ϕ megatrue ⟹ ϕ true

ϕ megatrue
T true

A ∧ B megatrue A true
B true A ∧ B true

A ∨ B true

Syntactic Proofs (cont.)
A true B true

A ∧ B true
A true

A ∨ B true
B true

A ∨ B true T trueτ ::= | | |

A megatrue B megatrue
A ∧ B megatrue T megatrue

A megatrue B megatrue
A ∨ B megatrue
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• Induction principles are procedures for building derivation trees 

• Prove that  

• By induction over the derivation tree of  

1. Base case:  trivially. 

2. Case : By the induction hypotheses we get  and 
. These together give . 

3. Similar to 2. but either rule for  can be used.

ϕ megatrue ⟹ ϕ true

ϕ megatrue
T true

A ∧ B megatrue A true
B true A ∧ B true

A ∨ B true

Syntactic Proofs (cont.)
A true B true

A ∧ B true
A true

A ∨ B true
B true

A ∨ B true T trueτ ::= | | |

A megatrue B megatrue
A ∧ B megatrue T megatrue

A megatrue B megatrue
A ∨ B megatrue

σ ::=

 
  match  with 
  |    

  |                                              

  |                                 

buildProof (σ : ϕ megatrue) : ϕ true =
σ

T megatrue ⇒ T true

⇒ A ∧ B true

⇒ A ∨ B true

A megatrue B megatrue
A ∧ B megatrue

A megatrue B megatrue
A ∨ B megatrue

buildProof (A megatrue) buildProof (B megatrue)

buildProof (A megatrue)
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• Curry-Howard Isomorphism 
• Curry-Howard Equivalence 

• Proofs as programs 
• Propositions as types

Curry-Howard Correspondence

Haskell Curry OCaml Howard

William Howard
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A few Correspondences
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In Logic In Programming
Propositions Types

Proofs Programs (terms)

Implication Function types

Conjunction Product types

Disjunction Sum types

Case analysis Pattern matching

True The unit type

False The empty type

A ⟹ B A -> B

A ∧ B A * B

A ∨ B A | B



• “Propositions as types” connects to writing syntactic proofs 

• Prove x < x + 2

Propositions as Types
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Lemma 1 : ∀n . n < n + 1

Lemma 2 : ∀m n . m < n ⟹ m < n + 1

Given any , Lemma 1 can produce a proof of  
“Lemma 1 is a function from numbers  to proofs of ”

n n < n + 1
n n < n + 1

If I have a proof of , Lemma 2 can give me a proof of  
“Lemma 2 is a function from (a proof of)  to (a proof of) ”

m < n m < n + 1
m < n m < n + 1

Using Lemma 1 with x, we get  (Fact 1).  
Using Lemma 2 with Fact 1, we get . 
By properties of ,  we get . 

x < x + 1
x < (x + 1) + 1

+ (x + 1) + 1 = x + 2 □

let Fact1 = Lemma1(x) in 
let Fact2 = Lemma2(x, x+1, Fact1) in 
simplify(Fact2)



• “Propositions as types” helps when writing syntactic proofs 

• Prove x < x + 2

Propositions as Types

13

Lemma 1 : ∀n . n < n + 1

Lemma 2 : ∀m n . m < n ⟹ m < n + 1

Given any , Lemma 1 can produce a proof of n n < n + 1

If I have a proof of , Lemma 2 can give me a proof of  
“Lemma 2 is a function from  to ”

m < n m < n + 1
m < n m < n + 1

Using Lemma 1 with x, we get  (Fact 1).  
Using Lemma 2 with Fact 1, we get . 
By properties of ,  we get . 

x < x + 1
x < (x + 1) + 1

+ (x + 1) + 1 = x + 2 □

function create_log_entry(s: String): LogEntry = 
   
end 

function certify_log_entry(e: LogEntry): Certificate[LogEntry] = 
   
end 

function verify_operation(op: Operation): Certificate[LogEntry] = 
  var s_op = to_string(op) 
  var entry = create_log_entry(s_op) 
  return certify_log_entry(entry) 
end

…

…

“Hm, if I had a log entry I could build 
a certificate… ”



• The proposition  corresponds to the unit type 

• There is a single constructor () carrying no information 

• We can always produce a proof of  

• The proposition  corresponds to the empty type 

• There are no constructors 

• We can never produce a proof of 

True

True
False

False

True and False
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  match  with 
  (* End of proof *)

exFalsoQuodlibet(p : False) : Anything =
p



• There are many more instances of the Curry-Howard correspondence 
• System F — Polymorphic Lambda Calculus 
• Modal logic — Monads 
• Linear Logic — Session Types 
• … 

• See (e.g.)“Propositions as types“ by Philip Wadler 
• Talk: https://www.youtube.com/watch?v=aeRVdYN6fE8

Curry-Howard goes Deep 
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https://www.youtube.com/watch?v=aeRVdYN6fE8


Questions so far?



• The tactics we write in Coq actually produce proof objects 
• Proof objects reify the Curry-Howard correspondence 
• Inductive definitions are inductive data types 
• Proofs explicitly build proof objects 
• Case analysis (destruct) turns into pattern matching 

• The proof object of an implication  is a function from  to  

• The function builds the proof object  given a proof object  

• Induction shows up as (guarded) recursive functions

A ⟹ B A B
B A

Proof Objects in Coq
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Questions?



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := ?Goal)



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := 
   match f with 
   | T => ?Goal 
   | F => ?Goal0 
   | And phi1 phi2 => (fun f1 f2 : phi => ?Goal1) phi1 phi2 
   | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2 
   end) 



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := 
   match f with 
   | T => 0 
   | F => ?Goal0 
   | And phi1 phi2 => (fun f1 f2 : phi => ?Goal1) phi1 phi2 
   | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2 
   end) 



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := 
   match f with 
   | T => 0 
   | F => 1 
   | And phi1 phi2 => (fun f1 f2 : phi => ?Goal1) phi1 phi2 
   | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2 
   end) 



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := 
   match f with 
   | T => 0 
   | F => 1 
   | And phi1 phi2 => count_false f1 + count_false f2 
   | Or phi1 phi2 => (fun f1 f2 : phi => ?Goal2) phi1 phi2 
   end) 

(Cheating somewhat for clarity)



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := 
   match f with 
   | T => 0 
   | F => 1 
   | And phi1 phi2 => count_false f1 + count_false f2 
   | Or phi1 phi2 => count_false f1 + count_false f2 
   end) 

(Cheating somewhat for clarity)



• Tactics build proof objects… 
• Proof objects are programs… 
• Can we build programs using tactics?

Tactics and Program Synthesis
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Fixpoint count_false (f: phi): nat. 
  destruct f. 
  - apply 0. 
  - apply 1. 
  - apply (count_false f1 + count_false f2). 
  - apply (count_false f1 + count_false f2). 
Defined.

(fix count_false (f : phi) : nat := 
   match f with 
   | T => 0 
   | F => 1 
   | And phi1 phi2 => count_false f1 + count_false f2 
   | Or phi1 phi2 => count_false f1 + count_false f2 
   end) 

(Cheating somewhat for clarity)

Ending with “Defined” allows computation



• Let’s go back to the induction principle for formulae from before:

Induction Principles

26

Induction principle 
We can prove  for any  by proving 
1.  
2.  
3. , assuming  and  
4. , assuming  and 

P(ϕ) ϕ
P(T )
P(F )
P(A ∧ B) P(A) P(B)
P(A ∨ B) P(A) P(B)

…we will get a proof of: ∀ϕ . P(ϕ)If we can provide these proofs…

Indϕ : ∀P . P(T ) → P(F ) →
( ∀A, B . P(A) → P(B) → P(A ∧ B)) →
( ∀A, B . P(A) → P(B) → P(A ∨ B)) →

∀ϕ . P(ϕ)



• We can write this induction principle by hand 

• …but Coq generates it for us 
automatically!

Induction Principles
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Fixpoint phi_ind (P : phi -> Prop) 
  (case_t : P T) (case_f : P F) 
  (case_and : forall A B, P A -> P B -> P (And A B)) 
  (case_or : forall A B, P A -> P B -> P (Or A B)) 
  (f : phi) 
  : P f := 
  match f with 
  | T => case_t 
  | F => case_f 
  | And A B => case_and A B 
                 (phi_ind P case_t case_f case_and case_or A) 
                 (phi_ind P case_t case_f case_and case_or B) 
  | Or A B => case_or A B 
                 (phi_ind P case_t case_f case_and case_or A) 
                 (phi_ind P case_t case_f case_and case_or B) 
  end. 

Indϕ : ∀P . P(T ) → P(F ) →
( ∀A, B . P(A) → P(B) → P(A ∧ B)) →
( ∀A, B . P(A) → P(B) → P(A ∨ B)) →

∀ϕ . P(ϕ)



• Sometimes the generated induction principle is not very useful 

• A more useful principle would be:

Custom Induction Principles
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Inductive rose_tree (A: Type) := 
| Node (elem: A) (children: list (rose_tree A)).

Generated induction principle has type 
   
       
      

∀(A : Type) (P : rose_tree A → Prop) .
(∀e, ts . P(Node A e ts)) →
∀t, P(t)

If you can prove that  holds for a node 
with any element and children, then 

 holds for any tree 

P

P t

 
     
    

∀(A : Type) (P : rose_tree A → Prop) .
(∀e, ts . ∀t′￼∈ ts . P(t′￼) → P(Node A e ts)) →
∀t, P(t)

We can write this by hand (or even 
better, generate it using tactics!)



Custom Induction Principles
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Fixpoint rose_tree_ind' (A: Type) (P: rose_tree A -> Prop) 
  (case_node: forall e ts, Forall P ts -> P (Node A e ts)) 
  (t: rose_tree A) : P t := 
  match t with 
  | Node _ e ts => 
      case_node e ts 
        (list_ind (Forall P) 
           (Forall_nil P) 
           (fun x xs (IH: Forall P xs) => Forall_cons x (rose_tree_ind'' A P case_node x) IH) ts) 
  end. 

Ugh…

Fixpoint rose_tree_ind’’ (A: Type) (P: rose_tree A -> Prop) 
  (case_node: forall e ts, Forall P ts -> P (Node A e ts)) 
  (t: rose_tree A) : P t. 
Proof with auto. 
  destruct t. apply case_node. 
  induction children... 
  apply Forall_cons... 
  apply rose_tree_ind’’... 
Defined.

This is nicer to write 
(but obviously doesn’t make 
sense without following the 
proof interactively)



• It is possible to write proofs directly as fixpoints: 

• The final Qed checks that the resulting proof object is terminating 
• Proof search will sometimes be overly optimistic…

Fixpoints instead of Theorems
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Fixpoint rebuild_id' (A: Type) (t: rose_tree A): 
    rebuild A t = t. 
Proof with auto. 
  destruct t. simpl. 
  f_equal. induction children... 
  simpl. rewrite rebuild_id'. 
  rewrite IHchildren. 
  reflexivity. 
Qed.

Uses the theorem 
in its own proof!



• The Curry-Howard equivalent of lambda calculus is intuitionistic logic 
• Also known as constructive logic 

• Rather than assign each proposition  or , require evidence 

• Excludes certain axioms present in classical logic 
• Law of excluded middle 
• Double negation elimination 
• Peirce’s law 
• (Each of these imply the others)

True False

Intuitionistic Logic
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(¬A ⟹ A) ⟹ A

∀P . P ∨ ¬P

¬¬P ⟹ P



• If we prove  by showing that  leads to a contradiction we have 
not produced evidence of  

• We do not have a procedure for building the proof object for , 
only for building the proof object for  

• Specific instances of classical axioms can be proved:

P ¬P
P

P
¬¬P

Proof by Contradiction
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Theorem is_true_lem: 
  forall f, 
    is_true f \/ is_true f. 
Proof. 
  ... 
Qed.

¬

Theorem is_true_dne: 
  forall f, 
     is_true f -> is_true f. 
Proof. 
  ... 
Qed.

¬¬

Software Foundations also 

has you prove that it is OK to 

assume the law of excluded 

middle: ∀P . ¬¬(P ∨ ¬P)



• The Curry-Howard correspondence connects logic and programming 
• Coq embodies this connection explicitly 
• Propositions are types 
• Proofs are programs 

• Most of the time, we program with Gallina and prove with tactics 
• Sometimes it is useful to do it the other way around! 

• In particular, we sometimes need custom induction principles

Conclusions
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