Interactive Theorem Proving
Lecture 2: The Curry-Howard Correspondence

Elias Castegren and David Broman
2 May 2024

Inductive Definitions

* Consider the following (incomplete) grammar for propositional logic
p=T|F|ldAPp| PV

* The grammar gives an inductive definition of the syntax of formulae
 Any formula ¢ must have one of the four forms above
* Allows case analysis
* Theinductive structure is implicitly finite

* Allows proof by induction

UNIVERSITET

Well-Founded Recursion

Induction principle
We can prove P(¢) for ¢p € ¢, for any n by proving:
1. P(A)forA € ¢,
2. P(A A B), assuming P(A) and P(B),for A, B € ¢,
3. P(A V B), assuming P(A) and P(B),forA,B € ¢,

 When we write this...
=T |F|l|opAD| PV

* ...what we’re actually defining is this: 1. proves P for all of @- 2. and 3. then gives ¢, @5, ..., P,

¢y =1{T, F} (¢, is the set of formulae with a maximum of 7 connectives)

o={AANB|A,Be @, U{AVB|A,B€E @y} U,

o,={AANB|A,Be¢p, .JU{AVB|A,Begp, }Up,_,

LICAY
3 uPPsALA
UNIVERSITET

Algebraic Datatypes

data Natlise _

 Consider the definition of an algebraic data type NiJ
| Co
Tnductive nat_list :-= type nat_list = ”? Nat Natljst
Nil .
Nil -
| Cons (n: nat) (1 : nat_list). \ Cons of nat * nat_list

* This gives an inductive definition of the shape of lists
* Any value of type nat_1list must have one of the two forms above
 Allows pattern matching
* Anyvalue of type nat_list isfinite (notlookingatyou, Haskell...)

e Allows recursive functions

LICAY
4 UPPSALA
UNIVERSITET

Inductive Definitions (again)

* We can further define inductive relations over formulae, for example

A true B true A true B true
A A B true AV B true AV B true T true

* The relation above gives an inductive definition of its derivation trees
 Any proof of ¢ true must have one of the four forms above
* Allows case analysis (inversion)
* The inductive structure of the derivation tree is implicitly finite

* Allows proof by induction

UNIVERSITET

Well-Founded Recursion (again)

Induction principle
We can prove ¢ true = P(¢), for ¢ true € 7, for any n by proving
1. P(T) (¢ true came from 7))
A true B true A1riy P(A A B) assuming A true, B true, P(A) and P(B)
A A B true AV B 13. P(AV B) assuming A true and P(A)

4. P(A Vv B) assuming B true and P(B)
* ...what we’re actually defir

In cases 2-4 we are assuming A true, B true € 7, forany k
TO —
T true (

e When we write this...

7, is the set of derivation trees for formulasin ¢,)

A true B true At Bt - U A true At - U B true Bt - U
T, = rue, rue € rue € 7 rue €t T
: A A B true v AV B true v A V B true v v

A true B true At Bt - U A true At - U B true Bt - U
T = rue, rue €7, _ rue €7, _ rue €7, _ T,
v A A B true o=l AV B true ! AV B true o=l !

Syntactic Proofs

* Both formulae and properties of these define syntactic structures

=T |F|loAp| PV

A true B true A true B true
A A B true AV B true AV B true T true

T .=
 Proving ¢b true amounts to producing a derivation tree T with ¢ true as its root

e ProofthatT A (F' Vv T) true:

T true
T true F Vv T true
TA(FVT)true

l 1S
7 UPPSALA
UNIVERSITET

Syntactic Proofs (cont.)

A true B true A true B true
A A B true | AV B true l AV B true T true

T =
* Induction principles are procedures for building derivation trees

* Prove that ¢) megatrue — ¢ true

A megatrue B megatrue A megatrue B megatrue
A A B megatrue AV B megatrue T megatrue

By induction over the derivation tree of ¢ megatrue

1. Base case: T true trivially.

2. Case A A B megatrue: By the induction hypotheses we get A true
and B true. These together give A A B true.

3. Similar to 2. but either rule for A V B true can be used.

AL
‘ﬁ;;'?s:h
8 uppsaLA
UNIVERSITET

Syntactic Proofs (cont.)

A true B true A true B true
A A B true | AV B true l AV B true | T true

T ..=

* Induction principles are procedures for building derivation trees

* Prove that ¢ megatrue — ¢ true

A megatrue B megatrue A megatrue B megatrue

o .=
A A B megatrue A V B megatrue T megatrue

* buildProof(o : ¢ megatrue) : ¢ true =
match o with
| T megatrue = T true

buildProof(A megatrue) buildProof(B megatrue)

A A B true

build Proof(A megatrue)
AV B true

A megatrue B megatrue

A A B megatrue

A megatrue B megatrue

AV B megatrue
O UPPSALA
UNIVERSITET

Curry-Howard Correspondence

* Curry-Howard Isomorphism

* Curry-Howard Equivalence

* Proofs as programs

* Propositions as types

Haskell Curry

William Howard

A few Correspondences

In Logic

In Programming

Propositions
Proofs
Implication
A = B
Conjunction
ANAB
Disjunction
AVB
Case analysis
True

False

Types
Programs (terms)
Function types
A ->B
Product types
A* B
Sum types
A| B
Pattern matching
The unit type
The empty type

UNIVERSITET

Propositions as Types

* “Propositions as types” connects to writing syntactic proofs

Lemma l:Vn.n<n+1
Given any n, Lemma 1 can produce a proofofn < n + 1

“Lemma 1is a function from numbers n to proofsofn < n+ 1”
Lemma?2:Vmn.m<n = m<n+1

If | have a proof of m < n, Lemma 2 can give me a proofofm < n + 1
“Lemma 2 is a function from (a proof of) m < nto (a proofof)m < n + 1”

* Provex < x+2
Using Lemma 1 with x, we get x < x + 1 (Fact1). let Factl = Lemmal(x) in

Using Lemma 2 with Fact 1, we get x < (x + 1) + 1, |18t Fact2 = Lemma2{x, x+1, Factl) in
_ simplify(Fact2)
By propertiesof +, weget(x+ 1)+ 1 =x+ 2.0

12 UPPSALA
UNIVERSITET

Propositions as Types

“Propositions as types” helps when writing syntactic proofs
function create_log_entry(s: String): LogEntry =

end
function certify log_entry(e: LogEntry): Certificate[LogEntry] =
end
function verify operation(op: Operation): Certificate[LogEntry] =

* Pri var s_op = to_string(op) “Hm, if | had a log entry | could build
var entry = create log entry(s_op) . .ortificate 7

return certify log_entry(entry)
end

DYy PTOPCTrtiCSOT T, W gttt T ') T I =—A"T1T Z 1

UNIVERSITET

True and False

* The proposition True corresponds to the unit type
 Thereis a single constructor () carrying no information
» We can always produce a proof of True

 The proposition False corresponds to the empty type
* There are no constructors

« We can never produce a proof of False

exFalsoQuodlibet(p : False) : Anything =
match p with
(* End of proof *)

UNIVERSITET

Curry-Howard goes Deep

* There are many more instances of the Curry-Howard correspondence
* System F — Polymorphic Lambda Calculus
* Modal logic — Monads

* Linear Logic — Session Types

* See (e.g.)“Propositions as types“ by Philip Wadler
* Talk: https://www.youtube.com/watch?v=aeRVdYNG{ES

UNIVERSITET

https://www.youtube.com/watch?v=aeRVdYN6fE8

Questions so far?

UPPSALA
UNIVERSITET

Proof Objects in Coq

* The tactics we write in Coq actually produce proof objects
* Proof objects reify the Curry-Howard correspondence

* Inductive definitions are inductive data types

* Proofs explicitly build proof objects

* Case analysis (destruct) turns into pattern matching

The proof object of an implication A = B s afunctionfromAto B

« The function builds the proof object B given a proof object A

Induction shows up as (guarded) recursive functions

UNIVERSITET

Questions?

UPPSALA
UNIVERSITET

Tactics and Program Synthesis

iixpoint count_false (f: phi): nat.
* Tactics build proof objects... destruct f.

- apply 0.

apply 1.

apply (count_false f1 + count_false £2).
- apply (count_false f1 + count_false £2).

Defined.

* Proof objects are programs...

* Can we build programs using tactics?

(fix count_false (f : phi) : nat := ?Goal)

UNIVERSITET

Tactics and Program Synthesis

Fixpoint count_false (f: phi): nat.

* Tactics build proof objects... > destruct f.
P) - apply 0.
* Proof objects are programs... - apply 1.

- apply (count_false f1 + count_false £2).
- apply (count_false f1 + count_false £2).
Defined.

* Can we build programs using tactics?

(fix count_false (f : phi) : nat :=

match £ with
T => 7?Goal
F => ?Goall
And phil phi2 => (fun f1 f2 : phi => ?Goall) phil phi2
Or phil phi2 => (fun f1 £2 : phi => ?Goal2) phil phi2
end)

UNIVERSITET

Tactics and Program Synthesis

Fixpoint count_false (f: phi): nat.
* Tactics build proof objects... destruct f.

- apply 0.
° Proofobjects are programs... _’— apply 1.
- apply (count_false f1 + count_false £2).
- apply (count_false f1 + count_false £2).
Defined.

* Can we build programs using tactics?

(fix count_false (f : phi) : nat :=

match £ with
T =>0
F => ?Goall
And phil phi2 => (fun f1 f2 : phi => ?Goall) phil phi2
Or phil phi2 => (fun f1 £2 : phi => ?Goal2) phil phi2
end)

UNIVERSITET

Tactics and Program Synthesis

Fixpoint count_false (f: phi): nat.

* Tactics build proof objects... destruct f.
- apply 0.
* Proof objects are programs... p- opply 1.

- apply (count_false f1 + count_false £2).
- apply (count_false f1 + count_false £2).
Defined.

* Can we build programs using tactics?

(fix count_false (f : phi) : nat :=

match £ with
T =>0
F =>1
And phil phi2 => (fun f1 f2 : phi => ?Goall) phil phi2
Or phil phi2 => (fun f1 £2 : phi => ?Goal2) phil phi2
end)

UNIVERSITET

Tactics and Program Synthesis

Fixpoint count_false (f: phi): nat.

* Tactics build proof objects... destruct f.
. - apply 0.
* Proof objects are programs... - apply 1.

)) : an - apply (count_false f1 + count_false £2).
* Can we build programs using tactics? —P apply (count false £1 + count false £2).

Defined.

(fix count_false (f : phi) : nat :=
match £ with
T =>0
F =>1
And phil phi2 => count_false fl1 + count_false f2
Or phil phi2 => (fun f1 £2 : phi => ?Goal2) phil phi2
end)

UNIVERSITET

Tactics and Program Synthesis

Fixpoint count_false (f: phi): nat.

* Tactics build proof objects... destruct f.
. - apply 0.
* Proof objects are programs... - apply 1.

- apply (count_false f1 + count_false £2).

___?— apply (count_false f1 + count_false f2).
efined.

* Can we build programs using tactics?

(fix count_false (f : phi) : nat :=

match £ with
T =>0
F=>1
And phil phi2 => count_false fl1 + count_false f2
Or phil phi2 => count_false f1 + count_false f2
end)

UNIVERSITET

Tactics and Program Synthesis

Fixpoint count_false (f: phi): nat.
* Tactics build proof objects... destruct f.
apply 0.
apply 1.
)) : apply (count_false f1 + count_false £2).
* Can we build programs using tactics? _ apply (count false £1 + count false £2).

Ending with “Defined” allows computation —-’Defined-

* Proof objects are programs...

(fix count_false (f : phi) : nat :=
match £ with
T=>0
F oo 1 (Cheating somewhat for clarity)
And phil phi2 => count_false fl1 + count_false f2
Or phil phi2 => count_false f1 + count_false f2
end)

UNIVERSITET

Induction Principles

* Let’s go back to the induction principle for formulae from before:

Induction principle

We can prove(Pc(qb) for any g[))ay provmg\\
1. P(T)

2. P(F)
3. P(A A B), assuming P(A) and P(B)
4. P(A Vv B), assuming P(A) and P(B)

..we will get a proof of: V¢h . P(¢)

Ind, :VP.P(T) — P(F) -
(VA,B. P(A) — P(B) — P(A A B)) —
(VA,B. P(A) —» P(B) —» P(AV B)) —
V¢ .P(p)

lipi
20 UPPSALA
UNIVERSITET

Induction Principles

* We can write this induction principle by hand

Ind, :VP.P(T) - P(F) -
(VA,B. P(A) —» P(B) = P(A A B)) »
(VA,B. P(A) — P(B) —» P(AV B)) —

Vo.P(9)

* ...but Coq generates it for us
automatically!

Fixpoint phi_ind (P : phi -
(case_t : P T) (case f :
case and : forall AB, PA->PB ->P

(
(case_or : forall AB, PA ->PB ->P (
(

f : phi)
: P £ ;=
match £ with
| T => case_t
| F => case_f

| And A B => case_and A B

(phi_ind P
(phi_ind P

| Or A B => case_or A B

end.

(phi_ind P
(phi_ind P

> Prop)
P F)

case_t
case_t

case_t
case_t

case f
case f

case f
case f

And A
B

(
Or A B)

case_and
case_and

case_and
case_and

B))
)

case_or A)
case_or B)

case_or A)
case_or B)

Custom Induction Principles

* Sometimes the generated induction principle is not very useful

Inductive rose_tree (A: Type) :=
| Node (elem: A) (children: list (rose_tree A)).

Generated induction principle has type

o :

V(A : Type) (P : rose_tree A — P’”Op)j If you can prove that P holds for a node
(Ve,ts.P(Node A e ts)) — with any element and children, then
Vi, P(1) P holds for any tree ¢

— ,

* A more useful principle would be:

V(A : Type) (P : rose_tree A — Prop).
(Ve,ts .Vt' € ts.P(t') > P(Node A e ts)) —
Vt, P(1)

We can write this by hand (or even
better, generate it using tactics!)

UNIVERSITET

Custom Induction Principles

Fixpoint rose_tree_ind' (A: Type) (P: rose_tree A -> Prop)
(case_node: forall e ts, Forall P ts -> P (Node A e ts))
(t: rose tree A) : P t :=
match t with
| Node _ e ts =>

case_node e ts
(list_ind (Forall P)
(Forall nil P) Ugh...

(fun x xs (IH: Forall P xs) => Forall cons x (rose_tree ind'' A P case_node x) IH) ts)

end. . . _
Fixpoint rose_tree_ind’’ (A: Type) (P: rose_tree A -> Prop)

(case_node: forall e ts, Forall P ts -> P (Node A e ts))
(t: rose tree A) : P t.
Proof with auto.

destruct t. apply case_node. .+ ohyiously doesn’t make
induction children...

apply Forall cons. .. sense without following the

apply Tose tree ind’’... proof interactively)
Defined. UNIVERSITET

This is nicer to write

Fixpoints instead of Theorems

* |tis possible to write proofs directly as fixpoints:

Fixpoint rebuild_id'<iA: Type) (t: rose_tree A):
rebuild A t = t.
Proof with auto.
destruct t. simpl.
f_equal. induction children...

simpl. rewrite rebuild_id'. -~
rewrite IHchildren. Uses the theorem

reflexivity. in its own proof!
Qed.

* The final Qed checks that the resulting proof object is terminating

* Proof search will sometimes be overly optimistic...

UNIVERSITET

Intuitionistic Logic

» The Curry-Howard equivalent of lambda calculus is intuitionistic logic
 Also known as constructive logic

« Rather than assign each proposition True or False, require evidence

 Excludes certain axioms present in classical logic

» Law of excluded middle VP.PV P
* Double negation elimination —--p — P
* Peirce’s law (A = A) = A

« (Each of these imply the others)

UNIVERSITET

Proof by Contradiction

* If we prove P by showing that =P leads to a contradiction we have

not produced evidence of P

* We do not have a procedure for building the proof object for P,
only for building the proof object for == P

Wa
hasJ/Oure Foundal..
epe . . q Jo, /
* Specific instances of classical axioms can be proved: mfsume t/;;b,'/e thatl:/?sa/so
'dq, Wor. SO
Theorem is true lem: Theorem is true dne: — Vp. ﬁﬁofeXC/uo’eKto
forall f, forall £, (p\/ﬁp d
is true £ \/ —is _true f. == is true f -> is true f.)
Proof. Proof.

Qed.

Qed.

UNIVERSITET

Conclusions

* The Curry-Howard correspondence connects logic and programming
* Cog embodies this connection explicitly
* Propositions are types

* Proofs are programs

* Most of the time, we program with Gallina and prove with tactics
* Sometimes itis useful to do it the other way around!
* |n particular, we sometimes need custom induction principles

UNIVERSITET

