

Interactive Theorem Proving

Lecture 1: Introduction to Coq

Elias Castegren and David Broman

15 April 2024

• Assistant professor at Uppsala University, Sweden
• Type systems, formal semantics, concurrency

• Learned Coq for OPLSS 2013
• I use Coq for mechanising semantics and their proofs
• The concurrent object calculus OOlong
• Delegation and atomicity in actor systems
• Viktor’s system for Statically Resolvable Ambiguity

Who am I?

• Coq is an interactive theorem prover
• Compare to automated theorem provers such as SAT/SMT-solvers

• Coq is a dependently typed programming language

• Coq allows writing proof scripts, using tactics

What is Coq?

Technically this is Coq’s specification language Gallina

Technically this is Coq’s tactic language Ltac

• First version developed by Thierry Coquand and Gérard Huet in 1984
• Calculus of Constructions

• Extended by Christine Paulin in 1991
• Calculus of Inductive Constructions

• Four color theorem by Georges Gonthier in 2002

• Currently developed and maintained by ~40 people

When is Coq?

Congratulations on 40 years!

• Coq means “Rooster” in French
• Compare to OCaml, Yacc, Bison, GNU…

• Coq is based on (a derivative of) the Calculus of Constructions (CoC)
• Coq was developed by Thierry Coquand (among others)

• There has been a decision to rename Coq into “The Rocq prover”

…did you really have to name it that?

• Coq itself can be installed via https://coq.inria.fr
or your favourite package manager (including opam and Homebrew)
• In order to use Coq meaningfully, you need IDE support!
• VSCode with the VSCoq extension (recommended by the book)

• Also requires installing vscoq-language-server from opam!
• Emacs with Proof General (recommended if you use Emacs)

• CoqIDE, maintained by Inria
• For tinkering with small examples: https://coq.vercel.app

Practicalities

This is what I will be using for live coding!

https://coq.inria.fr
https://coq.vercel.app

• Coq is a purely functional language with dependent types
• Terms can depend on terms (regular functions)

• Terms can depend on types (polymorphic terms)

• Types can depend on types (type constructors)

• Types can depend on terms(!)

Coq, the Programming Language

(λx . λy . x y) : (τ1 → τ2) → τ1 → τ2

(ΛX . λx : X . x) : ∀X . X → X

LIST :: ⋆ → ⋆

VECTOR :: ΠX :: ⋆ . Πn : ℕ . […]

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus

Lambda Calculus
+ type functions

Dependently Typed
Lambda Calculus

System Fω

Graphics: wikipedia

Polymorphic
Lambda Calculus

(System F)

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus

Lambda Calculus
+ type functions

Graphics: wikipedia

Polymorphic
Lambda Calculus

(System F)

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus

Polymorphic
Lambda Calculus

(System F)

Dependently Typed
Lambda Calculus

System Fω

Lambda Calculus
+ type functions

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus

Calculus of
Constructions
(we are here)

System Fω

Dependently Typed
Lambda Calculus

Lambda Calculus
+ type functions

Polymorphic
Lambda Calculus

(System F)

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus

Lambda Calculus
+ type functions

Dependently Typed
Lambda Calculus

Calculus of
Constructions
(we are here)

System Fω

Polymorphic
Lambda Calculus

(System F)

Graphics: wikipedia

• What is the type of sprintf?
• sprintf “foo”
• sprintf “x = %d”
• sprintf “%s = %d”
• sprintf

• sprintf (s : string) : sprintfType s

Dependent Types (Example)

: string
: int string→

: string int string→ →
: ???

The type of sprintf depends on its argument!

Write in the chat!

Definition string := list ascii.

Inductive format :=
| Fmt_d (* %d *)
| Fmt_c (* %c *)
| Fmt_s (* %s *)
| Fmt__ (c : ascii). (* any other character c *)

Definition format_string := list format.

Fixpoint to_format (s: string): format_string :=
 match s with
 | nil => nil
 | "%" :: "d" :: s' => Fmt_d :: to_format s'
 | "%" :: "c" :: s' => Fmt_c :: to_format s'
 | "%" :: "s" :: s' => Fmt_s :: to_format s'
 | c :: s' => Fmt__ c :: to_format s'
 end.

Definition of a type (or term)

Definition of an inductive data type

Recursive function

to_format [“f”; “o”; “o”; “%”; “d”]
 [Fmt__ “f”; Fmt__ “o”; Fmt__ “o”; Fmt__d]

=

Pattern matching

Dependent Types (Example)

Fixpoint sprintfType' (fmt: format_string): Type :=
 match fmt with
 | nil => string
 | Fmt_d :: fmt' => nat -> sprintfType' fmt'
 | Fmt_c :: fmt' => ascii -> sprintfType' fmt'
 | Fmt_s :: fmt' => string -> sprintfType' fmt'
 | Fmt__ c :: fmt' => sprintfType' fmt'
 end.

Definition sprintfType (s: string): Type := sprintfType' (to_format s).

Function calculating a type(!)

sprintfType “%s = %d”
sprintfType’ [Fmt_s; Fmt__ “ “; Fmt__ “=“; Fmt__ “ “; Fmt_d]
string -> nat -> string

=
=

the type of natural numbers

Dependent Types (Example)

Fixpoint sprintf' (fmt: format_string) (a: string): sprintfType' fmt :=
 match fmt with
 | nil => a
 | Fmt_d :: fmt' => fun n => sprintf' fmt' (a ++ (ascii_of_nat n :: nil))
 | Fmt_c :: fmt' => fun c => sprintf' fmt' (a ++ (c :: nil))
 | Fmt_s :: fmt' => fun s => sprintf' fmt' (a ++ s)
 | Fmt__ c :: fmt' => sprintf' fmt' (a ++ (c :: nil))
 end.

Definition sprintf (s: string): sprintfType s :=
 sprintf' (to_format s) nil.

The type depends on the parameter!

sprintf “%s = %d” “foo” 42
sprintf’ [Fmt_s; Fmt__ “ “; Fmt__ “=“; Fmt__ “ “; Fmt_d] nil “foo” 42
(fun s => fun n => nil ++ s ++ “ = “ ++ ascii_of_nat n :: nil) “foo” 42
nil ++ “foo” ++ “ = “ ++ “42”
“foo = 42”

=
=

=
=

Dependent Types (Example)

: string -> nat -> string

Fixpoint loop (n: nat) := loop n.

Definition hmm (n: nat): loop n := …

Fixpoint merge (xs ys: list nat) :=
 match xs, ys with
 | [], ys’ => ys’
 | xs’, [] => xs’
 | x::xs’, y::ys’ =>
 if x <? y then x :: merge xs’ ys
 else y :: merge xs ys’
 end.

Recursion in Coq

All functions in Coq must be total (i.e. must provably terminate)!

“Cannot guess decreasing argument of fix”

“Cannot guess decreasing argument of fix”

Fixpoint loop (n: nat) := loop n.

Definition hmm (n: nat): loop n := …

Fixpoint merge (xs ys: list nat) (fuel: nat) :=
 match fuel with
 | Z => None
 | S fuel’ =>
 match xs, ys with
 | [], ys’ => Some ys’
 | xs’, [] => Some xs’
 | x::xs’, y::ys’ =>

 if x <? y then Option.map (cons x) (merge xs’ ys) fuel’
 else Option.map (cons y) (merge xs ys’) fuel’

 end
 end.

Recursion in Coq

All functions in Coq must be total (i.e. must provably terminate)!

Given enough fuel, merge will be correct

“Cannot guess decreasing argument of fix”

PSA: Dependent Types in Coq

Friends don’t let friends

program with dependent types

in Coq

• Dependent types are extremely powerful

• The ergonomics of dependent types is not great, especially not in Coq
• Try to avoid it as much as possible!

• Dependently typed languages that are nicer to program in:
• Agda
• Idris
• Lean?

PSA: Dependent Types in Coq

…but not necessarily do proofs in

Any Questions so far?

• Write formal definitions
• Using data types and functions over these

• State theorems about these definitions
• Specifications for Coq functions
• Properties regarding inductive definitions

• Prove these theorems
• Each step of the proof is checked by Coq
• It’s enough to read the specifications and theorems

Coq, the Theorem Prover

Definition halts (p : program) :=
 exists v, evaluates_to p v.

Theorem halting_problem :
 forall p,
 check_halts p = true ->
 halts p.

Inductive evaluates_to :
 program -> value -> Prop := ...

Fixpoint check_halts (p : program) :=
 ...

Proof.
 (* Hmm... *)
Admitted.

(and check for Admitted proofs)

Theorem Proving (example)
Inductive nat :=
| Z
| S (n: nat).

Definition one := S Z.
Definition two := S one.
Definition three := S two.

Fixpoint plus(a b: nat) :=
 match a with
 | Z => b
 | S a' => S (plus a' b)
 end.

Example one_plus_two:
 plus one two = three.
Proof.
 unfold one. unfold plus. fold three. reflexivity.
Qed.

n ::= 0 | S n

1 ≡ S 0
2 ≡ S 1
3 ≡ S 2

a + b = {b if a = 0
S (a′ + b) if a = S a′

1 + 2 = (S 0) + 2 = S (0 + 2) = S 2 = 3
Show that 1 + 2 = 3

Theorem Proving (example)
Inductive nat :=
| Z
| S (n: nat).

Fixpoint plus(a b: nat) :=
 match a with
 | Z => b
 | S a' => S (plus a' b)
 end.

n ::= 0 | S n

a + b = {b if a = 0
S (a′ + b) if a = S a′

∀n . n + 0 = n Audience Participation

Theorem Proving (example)
Inductive nat :=
| Z
| S (n: nat).

Fixpoint plus(a b: nat) :=
 match a with
 | Z => b
 | S a' => S (plus a' b)
 end.

Theorem plus_Z_r:
 forall n, plus n Z = n.
Proof.
 intros n. induction n.
 - simpl. reflexivity.
 - simpl. rewrite IHn. reflexivity.
Qed.

n ::= 0 | S n

a + b = {b if a = 0
S (a′ + b) if a = S a′

∀n . n + 0 = n

Assume that we have some natural number .
We proceed by induction over .
Base case (): , by the definition of .
Inductive case ():
1. , by the definition of .
2. by the induction hypothesis.
3. , by 2.

n
n

n = 0 0 + 0 = 0 +
n = S m

(S m) + 0 = S(m + 0) +
m + 0 = m
S (m + 0) = S m

□

Theorem Proving (example)
Inductive nat :=
| Z
| S (n: nat).

Fixpoint plus(a b: nat) :=
 match a with
 | Z => b
 | S a' => S (plus a' b)
 end.

Theorem plus_Z_r:
 forall n, plus n Z = n.
Proof.
 intros n. induction n.
 - simpl. reflexivity.
 - simpl. rewrite IHn. reflexivity.
Qed.

Don’t do video game proving!
— Robert Harper, CMU

• Formulate and prove commutativity of addition

• You should be able to get by with the following tactics:
• intros x1 … xn — introduce universally quantified variables
• induction x — proceed by induction over x
• simpl — simplify the current expression in the goal
• rewrite H — rewrite using the equality H (can be other theorems!)
• reflexivity — solve an equality where both sides are syntactically equal

• You will most likely need to prove one or two lemmas!
• You can start from the file nat_basic.v

Theorem Proving (hands-on)

∀a b . a + b = b + a

If you don’t have Coq on
your own machine:

https://coq.vercel.app

https://coq.vercel.app

Theorem Proving (hands-on)
Lemma plus_S:
 forall a b,
 plus a (S b) = S (plus a b).
Proof.
 intros a b. induction a.
 - reflexivity.
 - simpl. rewrite IHa. reflexivity.
Qed.

Theorem plus_comm:
 forall a b,
 plus a b = plus b a.
Proof.
 intros a b. induction a.
 - rewrite plus_Z_r. reflexivity. (* plus_Z_r defined previously *)
 - simpl. rewrite IHa. rewrite plus_S. reflexivity.
Qed.

• Warning: proving things in Coq is highly addictive!

• Prove helper lemmas separately whenever you get stuck
• It’s better to have 100 simple lemmas than 10 complex theorems
• Compare to how helper functions improve readability of code

• Always think before you prove. Avoid video game proving!

Theorem Proving in Coq

Question Time Again

• Proofs in Coq are (typically) written using tactics
• Tactics actually build (dependently typed) values

• While programming in Coq is functional, tactics are imperative

• There is a huge number of built-in tactics in Coq (too many?)
• Try to be consistent in your own style!

• The auto tactic provides proof automation through proof search

Coq, the Tactic Language

• Guiding automation

• Writing new tactics

Interacting with Tactics

Local Hint Resolve plus_Z_r : nat_db.

Local Hint Extern 1 => myTactic : nat_db.

In the current scope,
add the theorem plus_Z_r
to the hint database nat_db

In the current scope,
allow auto to use myTactic
with a cost of 1 with nat_db

Ltac myInduction x := intros x; induction x; simpl.

Tactics (example)
Local Hint Resolve plus_Z_r : nat_db.
Local Hint Resolve plus_S_r : nat_db.

Ltac perform_rewrite :=
 match goal with
 | H: ?x = _ |- context[?x] => rewrite H
 end.

Local Hint Extern 1 => perform_rewrite : nat_db.

Lemma plus_Z_r: forall n, plus n Z = n.
Proof. intros n. induction n; auto with nat_db. Qed.

Lemma plus_S_r: forall a b, plus a (S b) = S (plus a b).
Proof. intros a b. induction a; auto with nat_db. Qed.

Lemma plus_comm: forall a b, plus a b = plus b a.
Proof. intros a b. induction a; simpl; auto with nat_db. Qed.

• When learning Coq, avoid automation to learn what is going on!
• Start automating once you get annoyed with tiny details

• Just adding lemmas to a hint database will get you far! (+ auto)

• Software engineering Proof engineering

• Is this proof maintainable?
• Is it resilient to change?
• Is it using the the right abstractions?
• …

⟺

Proof Automation or Not?

QED at Large: a Survey of Engineering of
Formally Verified Software
Talia Ringer et al.

• Focus of this course is Coq as a theorem prover
• We will connect to dependent types next lecture!

• For now, don’t worry about fancy tactics or automation
• Focus on learning the craft of mechanised proofs

• Go have fun with Software Foundations. It’s a great book!

Final Words

Reach out if you get stuck!

