

Interactive Theorem Proving Lecture 1: Introduction to Coq

Elias Castegren and David Broman

15 April 2024

Who am I?

- Assistant professor at Uppsala University, Sweden
- Type systems, formal semantics, concurrency
- Learned Coq for OPLSS 2013
- I use Coq for mechanising semantics and their proofs
 - The concurrent object calculus OOlong
 - Delegation and atomicity in actor systems
 - Viktor's system for Statically Resolvable Ambiguity

What is Coq?

- Coq is an *interactive theorem prover*
 - Compare to automated theorem provers such as SAT/SMT-solvers
- Coq is a *dependently typed* programming language Technically this is Coq's specification language Gallina
- Coq allows writing proof scripts, using *tactics* Technically this is Coq's tactic language Ltac

When is Coq?

- First version developed by Thierry Coquand and Gérard Huet in 1984
 - Calculus of Constructions
- Extended by Christine Paulin in 1991
 - Calculus of Inductive Constructions
- Four color theorem by Georges Gonthier in 2002
- Currently developed and maintained by ~40 people

d Huet in 1984 Congratulations on 40 years

...did you really have to name it that?

- Coq means "Rooster" in French
 - Compare to OCaml, Yacc, Bison, GNU...
- Coq is based on (a derivative of) the Calculus of Constructions (CoC)
- Coq was developed by Thierry Coquand (among others)
- There has been a decision to rename Coq into "The Rocq prover"

Practicalities

- Coq itself can be installed via <u>https://coq.inria.fr</u> or your favourite package manager (including opam and Homebrew)
- In order to use Coq meaningfully, you need IDE support!
 - VSCode with the VSCoq extension (recommended by the book)
 - Also requires installing vscoq-language-server from opam!
 - Emacs with Proof General (recommended if you use Emacs) This is what I will be using for live coding!
 - CoqIDE, maintained by Inria
 - For tinkering with small examples: <u>https://coq.vercel.app</u>

Coq, the Programming Language

- Coq is a purely functional language with *dependent types*
 - Terms can depend on terms (regular functions)

 $(\lambda x . \lambda y . x y) : (\tau_1 \to \tau_2) \to \tau_1 \to \tau_2$

- Terms can depend on types (polymorphic terms) $(\Lambda X . \lambda x : X . x) : \forall X . X \to X$
- Types can depend on types (type constructors)

 $LIST :: \star \to \star$

• Types can depend on terms(!)

VECTOR :: ΠX :: \star . Πn : \mathbb{N} . [...]

UPPSALA UNIVERSITET

UNIVERSITE

- What is the type of sprintf?
 - sprintf "foo":string
 - sprintf "x = %d" : int \rightarrow string
 - sprintf "%s = %d" : string \rightarrow int \rightarrow string
 - sprintf :???

The type of sprintf depends on its argument!

Write in the chat!

• sprintf (s : string) : sprintfType s

Definition string := list ascii. **Definition of a type (or term)**

Inductive format := Definition of an inductive data type

Fmt_d (* %d *) Fmt_c (* %c *) Fmt_s (* %s *) Fmt__ (c : ascii). (* any other character c *)

Definition format_string := list format.

Definition sprintfType (s: string): Type := sprintfType' (to_format s).

```
sprintfType "%s = %d" =
sprintfType' [Fmt_s; Fmt_ " "; Fmt_ "="; Fmt_ " "; Fmt_d] =
string -> nat -> string
```


Recursion in Coq

```
Fixpoint loop (n: nat) := loop n. "Cannot guess decreasing argument of fix"
```

```
Definition hmm (n: nat): loop n := ...
```

All functions in Coq must be total (i.e. must provably terminate)!

```
Fixpoint merge (xs ys: list nat) :=
  match xs, ys with
   [], ys' => ys'
   xs', [] => xs'
   x::xs', y::ys' =>
      if x <? y then x :: merge xs' ys</pre>
                                         "Cannot guess decreasing argument of fix"
                else y :: merge xs ys'
```

end.

Recursion in Coq

```
Fixpoint loop (n: nat) := loop n. "Cannot guess decreasing argument of fix"
```

```
Definition hmm (n: nat): loop n := ...
```

All functions in Coq must be total (i.e. must provably terminate)!

PSA: Dependent Types in Coq

Friends don't let friends

program with dependent types

in Coq

PSA: Dependent Types in Coq

- Dependent types are extremely powerful
- The ergonomics of dependent types is not great, especially not in Coq
 - Try to avoid it as much as possible!
- Dependently typed languages that are nicer to *program* in:
 - Agda
 - Idris
 - Lean?

...but not necessarily *do proofs* in

Any Questions so far?

Coq, the Theorem Prover

- Write formal definitions
 - Using data types and functions over these
- State theorems about these definitions
 - Specifications for Coq functions
 - Properties regarding inductive definitions
- Prove these theorems
 - Each step of the proof is checked by Coq
 - It's enough to read the specifications and theorems (and check for Admitted proofs)

Inductive evaluates_to :
 program -> value -> Prop := ...

Definition halts (p : program) :=
 exists v, evaluates_to p v.

Fixpoint check_halts (p : program) :=

. . .

```
Theorem halting_problem :
   forall p,
     check_halts p = true ->
     halts p.
```


<pre>Inductive nat := Z S (n: nat).</pre>	$n ::= 0 \mid S n$
<pre>Definition one := S Z. Definition two := S one. Definition three := S two.</pre>	$1 \equiv S \ 0$ $2 \equiv S \ 1$ $3 \equiv S \ 2$
<pre>Fixpoint plus(a b: nat) := match a with Z => b S a' => S (plus a' b) end.</pre>	$a + b = \begin{cases} b & \text{if } a = 0\\ S (a' + b) & \text{if } a = S a' \end{cases}$
<pre>Example one_plus_two: plus one two = three. Proof.</pre>	Show that $1 + 2 = 3$ $1 + 2 = (S \ 0) + 2 = S \ (0 + 2) = S \ 2 = 3$
unfold one. unfold plus. fo Qed.	ta three. reflexivity.

```
Inductive nat :=
                                    n ::= 0 \mid S n
  Z
 S (n: nat).
Fixpoint plus(a b: nat) := a + b = \begin{cases} b & \text{if } a = 0 \\ S(a' + b) & \text{if } a = Sa' \end{cases}
  match a with
    Z => b
   .
| S a' => S (plus a' b)
  end.
                                                              Audience Participation
                                    \forall n . n + 0 = n
```



```
Inductive nat :=
                                    n ::= 0 \mid S n
  Ζ
  S (n: nat).
                                 a+b = \begin{cases} b & \text{if } a = 0\\ S (a'+b) & \text{if } a = S a' \end{cases}
Fixpoint plus(a b: nat) :=
  match a with
    Z => b
   S a' => S (plus a' b)
  end.
Theorem plus_Z_r:
  forall n, plus n Z = n. \forall n . n + 0 = n
Proof.
  intros n. induction n.
  - simpl. reflexivity.
  - simpl. rewrite IHn. reflexivity.
Qed.
```

Assume that we have some natural number *n*. We proceed by induction over *n*. **Base case** (n = 0): 0 + 0 = 0, by the definition of +. **Inductive case** (n = S m):**1.** (S m) + 0 = S(m + 0), by the definition of +. **2.** m + 0 = m by the induction hypothesis. **3.** S (m + 0) = S m, by **2**.

SALA RSITET

```
Inductive nat :=
```

```
Z
S (n: nat).
```

```
Fixpoint plus(a b: nat) :=
  match a with
  | Z => b
  | S a' => S (plus a' b)
  end.
```

```
Theorem plus_Z_r:
   forall n, plus n Z = n.
Proof.
```

```
intros n. induction n.
```

- simpl. reflexivity.
- simpl. rewrite IHn. reflexivity.

```
Qed.
```


Theorem Proving (hands-on)

• Formulate and prove commutativity of addition $\forall a \ b . a + b = b + a$ If you don't have Coq on your own machine: <u>https://coq.vercel.app</u>

- You should be able to get by with the following tactics:
 - intros x1 ... xn introduce universally quantified variables
 - *induction* x **proceed by induction over** x
 - *simpl* simplify the current expression in the goal
 - *rewrite* H rewrite using the equality H (can be other theorems!)
 - *reflexivity* solve an equality where both sides are syntactically equal
- You will most likely need to prove one or two lemmas!
- You can start from the file nat_basic.v

Theorem Proving (hands-on)

```
Lemma plus_S:
  forall a b,
    plus a (S b) = S (plus a b).
Proof.
  intros a b. induction a.
  - reflexivity.
  - simpl. rewrite IHa. reflexivity.
Qed.
Theorem plus_comm:
  forall a b,
    plus a b = plus b a.
Proof.
  intros a b. induction a.
  - rewrite plus_Z_r. reflexivity. (* plus_Z_r defined previously *)
  - simpl. rewrite IHa. rewrite plus_S. reflexivity.
Qed.
```


Theorem Proving in Coq

- Warning: proving things in Coq is highly addictive!
- Prove helper lemmas separately whenever you get stuck
 - It's better to have 100 simple lemmas than 10 complex theorems
 - Compare to how helper functions improve readability of code
- Always think before you prove. Avoid video game proving!

Question Time Again

Coq, the Tactic Language

- Proofs in Coq are (typically) written using *tactics*
 - Tactics actually build (dependently typed) values
- While programming in Coq is *functional*, tactics are *imperative*
- There is a huge number of built-in tactics in Coq (too many?)
 - Try to be consistent in your own style!
- The *auto* tactic provides *proof* automation through proof search

Interacting with Tactics

• Guiding automation

```
Local Hint Resolve plus_Z_r : nat_db.
```

Local Hint Extern 1 => myTactic : nat_db.

• Writing new tactics

Ltac myInduction x := intros x; induction x; simpl.

In the current scope,
add the theorem plus_Z_r
to the hint database nat_db

In the current scope, allow auto to use myTactic with a cost of 1 with nat_db

Tactics (example)

Local Hint Resolve plus_Z_r : nat_db.
Local Hint Resolve plus_S_r : nat_db.

```
Ltac perform_rewrite :=
  match goal with
    | H: ?x = _ |- context[?x] => rewrite H
  end.
```

Local Hint Extern 1 => perform_rewrite : nat_db.

Lemma plus_Z_r: forall n, plus n Z = n.
Proof. intros n. induction n; auto with nat_db. Qed.

```
Lemma plus_S_r: forall a b, plus a (S b) = S (plus a b).
Proof. intros a b. induction a; auto with nat_db. Qed.
```

Lemma plus_comm: forall a b, plus a b = plus b a.
Proof. intros a b. induction a; simpl; auto with nat_db. Qed.

Proof Automation or Not?

- When learning Coq, avoid automation to learn what is going on!
 - Start automating once you get annoyed with tiny details
- Just adding lemmas to a hint database will get you far! (+ auto)
- Software engineering \iff Proof engineering
 - Is this proof maintainable?
 - Is it resilient to change?
 - Is it using the the right abstractions?

QED at Large: a Survey of Engineering of Formally Verified Software Talia Ringer et al.

Final Words

- Focus of this course is Coq as a *theorem prover*
 - We will connect to dependent types next lecture!
- For now, don't worry about fancy tactics or automation
 - Focus on learning the *craft* of mechanised proofs
- Go have fun with Software Foundations. It's a great book!

