Interactive Theorem Proving
Lecture 1: Introduction to Cog

Elias Castegren and David Broman
15 April 2024

Who am I?

* Assistant professor at Uppsala University, Sweden

* Type systems, formal semantics, concurrency

* Learned Coq for OPLSS 2013

* | use Coq for mechanising semantics and their proofs
* The concurrent object calculus OOlong
* Delegation and atomicity in actor systems
* Viktor’s system for Statically Resolvable Ambiguity

UPPSALA
UNIVERSITET

What is Coq?

* Coqis an interactive theorem prover

* Compare to automated theorem provers such as SAT/SMT-solvers

* Coqis adependently typed programming language

Technically this is Coq’s specification language Gallina

* Coq allows writing proof scripts, using tactics

Technically this is Coqg’s tactic language Ltac

UPPSALA
UNIVERSITET

When is Coq?

First version developed by Thierry Coquand and Gérard Huet in 1984

* Calculus of Constructions Congratulations on 40 years#

Extended by Christine Paulin in 1991

* Calculus of Inductive Constructions

Four color theorem by Georges Gonthier in 2002

Currently developed and maintained by ~40 people

UPPSALA
UNIVERSITET

...did you really have to name it that?

* Cog means “Rooster” in French
* Compare to OCaml, Yacc, Bison, GNU...
* Coqis based on (a derivative of) the Calculus of Constructions (CoC)

* Coq was developed by Thierry Coquand (among others)

* There has been a decision to rename Coq into “The Rocq prover”

UPPSALA
UNIVERSITET

Practicalities

* Coqitself can be installed via https://coq.inria.fr
or your favourite package manager (including opam and Homebrew)

* In order to use Cog meaningfully, you need IDE support!
* VSCode with the VSCoq extension (recommended by the book)
* Also requires installing vscog-1language-server from opam!
* Emacs with Proof General (recommended if you use Emacs)
This is what | will be using for live coding!
* CoqIDE, maintained by Inria

* For tinkering with small examples: https://coqg.vercel.app

UPPSALA
UNIVERSITET

https://coq.inria.fr
https://coq.vercel.app

Coq, the Programming Language

* Coqis a purely functional language with dependent types
* Terms can depend on terms (regular functions)

Ax. y.xy): (1) > 1) =17, =1

* Terms can depend on types (polymorphic terms)
(AX. Ax : X.x):VX.X—-> X

* Types can depend on types (type constructors)
LIST :: % — %
* Types can depend on terms(!)
VECTOR :: 11X :: % .IIn : N.[...]

Aside: Barendregt’s Lambda Cube

Simply Typed
Lambda Calculus

IIIIIIIIIII

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

Polymorphic

Lambda Calculus A2

(System F)

Simply Typed
Lambda Calculus

A

A=

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

Polymorphic

Lambda Calculus A2

(System F)

Simply Typed
Lambda Calculus

A

A=

/7

AW
Lambda Calculus
+ type functions

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

/ A
Polymorphic

Lambda Calculus A2

(System F)

Simply Typed
Lambda Calculus

A

A=

System Fo A) -

/7

AW
Lambda Calculus
+ type functions

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

System Fo A) -

/ A
Polymorphic

Lambda Calculus A2
(SystemF) A

AW
Lambda Calculus
+ type functions
Simply Typed Dependently Typed 1
4 UPPSALA
Lambda Calculus A ~ AP Lambda Calculus UNIVERSITED

Graphics: wikipedia

Aside: Barendregt’s Lambda Cube

Lambda Calculus A2

(System F)

Simply Typed
Lambda Calculus

A

A=

System Fo A ()

/ A
Polymorphic

Calculus of
= A

= AP2

/

AW

Lambda Calculus
+ type functions

A

Constructions

= AP

/ A (we are here)
» APW
Dependently Typed UA

UNIVERSITET

Lambda Calculus Graphics: wikipedia

Dependent Types (Example)

* What is the type of sprintf?
e sprintf “foo” :string
e sprintf “x = %d” :int— string
e sprintf “%s = %d"” :string — int — string

e sprintf :777

The type of sprintf depends on its argument!
e sprintf (s : string) : sprintfType s

Dependent Types (Example)

Definition string := list ascii. Definition of atype (orterm)

Inductive format := Definition of aninductive data type
| Fmt_d (* %d *)
| Fmt_c (* %c *)
| Fmt_s (* %s *)
| Fmt__ (c : ascii). (* any other character c *)
Definition format_string := list format.
Fixpoint to_format (s: string): format_string := Recursive function
match s with Pattern matching
| nil => nil
| "%" i "d" :: s’ => Fmt_d :: to_format s'
| "%" i "c" ::os' => Fmt_c :: to_format s'
| "%t i s s' => Fmt_s :: to format s' to_format ["£"; "o"; "o"; "%"; "d"]| =
e s' => Fmt__ ¢ :: to format s' [Ffmt “f"; Fmt__ “"0o"; Fmt__ "0"; Fmt_d]

UNIVERSITET

end.

Dependent Types (Example)

Fixpoint sprintfType' (fmt: format_string): Type :-= Function calculating a type(!)
matéh fmt with , _ the type of natural numbers
| nil => strinc
| Fmt_d :: fmt' = nat=-> sprintfType' fmt'
| Fmt_c :: fmt' => ascii -> sprintfType' fmt'
| Fmt_s :: fmt' => string -> sprintfType' fmt'
| Fmt__ c :: fmt' => sprintfType' fmt'
end.

Definition sprintfType (s: string): Type := sprintfType' (to_format s).

sprintfType “%s = %d" =
sprintfType’ [Fmt_s; Fmt__ “ “; Fmt__ “="; Fmt__ “ “; Fmt_d] =
string -> nat -> string

UPPSALA
UNIVERSITET

Dependent Types (Example)

Fixpoint sprintf' (fmt: format_string) (a: string): sprintfType' fmt :=

match fmt with The type depends on the parameter!

| nil => a

| Fmt_d :: fmt' => fun n => sprintf' fmt' (a ++ (ascii_of nat n :: nil))
| Fmt_c :: fmt' => fun c => sprintf' fmt' (a ++ (c :: nil))

| Fmt_s :: fmt' => fun s => sprintf' fmt' (a ++ s)

| Fmt__ c :: fmt' => sprintf' fmt' (a ++ (c :: nil))

end.

Definition sprintf (s: string): sprinthype S :=
sprintf' (to_format s) nil.

(sprlntf “%s - %d’ "foo” 42 =

/S L[| - 7] u: Fmt
/ 1
 (fun s => fUn N => nil ++ s ++
\ =T —

T —————————.

“foo = 42"

UPPSALA
UNIVERSITET

Recursion in Coq

Fixpoint loop (n: nat) := loop n. “Cannotguessdecreasing argument of fix”
Definition hmm (n: nat): loop n := ...

All functions in Coq must be total (i.e. must provably terminate)!

Fixpoint merge (xs ys: list nat) :=
match xs, ys with
| L], ys' =>ys’
| xs', [] => xs’
| X::xs', yr:ys' =>
if x <? y then x :: merge xs' ys : -
., “Cannot guess decreasing argument of fix
else y :: merge xs ys

end.

UPPSALA
UNIVERSITET

Recursion in Coq

Fixpoint loop (n: nat) := loop n. “Cannotguessdecreasing argument of fix”

Definition hmm (n: nat): loop n := ...

All functions in Coq must be total (i.e. must provably terminate)!

Fixpoint merge (xs ys: list nat) (fuel: nat) :-=
match fuel with . .
| Z => None Given enough fuel, merge will be correct
| S fuel’ =>
match xs, ys with
| [], ys' => Some ys’
| xs', [] => Some xs'
| X::xs', yr:ys' =>
if x <? y then Option.map (cons x) (merge xs' ys) fuel’

else Option.map (cons y) (merge xs ys') fuel’
end

end.

UNIVERSITET

PSA: Dependent Types in Coq

Friends don't et friends
program with dependent types

LA Coq

IIIIIIIIIII

PSA: Dependent Types in Coq

* Dependent types are extremely powerful

* The ergonomics of dependent types is not great, especially not in Coq

* Tryto avoid it as much as possible!

* Dependently typed languages that are nicer to program in:
. Agda ...but not necessarily do proofs in

e |dris

e Lean?

UPPSALA
UNIVERSITET

Any Questions so far?

Coq, the Theorem Prover

Inductive evaluates to :
o Write formal definitions program -> value -> Prop := ...

* Using data types and functions over these Definition halts (p : program) :-

* State theorems about these definitions exists v, evaluates_to p v.

* Specifications for Coq functions Fixpoint check_halts (p : program) :=
* Properties regarding inductive definitions

e Prove these theorems Theorem halting_problem :

forall p,
* Each step of the proofis checked by Coq check_halts p = true ->
halts p.
* It’s enough to read the specifications and theorems
(and check for Admitted proofs) Pr‘(":fgmm_)

Admitted.

UNIVERSITET

Theorem Proving (example)

Inductive nat :-= n:=01|Sn
| Z
| S (n: nat).

o 1=S50
Definition one := S 7. - |
Definition two := S one. 2=S
Definition three := S two. 3=952

Fixpoint plus(a b: nat) :=
match a with b ifa=0
a+b=

| Z =>D S@+b>b) ifa=Sa
| Sa' =>S (plus a' b)
end.
Example one_plus_two: Showthat1 +2 = 3
plus one two = three.

Proof.

142=F0)+2=50+2)=52=3

Tee refleXiVity. UNIVERSITET

Theorem Proving (example)

Tn;luctive nat := n:=01|Sn

| S (n: nat).

Fixpoint plus(a b: nat) := a+b = b , !fa =V)
match a with S@+b) fa=Sa
| Z =>b
| Sa' =>S (plus a' b)
end.

Vn.n+0=n

TTTTTTT

Theorem Proving (example)

Tnguctive nat :-= n :::()| S 7
| S (n: nat).
o _ N b
Fixpoint plus(a b: nat) :-= a+b =
match a with
| Z =>b
| Sa' =>S (plus a' b)
end.

Theorem plus_/ r:

forall n, plus n Z = n. Vn.n+0=mn
Proof.

intros n. induction n.

- simpl. reflexivity.

- simpl. rewrite IHn. reflexivity.
Qed.

ifa=0

S@+b>b) ifa=S8ad

Assume that we have some natural number n.

We proceed by induction over n.

Base case (n = 0): 0 + 0 = 0, by the definition of +.
Inductive case (n = S m):

1. (S m) + 0 = S(m + 0), by the definition of +.

2. m + 0 = m by the induction hypothesis.

3.5(m+0) =S8 m,by2. ;
|:| RSITET

Theorem Proving (example)

Inductive nat :-=
| Z
| S (n: nat).

Fixpoint plus(a b: nat) :=
match a with

| Z =>b
| Sa' =>S (plus a' b)
end.
Don’t do video game proving!
Theorem plus 7 r: — Robert Harper, CMU
forall n, plus n Z = n.
Proof. T

intros n. induction n.

- simpl. reflexivity.

- simpl. rewrite IHn. reflexivity.
Qed.

RSITET

Theorem Proving (hands-on)

o o If you don’t have Coq on
* Formulate and prove commutativity of addition your own machine:

Yab.a+b=b+a https://cog.vercel.app

* You should be able to get by with the following tactics:
* intros x1 ... xn—introduce universally quantified variables
* induction x — proceed by induction over x
* simpl — simplify the current expression in the goal
* rewrite H—rewrite using the equality H (can be other theorems!)
* reflexivity — solve an equality where both sides are syntactically equal

* You will most likely need to prove one or two lemmas!

* You can start from the file nat_basic.v

UNIVERSITET

https://coq.vercel.app

Theorem Proving (hands-on)

Lemma plus_S:

forall a b,
plus a (S b) =S (plus a b).
Proof.
intros a b. induction a.
- reflexivity.
- simpl. rewrite IHa. reflexivity.
Qed.

Theorem plus_comm:
forall a b,
plus a b = plus b a.
Proof.
intros a b. induction a.
- Tewrite plus_Z 1. reflexivity. (* plus_Z r defined previously *)
- simpl. rewrite IHa. rewrite plus_S. reflexivity.
Qed.

UNIVERSITET

Theorem Proving in Coq

* Warning: proving things in Coq is highly addictive!
* Prove helper lemmas separately whenever you get stuck
* |t’s better to have 100 simple lemmas than 10 complex theorems

* Compare to how helper functions improve readability of code

* Always think before you prove. Avoid video game proving!

Question Time Again

UPPSALA
UNIVERSITET

Coq, the Tactic Language

* Proofs in Coq are (typically) written using tactics

 Tactics actually build (dependently typed) values
* While programming in Coq is functional, tactics are imperative

* Thereis a huge number of built-in tactics in Coq (too many?)

* Try to be consistent in your own style!

* The auto tactic provides proof automation through proof search

UPPSALA

UNIVERSITET

Interacting with Tactics

* Guiding automation In the current scope,
add the theorem plus_7 1

Local Hint Resolve plus_7 1 : nat_db. .
to the hint database nat_db

In the current scope,
allow autotousemyTactic

* Writing new tactics with a cost of 1 with nat_db

Local Hint Extern 1 => myTactic : nat_db.

Ltac myInduction x := intros x; induction x; simpl.

UPPSALA
UNIVERSITET

Tactics (example)

Local Hint Resolve plus_/_r : nat_db.
Local Hint Resolve plus_S_r : nat_db.

Ltac perform rewrite :=
match goal with
| H: ?x = _ |- context[?x] => rewrite H
end.

Local Hint Extern 1 => perform rewrite : nat_db.

Lemma plus_/ r: forall n, plus n Z = n.
Proof. intros n. induction n; auto with nat_db. Qed.

Lemma plus S r: forall a b, plus a (S b) =S (plus a b).
Proof. intros a b. induction a; auto with nat_db. Qed.

Lemma plus_comm: forall a b, plus a b = plus b a.
Proof. intros a b. induction a; simpl; auto with nat_db. Qed.

UNIVERSITET

Proof Automation or Not?

* When learning Coq, avoid automation to learn what is going on!

* Start automating once you get annoyed with tiny details

* Just adding lemmas to a hint database will get you far! (+ auto)

« Software engineering <= Proof engineering QED at Large: a Survey of Engineering of
Formally Verified Software

. , — ,
Is this proof maintainable? Talia Ringer et al.

* Isitresilient to change?

* Isitusing the the right abstractions?

Y UPPSALA
UNIVERSITET

Final Words

* Focus of this course is Coq as a theorem prover

* We will connect to dependent types next lecture!

* For now, don’t worry about fancy tactics or automation

* Focus on learning the craft of mechanised proofs

* Go have fun with Software Foundations. It’s a great book!

UPPSALA
UNIVERSITET

