1. (a) The objective value is $f(x)=e^{x_{1}}+x_{1} x_{2}+x_{2}^{2}-2 x_{2} x_{3}+x_{3}^{2}$. To take the derivative gives

$$
\nabla f(x)=\left(\begin{array}{c}
e^{x_{1}}+x_{2} \\
x_{1}+2 x_{2}-2 x_{3} \\
-2 x_{2}+2 x_{3}
\end{array}\right), \quad \nabla^{2} f(x)=\left(\begin{array}{crr}
e^{x_{1}} & 1 & 0 \\
1 & 2 & -2 \\
0 & -2 & 2
\end{array}\right) .
$$

Especially we get $\nabla f(\widetilde{x})=\left(\begin{array}{ll}1-2 & 2\end{array}\right)^{T}$. With $g_{1}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+10$ we get $g_{1}(\widetilde{x})=9$, which mean that constraint 1 is not active in \widetilde{x}. As $\nabla f(\widetilde{x}) \neq 0$ constraint 2 has to be active with non-negative Lagrange multipliers for \widetilde{x} to be fulfil the first order of necessary optimality conditions. We get $\nabla f(\widetilde{x})=a \tilde{\lambda}_{2}$, where $\tilde{\lambda}_{2} \geq 0$ and $a^{T} \widetilde{x}=2$.
The condition $\nabla f(\tilde{x})=a \tilde{\lambda}_{2}$ can not be fulfilled as $\tilde{\lambda}_{2}=0$. With that we $a=\frac{1}{\lambda_{2}} \nabla f(\widetilde{x})$. By combining with $a^{T} \widetilde{x}=2$, we have $\lambda_{2}=1$ and $a=\nabla f(\widetilde{x})=(1$ -2 2$)^{T}$.
If $a=(1-22)^{T}$, then \widetilde{x} fulfils the first order of necessary optimality conditions together with $\tilde{\lambda}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$.
(b) As we only have one active linear constraint in \widetilde{x} we obtain

$$
\nabla_{x x}^{2} \mathcal{L}(\widetilde{x}, \tilde{\lambda})=\nabla^{2} f(\widetilde{x})=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & -2 \\
0 & -2 & 2
\end{array}\right) .
$$

We also have that $A_{A}(\widetilde{x})=a^{T}$, where we can let $a^{T}=(B N)$ for $B=1$ and $N=\left(\begin{array}{ll}-2 & 2\end{array}\right)$. With that we obtain a base

$$
Z_{A}(\widetilde{x})=\binom{-B^{-1} N}{I}=\left(\begin{array}{rr}
2 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right),
$$

which gives

$$
Z_{A}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{A}(\widetilde{x})=\left(\begin{array}{rr}
10 & -8 \\
-8 & 6
\end{array}\right) .
$$

But $Z_{A}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{A}(\widetilde{x}) \nsucceq 0$ since $Z_{A}(\widetilde{x})^{T} \nabla^{2} f(\widetilde{x}) Z_{A}(\widetilde{x})$ is a 2×2-matrix with negative determinant. With that \widetilde{x} does not fulfil the second order of necessary optimality conditions and is therefore not a local min point.
2. (See the course material.)
3. We reformulate the constrains as $A x \geq b$, where

$$
A=\left(\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
-2 \\
-1 \\
0 \\
0
\end{array}\right) .
$$

Iteration 1: We have $\mathcal{W}^{(0)}=\{3,4\}$. The solution of the equality-constrained quadratic subproblem is given by

$$
\left(\begin{array}{lllll}
2 & 1 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
d_{1}^{(0)} \\
d_{2}^{(0)} \\
d_{3}^{(0)} \\
-\lambda_{3}^{(1)} \\
-\lambda_{4}^{(1)}
\end{array}\right)=\left(\begin{array}{r}
4 \\
7 \\
-4 \\
0 \\
0
\end{array}\right) .
$$

To solve this system of equations gives $d^{(0)}=\left(\begin{array}{lll}0 & \frac{7}{3} & 0\end{array}\right)^{T}, \lambda_{3}^{(1)}=-\frac{5}{3}$ and $\lambda_{4}^{(1)}=4$. Maximal step length is given by

$$
\alpha_{\max }^{(0)}=\min _{i: a_{i}^{T} d^{(0)}<0} \frac{a_{i}^{T} x^{(0)}-b_{i}}{-a_{i}^{T} d^{(0)}}=\frac{6}{7}<1, \quad \text { for } i=1
$$

Therefore we get $\alpha^{(0)}=\frac{6}{7}, \mathcal{W}^{(1)}=\{1,3,4\}$ and $x^{(1)}=x^{(0)}+\alpha^{(0)} d^{(0)}=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$.
Iteration 2: The solution of the equality-constrained quadratic subproblem is given by

$$
\left(\begin{array}{rrrrrr}
2 & 1 & 0 & -1 & 1 & 0 \\
1 & 3 & 0 & -1 & 0 & 0 \\
0 & 0 & 4 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
d_{1}^{(1)} \\
d_{2}^{(1)} \\
d_{3}^{(1)} \\
-\lambda_{1}^{(2)} \\
-\lambda_{3}^{(2)} \\
-\lambda_{4}^{(2)}
\end{array}\right)=\left(\begin{array}{r}
2 \\
1 \\
-4 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Solving this system of equations gives $d^{(1)}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}, \lambda_{1}^{(2)}=1, \lambda_{3}^{(2)}=-1$ and $\lambda_{4}^{(2)}=5$. As $d^{(1)}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}$ we get $x^{(2)}=x^{(1)}=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$.
Iteration 3: As $\lambda_{3}^{(2)}<0$ we get $\mathcal{W}^{(2)}=\{1,4\}$. The solution of the equalityconstrained quadratic subproblem is given by

$$
\left(\begin{array}{rrrrr}
2 & 1 & 0 & -1 & 0 \\
1 & 3 & 0 & -1 & 0 \\
0 & 0 & 4 & -1 & 1 \\
-1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
d_{1}^{(2)} \\
d_{2}^{(2)} \\
d_{3}^{(2)} \\
-\lambda_{1}^{(3)} \\
-\lambda_{4}^{(3)}
\end{array}\right)=\left(\begin{array}{r}
2 \\
1 \\
-4 \\
0 \\
0
\end{array}\right)
$$

Solving this system of equations give $d^{(2)}=\left(\frac{1}{3}-\frac{1}{3} 0\right)^{T}, \lambda_{1}^{(3)}=\frac{5}{3}$ and $\lambda_{4}^{(3)}=\frac{17}{3}$. Maximal step length is given by

$$
\alpha_{\max }^{(2)}=\min _{i: a_{i}^{T} d^{(2)}<0} \frac{a_{i}^{T} x^{(2)}-b_{i}}{-a_{i}^{T} d^{(2)}}=3>1, \quad \text { for } i=2
$$

Therefore we get $\alpha^{(2)}=1$ and $x^{(3)}=x^{(2)}+\alpha^{(2)} d^{(2)}=\left(\begin{array}{lll}\frac{1}{3} & \frac{5}{3} & 0\end{array}\right)^{T}$.
Iteration 3: As $\lambda^{(3)} \geq 0$, we complete the active-set method.
The optimal solution is $x=\left(\frac{1}{3} \frac{5}{3} 0\right)^{T}$ and the corresponding Lagrange multipliers is $\lambda=\left(\begin{array}{llll}\frac{5}{3} & 0 & 0 & \frac{17}{3}\end{array}\right)^{T}$.
4. We have

$$
\begin{aligned}
& f(x)=\frac{1}{2}\left(x_{1}-2\right)^{2}+\frac{1}{2}\left(x_{2}-3\right)^{2}, \nabla f(x)=\binom{x_{1}-2}{x_{2}-3}, \nabla^{2} f(x)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& g(x)=1-\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{2}^{2}, \quad \nabla g(x)=\binom{-x_{1}}{-x_{2}}, \quad \nabla^{2} g(x)=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(a) Insertion of numerical values in the expressions above gives the first QP-problem according to

$$
\begin{array}{ll}
\min & \frac{1}{2}\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)\binom{p_{1}}{p_{2}}+\binom{-2}{-2}\binom{p_{1}}{p_{2}} \\
\text { subject to } & -p_{2} \geq-\frac{1}{2} .
\end{array}
$$

This is a convex QP-problem with a globally optimal solution given by

$$
\begin{align*}
& \left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)\binom{p_{1}}{p_{2}}+\binom{-2}{-2}=\binom{0}{-1} \lambda \tag{1}\\
& -p_{2} \geq-\frac{1}{2} \tag{2}\\
& \lambda\left(-p_{2}+\frac{1}{2}\right)=0, \lambda \geq 0 \tag{3}
\end{align*}
$$

If (2) is not active. $\lambda=0$ and $-p_{2}>-\frac{1}{2}$. Then, from (1), we have $p_{1}=\frac{2}{3}, p_{2}=$ $\frac{2}{3}$, which is in contradiction with $-p_{2} \geq-\frac{1}{2}$.
Then, (2) is active and $\lambda \geq 0$. We have $p_{1}=\frac{2}{3}, p_{2}=\frac{1}{2}$ and $\lambda=\frac{1}{2}$. Hence, $x^{(1)}=x^{(0)}+p=\left(\frac{2}{3} \frac{3}{2}\right)^{T}, \lambda^{(1)}=\frac{1}{2}$.
(b) The Newton step $\Delta x, \Delta \lambda$ is given by

$$
\left(\begin{array}{cc}
\nabla_{x x}^{2} \mathcal{L}(x, \lambda) & A(x)^{T} \\
\Lambda A(x) & -G(x)
\end{array}\right)\binom{\Delta x}{-\Delta \lambda}=-\binom{\nabla f(x)-A(x)^{T} \lambda}{G(x) \lambda-\mu e}
$$

where $\Lambda=\operatorname{diag}(\lambda)$ and $G(x)=\operatorname{diag}(g(x))$.
Which gives the following system of linear equations

$$
\left(\begin{array}{rrr}
3 & 0 & 0 \\
0 & 3 & -1 \\
0 & -2 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
\Delta x_{1} \\
\Delta x_{2} \\
-\Delta \lambda
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)
$$

The solution is given by $\Delta x=\left(\frac{2}{3} 0\right)^{T}, \Delta \lambda=0$.
Step-size α should be calculated such that $g(x+\alpha \Delta x)>0$ and $\lambda+\alpha \Delta \lambda>0$. This is valid for $\alpha=1$. If we ignore the demand of the merit function and choose $\alpha=1$, we obtain that $x^{(1)}=\left(\frac{2}{3} 1\right)^{T}$ and $\lambda^{(1)}=2$.
5. (a) The dual problem can for example be written on the form

$(D S D P)$	\max	y
	subject to	$I y \preceq M$.

(b) Let $\eta_{i}(M), i=1, \ldots, n$, denote the eigenvalue of M. If we add a multiple of the unit matrix of M the eigenvalues are shifted with that multiple. With that the matrix $M-I y$ obtain the eigenvalues $\eta_{i}(M)-y$. Therefore y become feasible to $(D S D P)$ if and only if $y \leq \eta_{\min }(M)$, where $\eta_{\min }(M)$ denote the smallest eigenvalue of M. With that the optimal y become the smallest eigenvalue of M, which therefore is an optimal value of $(D S D P)$.
(c) If we restrict X to have the form $x x^{T}$ in $(P S D P)$ we obtain the following problem

$$
(P) \quad \begin{array}{ll}
\min & \operatorname{trace}\left(M x x^{T}\right) \\
\text { subject to } & \operatorname{trace}\left(x x^{T}\right)=1
\end{array}
$$

As trace $\left(A x x^{T}\right)=x^{T} A x$ for a symmetric $n \times n$-matrix A then (P) can equivalently be written as

$$
\begin{array}{lll}
(P) & \min & x^{T} M x \\
\text { subject to } & x^{T} x=1
\end{array}
$$

The optimal value of (P) is the smallest eigenvalue of M and the optimal solution x^{*} is an eigenvector of the norm one corresponding to this eigenvalue. As (P) is a restrification of $P S D P)$, the optimal value of (P) is at least as large as the optimal value of $(D S D P)$. Our choice of x^{*} give the same objective function value in (P) as the optimal value of $(D S D P)$. With that x^{*} is the optimal solution of (P) which implies that $x^{*} x^{* T}$ is an optimal solution of (PSDP).

