
SF2822 Applied nonlinear optimization, final exam
Thursday June 3 2021 8.00–13.00

Brief solutions

1. (a) The objective value is f(x) = ex1 +x1x2+x22−2x2x3+x23. To take the derivative
gives

∇f(x) =


ex1 + x2

x1 + 2x2 − 2x3

−2x2 + 2x3

 , ∇2f(x) =


ex1 1 0

1 2 −2

0 −2 2

 .
Especially we get ∇f(x̃) = (1 –2 2)T . With g1(x) = −x21 − x22 − x23 + 10 we
get g1(x̃) = 9, which mean that constraint 1 is not active in x̃. As ∇f(x̃) 6= 0
constraint 2 has to be active with non-negative Lagrange multipliers for x̃ to be
fulfil the first order of necessary optimality conditions. We get ∇f(x̃) = aλ̃2,
where λ̃2 ≥ 0 and aTx̃ = 2.

The condition ∇f(x̃) = aλ̃2 can not be fulfilled as λ̃2 = 0. With that we
a = 1

λ2
∇f(x̃). By combining with aTx̃ = 2, we have λ2 = 1 and a = ∇f(x̃) = (1

–2 2)T .

If a = (1 –2 2)T , then x̃ fulfils the first order of necessary optimality conditions
together with λ̃ = (0 1)T .

(b) As we only have one active linear constraint in x̃ we obtain

∇2
xxL(x̃, λ̃) = ∇2f(x̃) =


1 1 0

1 2 −2

0 −2 2

 .
We also have that AA(x̃) = aT , where we can let aT = (B N) for B = 1 and
N = (−2 2). With that we obtain a base

ZA(x̃) =

(
−B−1N

I

)
=


2 −2

1 0

0 1

 ,
which gives

ZA(x̃)T∇2f(x̃)ZA(x̃) =

(
10 −8

−8 6

)
.

But ZA(x̃)T∇2f(x̃)ZA(x̃) 6� 0 since ZA(x̃)T∇2f(x̃)ZA(x̃) is a 2× 2-matrix with
negative determinant. With that x̃ does not fulfil the second order of necessary
optimality conditions and is therefore not a local min point.

2. (See the course material.)

3. We reformulate the constrains as Ax ≥ b, where

A =


−1 −1 −1

−1 0 1

1 0 0

0 0 1

 and b =


−2

−1

0

0

 .

1
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Iteration 1: We have W(0) = {3, 4}. The solution of the equality-constrained
quadratic subproblem is given by

2 1 0 1 0

1 3 0 0 0

0 0 4 0 1

1 0 0 0 0

0 0 1 0 0





d
(0)
1

d
(0)
2

d
(0)
3

−λ(1)3

−λ(1)4


=



4

7

−4

0

0


.

To solve this system of equations gives d(0) = (0 7
3 0 )T , λ

(1)
3 = −5

3 and λ
(1)
4 = 4.

Maximal step length is given by

α(0)
max = min

i:aTi d
(0)<0

aTi x
(0) − bi
−aTi d(0)

=
6

7
< 1, for i = 1.

Therefore we get α(0) = 6
7 , W(1) = {1, 3, 4} and x(1) = x(0) + α(0)d(0) = (0 2 0)T .

Iteration 2: The solution of the equality-constrained quadratic subproblem is given
by 

2 1 0 −1 1 0

1 3 0 −1 0 0

0 0 4 −1 0 1

−1 −1 −1 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0





d
(1)
1

d
(1)
2

d
(1)
3

−λ(2)1

−λ(2)3

−λ(2)4


=



2

1

−4

0

0

0


.

Solving this system of equations gives d(1) = (0 0 0)T , λ
(2)
1 = 1, λ

(2)
3 = −1 and

λ
(2)
4 = 5. As d(1) = (0 0 0)T we get x(2) = x(1) = (0 2 0)T .

Iteration 3: As λ
(2)
3 < 0 we get W(2) = {1, 4}. The solution of the equality-

constrained quadratic subproblem is given by

2 1 0 −1 0

1 3 0 −1 0

0 0 4 −1 1

−1 −1 −1 0 0

0 0 1 0 0





d
(2)
1

d
(2)
2

d
(2)
3

−λ(3)1

−λ(3)4


=



2

1

−4

0

0


.

Solving this system of equations give d(2) = (13 −
1
3 0 )T , λ

(3)
1 = 5

3 and λ
(3)
4 = 17

3 .
Maximal step length is given by

α(2)
max = min

i:aTi d
(2)<0

aTi x
(2) − bi
−aTi d(2)

= 3 > 1, for i = 2.

Therefore we get α(2) = 1 and x(3) = x(2) + α(2)d(2) = (13
5
3 0)T .

Iteration 3: As λ(3) ≥ 0, we complete the active-set method.

The optimal solution is x = (13
5
3 0)T and the corresponding Lagrange multipliers is

λ = (53 0 0 17
3 )T .
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4. We have

f(x) =
1

2
(x1 − 2)2 +

1

2
(x2 − 3)2,∇f(x) =

(
x1 − 2

x2 − 3

)
,∇2f(x) =

(
1 0

0 1

)
,

g(x) = 1− 1

2
x21 −

1

2
x22, ∇g(x) =

(
−x1
−x2

)
, ∇2g(x) =

(
−1 0

0 −1

)
.

(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min 1
2

(
p1 p2

)( 3 0

0 3

)(
p1

p2

)
+

(
−2

−2

)(
p1

p2

)
subject to −p2 ≥ −1

2 .

This is a convex QP-problem with a globally optimal solution given by(
3 0

0 3

)(
p1

p2

)
+

(
−2

−2

)
=

(
0

−1

)
λ (1)

−p2 ≥ −
1

2
(2)

λ(−p2 +
1

2
) = 0, λ ≥ 0. (3)

If (2) is not active. λ = 0 and −p2 > −1
2 . Then, from (1), we have p1 = 2

3 , p2 =
2
3 , which is in contradiction with −p2 ≥ −1

2 .

Then, (2) is active and λ ≥ 0. We have p1 = 2
3 , p2 = 1

2 and λ = 1
2 . Hence,

x(1) = x(0) + p = (23
3
2)T , λ(1) = 1

2 .

(b) The Newton step ∆x, ∆λ is given by(
∇2
xxL(x, λ) A(x)T

ΛA(x) −G(x)

)(
∆x

−∆λ

)
= −

(
∇f(x)−A(x)Tλ

G(x)λ− µe

)
,

where Λ = diag(λ) and G(x) = diag(g(x)).

Which gives the following system of linear equations
3 0 0

0 3 −1

0 −2 −1
2




∆x1

∆x2

−∆λ

 =


2

0

0

 .
The solution is given by ∆x = (23 0)T , ∆λ = 0.

Step-size α should be calculated such that g(x+ α∆x) > 0 and λ+ α∆λ > 0.
This is valid for α = 1. If we ignore the demand of the merit function and
choose α = 1, we obtain that x(1) = (23 1)T and λ(1) = 2.

5. (a) The dual problem can for example be written on the form

(DSDP )
max y
subject to Iy �M.
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(b) Let ηi(M), i = 1, . . . , n, denote the eigenvalue of M . If we add a multiple of the
unit matrix of M the eigenvalues are shifted with that multiple. With that the
matrix M − Iy obtain the eigenvalues ηi(M)− y. Therefore y become feasible
to (DSDP ) if and only if y ≤ ηmin(M), where ηmin(M) denote the smallest
eigenvalue of M . With that the optimal y become the smallest eigenvalue of
M , which therefore is an optimal value of (DSDP ).

(c) If we restrict X to have the form xxT in (PSDP ) we obtain the following
problem

(P )
min trace(MxxT )
subject to trace(xxT ) = 1.

As trace(AxxT ) = xTAx for a symmetric n× n-matrix A then (P ) can equiva-
lently be written as

(P )
min xTMx
subject to xTx = 1.

The optimal value of (P ) is the smallest eigenvalue of M and the optimal
solution x∗ is an eigenvector of the norm one corresponding to this eigenvalue.
As (P ) is a restrification of PSDP ), the optimal value of (P ) is at least as large
as the optimal value of (DSDP ). Our choice of x∗ give the same objective
function value in (P ) as the optimal value of (DSDP ). With that x∗ is the
optimal solution of (P ) which implies that x∗x∗T is an optimal solution of
(PSDP ).


