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Hilbert spaces
Let V be a vector space equipped with an inner product (-, )
1. (u+v,w) = (u,w) + (v,w)
2. (Au,v) = Xu, v)
3. (u,v) = (v, u)*
4. (v,v) > 0 with equality iff v =0

Norm: ||v|| = \/{v, V)
Hilbert space H: Complete inner product space (Cauchy sequences
converge)

Extend definition to column vectors u and v of elements of H:
Lu,v] =M, Mij = (ui,v;)
Example 1: Consider the columns of X € RVN*"™ and Y € RV*n
as elements of RV, then
IX,Y]=X"Y

Example 2: Let x € R™ and y € R™ be random vectors with
finite second moments. Then

x,y] =E [xy7|



Orthogonal projections
Orthogonality
An element u € H is orthogonal to the subspace S C H if
(u,v) =0 YveS.

We write u 1. S
Projection theorem

Let u € H be given and let S C H be a closed subspace to H.
Then there exists a unique v € S such that u — v L S. The
element v is the unique solution to

min ||u — v||
veS

v is called the orthogonal projection of v onto S and is denoted ug

It follows that u € H has a unique decomposition

U= us+ ug., where ug. = u— us € S* (subspace orthogonal to S)



Orthogonal projections: Pythagoras relation

u=us+ust = ||lul®=fus|® + Just|?
In our context often written as
lul® = llus|® = lus:[* = [lu— us]|?
The projection theorem:
lu—=vI? > [lu—us)?= llus: | = [lul® — |us|* >0 Yves
Vector version:

lu—v,u—v|>|u—us,u—us|=|uul —|us,us] >0 Vves§
Matrix inequality

Note: Projection us has smaller "norm” than u: (u,u) — (us, us) > 0



Orthogonal projections: Finite dimensional subspaces
Problem: Project all elements of the n,-dimensional vector u on

the linear span of the elements of the vector y (solve n, projections
simultaneously)
S={Ly: LeR™w*n}
Optimality condition:
0=[u—Lyy|=|uy|-Llyy]

= L" = |uy]ly,y]™

= us =Ly = |uylly,y]ly
Projection theorem and Pythagoras: v =Ly =
LU —Vv,u— VJ 2 LU - L*ya u— L*YJ = LU, UJ - LU7YJ Lyu nyl Ly7 UJ
Example: Rows of U € R™*N to be projected on the rows of
Y ¢ RwxN

Us=UTY(YTY) 1y
0<(U-Us)T(U-Us)=U"U-UTY(YTY)lYTU
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Models and model structures

Notation:
t
T  _ e _
St: |:£T(0) ET(t)] E:th§ s nft _:ant
k=0
Definition

Model parameter: £ = {£(t)}22,, where £(t) € =(t) C R":.
Model structure M(M.,Z) = {M; : =t — R™},.

Model of observations: z(t) = My(¢"), t =1,2,...

Model set: {{M.(£")}22, = &(t) € Z(¢)}

Pdf: {p; : =t — [0,00)} for {¢*}

€ realization of {p:}°°, = z(t) = M(¢"), t =1,2,... realization
of observed signals.

Probabilistic model structure: M = M(M.,Z., p.)



Models and model structures

LTI example - Box-Jenkins

e(t)

y(t)




Models and model structures

2= |50
_ [X(OO)] _ [:8] . x(0) initial conditions
B(q.0) C(q.0)

70 = 2 g a(e) + G grel)

Mt(Et) = [;:}
pe(€) = N(e";0,Ael)8(6 — B)5(u — a*)8(x(0) — %(0))
0, x(0) and u deterministic.

Estimated by corresponding hyperparameters 6, %(0) and ii.
Measurement equation gives u(t) = u(t)

10



Models and model structures

pe(€5) = N(ef;0, Xe1)8(0 — 8)8(T® — iit)d(x(0) — %(0))

0, x(0) and u deterministic. )
Estimated by corresponding hyperparameters 6, X(0) and .
Consider now x(0) to be random =

pe(€7) = N(e%; 0, \e)3(6 — 8)8(u’ — )N (x(0),0.P)

11



Models and model structures
Extension: Errors-in-variables

£(0) = [X(%J £(t) = EE(%] . x(0) initial conditions
wor- [ty

pe(€°) = N(e";0, A/ )N (e} 0.\, 1)8(8 — )8 (u" — a*)6(x(0) — %(0))

i not determined exactly by measurements any longer "



The set of unfalsified models

Definition
Given data z"V, the set of unfalsified models for the model
structure M (M., p.) is defined as

Uy ={e: MV =2"}

13



Ranking functions and pdfs

Use pdf as ranking function:

N

(€Y, 2") = pu(€") T ] 8(2(t) — Me(&(1)))

t=1

Recall that computing the average of rankings model used

winy . Pu(Et ")
pu(E1en) = =

This is nothing but the conditional pdf for &€V given observations z"

Marginalization: v = ~v(&V)

pn(v,2") =

n—

pn(E",2)a(y — y(g"))de"

Joint probability for v and z"

14



Ranking functions and pdfs

Marginalising hyperparameter dependence

pn(2") = /pN(zN: n)dn

and when this quantity is finite:

Ny Pu(EN ZVim)
pN(E 777‘2 )_ PN(ZN)
Ny . PN(ZN;TI)
PN("7|Z ) T PN(ZN)

Does not mean that py (&N, n|z") and pn(n|z") should be
interpreted as random

15



Estimators

Definition

Given a model structure M(M., p.,=.), an estimator is a sequence
. At

of functions {&§ }324

g R 5 =t C R

16
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Ranking based estimators

Recall maximum ranking estimator:

AN
£ (V) = argmax py (&N, 2V)
ENGEN

(€N, 2Y) = pu(eV2V)pn(2") = &"(2V) = argmax pu(€V|2")
£N€EN

Maximum A Posteriori (MAP) estimator é,l\v/,AP(zN)

18



Ranking based estimators

The average ranking model

B = [ €Mon(e"2)de" = & [¢V]2"]
u(zN)

. . AN
Posterior mean (PM) estimator & py,(z")

19



Ranking based estimators
Recall maximum of total ranking estimator:

fi(z") := argmax py(2"; m)
n

Maximum Likelihood (ML) estimator 7y, (zV)

Actual observations have largest probability to be observed among
all possible observations

PM estimator may also be used for deterministic quantities:

ow(z") = & [nfz"] = [ np(nlz")dn

Both model- and hyperparameters:

(8"("). a(2")) = argmax pu(€", 2";m)
gVezl . n

Joint MAP /ML estimator 20
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Predictive estimators

Background: Probability theory = Theory for optimal
prediction of one random variable given others

Idea: Choose model which gives best predictions
Builds confidence in the model - not only rankings!
Prediction essential in many applications , e.g. control,
predictive maintenance and finance

Basics:

> Statistic: s = f(z") - random under model assumption

s = F(MY(&")).

> Predict: §(n) = g(z",n)

> Minimize: (2", d, f) = arg min,, d(s,§(n))
Questions: What to predict (f(z")) and which " distance
measure” to use?
What to predict?

» The whole data set? Set of unfalsified models
> 777

22



Predictive estimators
@ What to predict and which distance measure to use?

> (2"

,d, f) random variable

» Analyze its distribution

> Pick d and f such that 7(z", d, f) most concentrated around
an 7 giving a "good” model

> What "good” is depends on the intended model use!

>

vvyyvyy

v

Design variable p
Optimal design p*?p*(&,) (&, "true” system)
Reward: R(p,&,)

Regret: L(p7 go) = R(p*(go)?go) - R(p7 éo) Z 0
Expected regret:

Lo @) = E Ll €. 0)] = [ L6 ©)p(e)de

With hyperparameters: E(z,b’(z)). Include in expectation
May not be optimal to use design p*. Robustness
considerations

General purpose criterion: The Mean-Square Error (MSE):

MSE [€(2)] = E [(E(2) - ©)(E(2) &)

23



Indirect inference

What is the optimal estimator of a random variable z if no data is
available?

With 2 a constant
MSE[] =E |(z-2)(z—2)"]
~E |(z-E[z] + E[z] - 2)(z-E[z] + E[z] - 2)"]
—E|z-E[)z-E[2)7| +E[(E[] - 2)(Elz] - 2)7|
+E|(z-EE)ER-2)T] +E|(El] -2)z-E[)]

0 0
“E (2~ E[)(z—E[2)"| +E[(Eld) - D(EE - D]

>E |(z-E[2)(z - Efz])"| = MSE[E[2]

The mean E [z] is the optimal estimator
24



Moment estimators

Sample moments: my(z =N Zz , k=1,2,.

Optimal estimator: my(n) = %ZE [/V/tk(Et(n))}

Take as many moments as dimension of 7 and solve

mic(n) = mi(2")

Method of moments

my(2V) —m(n) ] [ mu(@V) — mu(n)
V(n) = : w 3
mk(zV) — my(n) mi(zV) — mk(n)

f) = arg min,, V(n), W corrects for different sizes of moments, e.g.

25
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Indirect inference
Super-simple model:

z(t) = v(t) (independent identically distributed (i.i.d.))

First K moments hyperparameters: #j,, k =1,..., K.
Estimates:

M (2") = mi(2)

Idea: If model M(&(n)) correct, data from this model should
result in similar estimates for the simple model as when real data is
used: For a realization of &(n)

(2) = 0 (M(&(n))))

27



Indirect inference

my(z) = mg(M(&(n))), k=1,....K

But &£(n) independent of data (generated by the random number
generator in our computer).
Remove these by averaging:

N
mi(2) ~ B [m(MEm))] = 1 > E [ME(E ()] = mi(n)
t=1

Method of moments!
What did we do?

@ Intermediate model

e Estimated quantities in this model = Functions of data
(my(z) (statistics)

@ Expected value of corresponding statistics from model
matched to statistics

@ Intermediate model serves to guide the choice of which
statistics to use

Indirect inference

28



Indirect inference

Summary:

7] hyperparameters of intermediate model
7)(z) estimate
1 hyperparameters of model M

A(z") := arg min,, Viuse(n, 2") where

Viuse(n,2) ==
(=)~ & [amen] ) w (i)~ & [amem)))

Different cost functions can be used, see Lecture Notes.

29



Prediction error methods
Idea: Predict parts of data using other parts of data

Suppose z(t) = [yT(t) uT(t)] T

Model: y(t) = fi(u’,v%;0), t=1,2,...
k-step ahead predictor: §(t + k|t;0) = f 4:(u™*,y"; )
Prediction errors
e(t+k|t;0)=y(t+k)—y(t+ k|t;0), t=1,...,N—k

Criterion (e.g.):
e(1+k1;0)1"
Voe k(0,2V) := : w :

e(N|N — k; 8) e(N|N — k; 8)

e(1+k|1;0)

e Which f to use?
@ Which criterion to use?

e = Estimation theory (next lecture) 30
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Basic concepts
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Basic concepts

@ Sample space: Q
@ Probability measure: P(A) assigns probabilites to events A.
i) P(Q)=1
i) P(UZ,AK) = > r2; P(Ax) for disjoint events
Not possible to assign probabilities to all sets (see ex. in LN)
F set of sets for which P defined. Called o-algebra
i) Qe F
i) Ae F = A° € F (complement)
i) ABeF=AUBeF
V) F€F, k=1,2,... = U2 F €F

iv) required to be able to compute probabilities of limits (see ex. in LN)

e Random variable: Measurable function. P({w : X(w) € B)
exists for Borel sets B

@ Probability space: (22, F,P)

34



Basic concepts

@ Borel set, set in B, the Borel o-algebra,
containing the open sets in R.

@ Probability distribution function:
Px(B) =P({w: X(w) € B})

e Distribution function: Fx(x) = Px({x:

= minimal o-algebra

35



Basic concepts

Theorem

Every distribution function can be uniquely decomposed into a
convex combination of a discrete, an absolutely continuous, and a
continuous singular distribution function.

@ Absolutely continuous: Fx(x) = ffoo px(v)d~y px probability
density function (pdf)

@ Discrete: Piecewise constant. Right-continuous. At most
countable number of discontinuities.

@ Singular: Derivative exists almost everywhere and is zero.
Continuous and can only increase on a set of measure zero.

@ The distribution function can be used to compute probabilities
for any Borel set.

@ = We can pretend that a r.v. is defined on R with probability
measure Fx.

36
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Stochastic processes

1
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Stochastic processes

Theorem (Kolmogorov)
For every set of consistent finite dimensional distributions

Ftl,...,t,,(le- .. ,Xn) = Px(X(tl) < Xx,.. .,X(tn) < Xn)7 1 <...<t,

there exists a probability space (2, F,P), where P is unique, and a
stochastic process {X(t)} such that F is consistent with X and P.

Different stochastic processes can have the same distributions but
different realizations

39



Stochastic processes

Example: (6 Kronecker's delta)
n uniformly distributed on [0,1]. X(t) =d(t —n), t € [0,1]. =

1 0B
0 otherwise

Px(X(t) € B) = {

since 17 = t with probability 0, and for the same reason

1 0€e ﬂzlek

Pr(X(t) € Buooo X(t) € B = { o 05 T

Let Y(t) =0 - nforte[0,1]. =
X, Y have same finite dim. prob. dist.
However,

P(sup Y(t)=0)=P(sup X(t)=1)=1
te[0,1] t€[0,1]

= Sample paths X and Y do not coincide w.p. 1

40
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Partial specifications
First and second order moments

Mean function:

mx(t) := E [X(t)]

Cross-correlation function:

Rxy(t,s) :=E [X(t)YT(s)]
Cross-covariance function:
Cxx(t:5) = E [(X(t) = mx())(Y(s) = my(s))7 |

e Auto-correlation function (akf): Rx x(t,s)
e Covariance function: Cx x(t,s)

42



Partial specifications

X(t) stochastic process with Rx x as akf =

m m
O<E||D aX(t)P| =D a*(i)Rxx(ti tj)a(i)
i i=1 j=1
The opposite is true as well!
Theorem
K is a positive definite function, i.e.
) a*(i)K(ti, tj)a(j) = 0, Va(i)eC", tje T, meN
i=1 j=1

if and only if K is the akf of a stochastic process.

43



Modeling considerations

How do we model a family of akf’s?

Obvious parametrization
R(t,s) = Mgr(t)pi(s), 0o>A =X >...>0,
k=1

k pre-specified basis functions, {\x} hyperparameters

Generalization:
Let ®: T — H", i.e. ®;(t) € H, H Hilbert space

R(t,s) = [®(t), &(s)]

44



Modeling considerations

The parametrization
o0
R(t,s) =Y Mepr(t)pl (s), o00>M =X >...>0,
k=1

seems like a great idea, but maybe it does not fit the requirements
for a particular application?

To study this we need to take a deviation over positive definite
kernels

45



Positive definite kernels
T a compact domain (e.g. closed interval in R)

Integral operators with kernel R:

W0 = | Rt ()ds

T

Maps a function f into another function. If R € Ly (T?), then
IR(f) . L2(T) — L2(T)

Positive definite kernel:

/ / £ (t F(s)dtds > 0, Vf € Lo(T)

Very similar to definition of positive definite function, but not quite.

L,(T) Hilbert space = Exists orthonormal basis {¢,}.
This basis can be chosen such that {¢,} is bounded:

supy sup; [k (t)] < o0

46



Positive definite kernels

Theorem (Mercer's theorem)

R is a bounded positive definite kernel if and only if

R(t,s) =Y (D) @i(s),

k=1

where the series converges absolutely and uniformly almost
everywhere, where A\ > 0 are absolutely summable and where
{¢} is a bounded orthonormal basis for Ly(T).

47



Positive definite functions vs kernels
There are other positive definite functions than those in Mercer's
theorem. But
Theorem

Let T = [a, b] be a compact interval and let R: T x T — C be
continuous. Then R is a positive definite function if and only if

/ / f(s)dtds > 0

for all complex-valued continuous functions f with domain of
definition including T.

Now
@ All continuous functions on T € Lp(T)
@ In fact they are dense in Lo(T) (any function in Ly(T) can be
approximated arbitrarily well using a continuous function)
@ = Above can be taken as criterion for R being a positive

definite kernel
48



Positive definite functions vs kernels

= If we restrict {¢,} so that R is continuous, i.e. take ¢y,
k=1,2,... to be continuous, then Mercer's theorem gives:

Theorem
All continuous positive definite functions can be expressed as

R(t,s) = Y () @i(s),
k=1

where {y is a bounded continuous orthonormal basis for L»(T)

@ Complete parametrization of all continuous auto-correlation
functions of a stochastic process

49
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Gaussian processes (GP)

Pdf of a Gaussian vector:

1 1 Ty-1
N(x;m X):= = e (xm)TE T (x—m)
( ) Vdet2nrX
All finite dimensional distributions Gaussian
X(t1) m(t;) C(ti,t1) ... C(t1,tn)
o ~N e : :
X(tn) m(t,) C(tn,t1) ... Cltn, tn)

)

Vt;

51
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Stationary stochastic processes
Properties invariant to translation in time <
Ft1+A,...,tn+A(X17 ce 7Xn) - Ftl,...,tn(xla L 7Xn)7

Consequence for first and second order statistics

m :=m(0) = m(t)
Rx7y(T) Rx ( ) ny(t t—T)
Cx7y(7') CX (7‘7 0) = Cx7y(t,t—7')

Wide-sense stationarity if only the above holds

GP: Wide-sense stationarity < (strict)stationarity

53
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Wide-sense stationarity

Positivity condition

ZZa;?‘R(t; —t)aj >0, Va,eC", t;eT,meN

i=1 j=1
&

R(tl—tl) R(t]__t2) R(tl—tm)

T RT(t1 —t) R(—1t) ... R(to—tm)

R™(t1 —tm) RT(t2—tm) ... R(tm—tm)

for all Toeplitz matrices of the above type.
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Quasi-stationarity

E{f(t)} = Jim_ ZE[f

Definition
X(t) is said to be a quasi-stationary signal if
Imx(t)] < C Vt
|Rx x(t,s)] < C Vt,s
Rx x(7) : = E{X(t)XT(t - 7')} ,  exists VT

Two signals X(t) and Y(t) are said to be jointly quasi-stationary if
[(XT(¢) YT(t)] T is quasi-stationary.
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Frequency-domain characterization

Recall f(t)f(s) positive definite function =
elwtemiws — oiw(t=9) is 3 positive definite function =

°
°

o R(t) = et is a positive definite function =

o R(t) =>_7_, e/t is a positive definite function
°

Herglotz theorem: All positive definite functions can be
generated in this way

Definition

F is a matrix valued distribution function on [a, b] (or R), if
F(a) =0 (orlim,_,_ F(w) = 0), F is right-continuous,
F(w) — F(w) is non-negative definite for all w > p.

59



Frequency-domain characterization

Theorem (Herglotz theorem)

R: T — R™™ with T =7, is a positive definite function if and
only if

R() = 5 / " e (w)

where F is an m x m matrix valued distribution function on
[—m, 7|, called the spectral distribution function

Bochner's theorem in continuous time, see LN
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Frequency-domain characterization

Corollary

Suppose that R : T — R™ ™ with T = Z, is absolutely summable
Yo _JIR(T)|IF < oco. Then R is a positive definite function if
and only if

R(r) = — /ﬂ &7 Q) dw

:% .

for some continuous function Q € L1(R), satisfying
Q(w) >0, w € [—m, 7|, called the spectrum.

Notation ®(e“) = Q(w)

E [X()XT(1)] = Rx(0) = 5 /ﬂ () du

:% .

®x distribution of signal power over frequencies



Modeling considerations

Some parametrizations of spectra:
e pdf's (i.e. use characteristic functions as akf's)
o ®(w) =02, arBi(e™), Br(e™) >0, ax >0, k=1,2,...
o ®(e™) = H(e™)H*(e)
The last can be given a filtering interpretation:
G BIBO stable
y(t) = Gq)u(t) = &y () = G(e™)Puu(e™) G ()

More on this in the next lecture
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A swatch of building blocks

Let us study a GP

for different choices of kernel K
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A swatch of building blocks

Disturbances and noise: Behaviour often does not change over time

™

=) dw

iw(t

iw|2e

[H(e

2T
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A swatch of building blocks

Impulse responses of stable linear systems: Decays exponentially

K(g(t),g(s)) = m ny™™), | <1
5

g

35 40 45 50
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A swatch of building blocks

Gaussian kernel: Often used when modeling a non-linear function

_ byl

2m2 ,7’]1>0, 7]2>0

K(f(x). f(y)) =m e

IR N
RN KON P NI
' «/NBAA-«M\.&‘,‘-\ SRS,
O NN RS TAR=
g "“‘19/ ‘i \

o

16 18 20

8 10 12 14
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