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Hilbert spaces
Let V be a vector space equipped with an inner product 〈·, ·〉

1. 〈u + v ,w〉 = 〈u,w〉+ 〈v ,w〉
2. 〈λu, v〉 = λ〈u, v〉
3. 〈u, v〉 = 〈v , u〉∗
4. 〈v , v〉 ≥ 0 with equality iff v = 0

Norm: ‖v‖ =
√
〈v , v〉

Hilbert space H: Complete inner product space (Cauchy sequences
converge)
Extend definition to column vectors u and v of elements of H:

bu, vc = M, Mi ,j = 〈ui , vj〉

Example 1: Consider the columns of X ∈ RN×nx and Y ∈ RN×ny

as elements of RN , then

bX ,Y c = XTY

Example 2: Let x ∈ Rnx and y ∈ Rny be random vectors with
finite second moments. Then

bx, yc = E
[
xyT

]
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Orthogonal projections

Orthogonality

An element u ∈ H is orthogonal to the subspace S ⊆ H if

〈u, v〉 = 0 ∀v ∈ S.

We write u ⊥ S
Projection theorem

Let u ∈ H be given and let S ⊆ H be a closed subspace to H.
Then there exists a unique v ∈ S such that u − v ⊥ S. The
element v is the unique solution to

min
v∈S
‖u − v‖

v is called the orthogonal projection of u onto S and is denoted uS

It follows that u ∈ H has a unique decomposition

u = uS + uS⊥ , where uS⊥ = u − uS ∈ S⊥ (subspace orthogonal to S)
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Orthogonal projections: Pythagoras relation

u = uS + uS⊥ ⇒ ‖u‖2 = ‖uS‖2 + ‖uS⊥‖2

In our context often written as

‖u‖2 − ‖uS‖2 = ‖uS⊥‖2 = ‖u − uS‖2

The projection theorem:

‖u − v‖2 ≥ ‖u − uS‖2 = ‖uS⊥‖2 = ‖u‖2 − ‖uS‖2 ≥ 0 ∀v ∈ S

Vector version:

bu − v , u − vc ≥ bu − uS , u − uSc = bu, uc − buS , uSc ≥ 0 ∀v ∈ S

Matrix inequality

Note: Projection uS has smaller ”norm” than u: 〈u, u〉 − 〈uS , uS〉 ≥ 0
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Orthogonal projections: Finite dimensional subspaces
Problem: Project all elements of the nu-dimensional vector u on
the linear span of the elements of the vector y (solve nu projections
simultaneously)

S = {Ly : L ∈ Rnu×ny }

Optimality condition:
0 = bu− Ly, yc = bu, yc − Lby, yc
⇒ L∗ = bu, ycby, yc−1

⇒ uS = L∗y = bu, ycby, yc−1y

Projection theorem and Pythagoras: v = Ly ⇒
bu− v,u− vc ≥ bu− L∗y,u− L∗yc = bu,uc − bu, ycby, yc−1by,uc
Example: Rows of U ∈ Rnu×N to be projected on the rows of
Y ∈ Rny×N

US = UTY(YTY)−1Y

0 ≤ (U−US)T (U−US) = UTU−UTY(YTY)−1YTU
6
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Models and model structures
Notation:

ξt =
[
ξT (0) . . . ξT (t)

]T ∈ Ξt ⊆ Rnξt , nξt :=
t∑

k=0

nξt

Definition

Model parameter: ξ = {ξ(t)}∞t=0, where ξ(t) ∈ Ξ(t) ⊆ Rnξt .

Model structure M(M·,Ξ) = {Mt : Ξt → Rnz}∞t=1.

Model of observations: z(t) = Mt(ξ
t), t = 1, 2, . . .

Model set:
{
{Mt(ξ

t)}∞t=1 : ξ(t) ∈ Ξ(t)
}

Pdf: {pt : Ξt → [0,∞)} for {ξt}

ξ realization of {pt}∞t=1 ⇒ z(t) = Mt(ξ
t), t = 1, 2, . . . realization

of observed signals.

Probabilistic model structure: M =M(M·,Ξ·, p·)
8



Models and model structures

LTI example - Box-Jenkins

B(q,θ)
F (q,θ) +

C(q,θ)
D(q,θ)

e(t)

y(t)
v(t)

u(t)
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Models and model structures

z(t) =

[
u(t)
y(t)

]
ξ(0) =

[
θ

x(0)

]
, ξ(t) =

[
u(t)
e(t)

]
, x(0) initial conditions

y(t) =
B(q,θ)

F (q,θ)
u(t) +

C (q,θ)

D(q,θ)
e(t)

Mt(ξ
t) =

[
ut

yt

]
pt(ξ

t) = N (et ; 0, λe I )δ(θ − θ̃)δ(ut − ũt)δ( ¯x(0)− x̃(0))

θ, x(0) and ū deterministic.
Estimated by corresponding hyperparameters θ̃, x̃(0) and ũ.
Measurement equation gives ū(t) = u(t)
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Models and model structures

pt(ξ
t) = N (et ; 0, λe I )δ(θ − θ̃)δ(ut − ũt)δ(x(0)− x̃(0))

θ, x(0) and ū deterministic.
Estimated by corresponding hyperparameters θ̃, x̃(0) and ũ.
Consider now x(0) to be random ⇒

pt(ξ
t) = N (et ; 0, λe I )δ(θ − θ̃)δ(ut − ũt)N (x(0), 0,P)
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Models and model structures
Extension: Errors-in-variables

B(q,θ)
F (q,θ) +

C(q,θ)
D(q,θ)

e(t)

+

y(t)
v(t)

u(t)

u(t)
eu(t)

ξ(0) =

[
θ

x(0)

]
ξ(t) =

 u(t)
e(t)
eu(t)

 , x(0) initial conditions

Mt(ξ
t) =

[
ut+etu

yt

]
pt(ξ

t) = N (et ; 0, λe I )N (etu; 0, λuI )δ(θ − θ̃)δ(ut − ũt)δ(x(0)− x̃(0))

ū not determined exactly by measurements any longer
12



The set of unfalsified models

Definition

Given data zN , the set of unfalsified models for the model
structure M(M·, p·) is defined as

U(zN) =
{
ξ : MN(ξN) = zN

}

13



Ranking functions and pdfs
Use pdf as ranking function:

pN(ξN , zN) := pN(ξN)
N∏
t=1

δ(z(t)−Mt(ξ(t)))

Recall that computing the average of rankings model used

pN(ξN |zN) :=
pN(ξN , zN)

pN(zN)

This is nothing but the conditional pdf for ξN given observations zN

Marginalization: γ = γ(ξN)

pN(γ, zN) :=

∫
ΞN

pN(ξN , z)δ(γ − γ(ξN))dξN

Joint probability for γ and zN
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Ranking functions and pdfs

Marginalising hyperparameter dependence

pN(zN) =

∫
pN(zN ;η)dη

and when this quantity is finite:

pN(ξN ,η|zN) :=
pN(ξN , zN ;η)

pN(zN)

pN(η|zN) :=
pN(zN ;η)

pN(zN)

Does not mean that pN(ξN ,η|zN) and pN(η|zN) should be
interpreted as random
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Estimators

Definition

Given a model structure M(M·, p·,Ξ·), an estimator is a sequence

of functions {ξ̂t}∞t=1

ξ̂
t

: Rnzt → Ξt ⊆ Rnξt

16
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Ranking based estimators

Recall maximum ranking estimator:

ξ̂
N

(zN) = arg max
ξN∈ΞN

pN(ξN , zN)

pN(ξN , zN) = pN(ξN |zN)pN(zN) ⇒ ξ̂
N

(zN) = arg max
ξN∈ΞN

pN(ξN |zN)

Maximum A Posteriori (MAP) estimator ξ̂
N
MAP(zN)

18



Ranking based estimators

The average ranking model

ξ̂
N
A (zN) =

∫
U(zN)

ξNpN(ξN |zN)dξN = E
[
ξN |zN

]
Posterior mean (PM) estimator ξ̂

N
PM(zN)
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Ranking based estimators
Recall maximum of total ranking estimator:

η̂(zN) := arg max
η

pN(zN ;η)

Maximum Likelihood (ML) estimator η̂ML(zN)

Actual observations have largest probability to be observed among
all possible observations
PM estimator may also be used for deterministic quantities:

η̂PM(zN) = E
[
η|zN

]
=

∫
ηp(η|zN)dη

Both model- and hyperparameters:(
ξ̂
N

(zN), η̂(zN)
)

:= arg max
ξN∈ΞN ,η

pN(ξN , zN ;η)

Joint MAP/ML estimator
Many variations possible

20
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Predictive estimators

Background: Probability theory ⇒ Theory for optimal
prediction of one random variable given others

Idea: Choose model which gives best predictions

Builds confidence in the model - not only rankings!

Prediction essential in many applications , e.g. control,
predictive maintenance and finance

Basics:
I Statistic: s = f (zN) - random under model assumption

s = f (MN(ξN)).
I Predict: ŝ(η) = g(zN ,η)
I Minimize: η̂(zN , d , f ) = arg minη d(s, ŝ(η))

Questions: What to predict (f (zN)) and which ”distance
measure” to use?

What to predict?
I The whole data set? Set of unfalsified models
I ???

22



Predictive estimators
What to predict and which distance measure to use?
I η̂(zN , d , f ) random variable
I Analyze its distribution
I Pick d and f such that η̂(zN , d , f ) most concentrated around

an η giving a ”good” model
I What ”good” is depends on the intended model use!

I Design variable ρ
I Optimal design ρ∗?ρ∗(ξo) (ξo ”true” system)
I Reward: R(ρ, ξo)
I Regret: L(ρ, ξo) = R(ρ∗(ξo), ξo) − R(ρ, ξo) ≥ 0
I Expected regret:

L̄(ρ∗(ξ̂)) := E
[
L(ρ∗(ξ̂(z), ξ)

]
=

∫
L(ρ∗(ξ̂(M(ξ)), ξ)p(ξ)dξ

I With hyperparameters: ξ̂(z, β̂(z)). Include in expectation
I May not be optimal to use design ρ∗. Robustness

considerations
I General purpose criterion: The Mean-Square Error (MSE):

MSE
[
ξ̂(z)

]
:= E

[
(ξ̂(z) − ξ)(ξ̂(z) − ξ)T

]
23



Indirect inference
What is the optimal estimator of a random variable z if no data is
available?

With ẑ a constant

MSE [ẑ] = E
[
(z− ẑ)(z− ẑ)T

]
=E

[
(z−E [z] + E [z]− ẑ)(z−E [z] + E [z]− ẑ)T

]
=E

[
(z− E [z])(z− E [z])T

]
+ E

[
(E [z]− ẑ)(E [z]− ẑ)T

]
+ E

[
(z− E [z])(E [z]− ẑ)T

]
︸ ︷︷ ︸

0

+ E
[
(E [z]− ẑ)(z− E [z])T

]
︸ ︷︷ ︸

0

=E
[
(z− E [z])(z− E [z])T

]
+ E

[
(E [z]− ẑ)(E [z]− ẑ)T

]
≥E

[
(z− E [z])(z− E [z])T

]
= MSE [E [z]]

The mean E [z] is the optimal estimator
24



Moment estimators

Sample moments: mk(zN) =
1

N

N∑
t=1

zk(t), k = 1, 2, . . .

Optimal estimator: mk(η) =
1

N

N∑
t=1

E
[
Mk

t (ξt(η))
]

Take as many moments as dimension of η and solve

mk(η) = mk(zN)

Method of moments

V (η) =

m1(zN)−m1(η)
...

mK (zN)−mK (η)


T

W

m1(zN)−m1(η)
...

mK (zN)−mK (η)


η̂ = arg minη V (η), W corrects for different sizes of moments, e.g.

Generalized method of Moments (GMM)
25
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Indirect inference
Super-simple model:

z(t) = v(t) (independent identically distributed (i.i.d.))

First K moments hyperparameters: η̃k , k = 1, . . . ,K .
Estimates:

ˆ̃ηk(zN) = mk(z)

Idea: If model M(ξ(η)) correct, data from this model should
result in similar estimates for the simple model as when real data is
used: For a realization of ξ(η)

ˆ̃ηk(z) ≈ ˆ̃ηk(M(ξ(η))))

i.e.

mk(z) ≈ mk(M(ξ(η))), k = 1, . . . ,K

27



Indirect inference

mk(z) ≈ mk(M(ξ(η))), k = 1, . . . ,K

But ξ(η) independent of data (generated by the random number
generator in our computer).
Remove these by averaging:

mk(z) ≈ E [mk(M(ξ(η)))] =
1

N

N∑
t=1

E
[
Mk

t (ξt(η))
]

= mk(η)

Method of moments!
What did we do?

Intermediate model
Estimated quantities in this model ⇒ Functions of data
(mk(z) (statistics)
Expected value of corresponding statistics from model
matched to statistics
Intermediate model serves to guide the choice of which
statistics to use

Indirect inference 28



Indirect inference

Summary:

η̃ hyperparameters of intermediate model

ˆ̃η(z) estimate

η hyperparameters of model M

η̂(zN) := arg minη Vwse(η, zN) where

Vwse(η, z) :=(
ˆ̃η(z)− E

[
ˆ̃η(M(ξ(η)))

])T
W
(

ˆ̃η(z)− E
[

ˆ̃η(M(ξ(η)))
])

Different cost functions can be used, see Lecture Notes.
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Prediction error methods
Idea: Predict parts of data using other parts of data

Suppose z(t) =
[
yT (t) uT (t)

]T
Model: y(t) = ft(ut , vt ;θ), t = 1, 2, . . .

k-step ahead predictor: ŷ(t + k|t;θ) = f̂t+k|t(ut+k , yt ;θ)

Prediction errors

ε(t + k |t;θ) = y(t + k)− ŷ(t + k |t;θ), t = 1, . . . ,N − k

Criterion (e.g.):

Vpe,k(θ, zN) :=

 ε(1 + k |1;θ)
...

ε(N|N − k;θ)


T

W

 ε(1 + k|1;θ)
...

ε(N|N − k ;θ)


Which f̂ to use?
Which criterion to use?
⇒ Estimation theory (next lecture)

30
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Basic concepts
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Basic concepts

Sample space: Ω

Probability measure: P(A) assigns probabilites to events A.

i) P(Ω) = 1
ii) P(∪∞k=1Ak) =

∑∞
k=1 P(Ak) for disjoint events

Not possible to assign probabilities to all sets (see ex. in LN)
F set of sets for which P defined. Called σ-algebra

i) Ω ∈ F
ii) A ∈ F ⇒ Ac ∈ F (complement)
iii) A,B ∈ F ⇒ A ∪ B ∈ F
iv) Fk ∈ F , k = 1, 2, . . . ⇒ ∪∞k=1Fk ∈ F

iv) required to be able to compute probabilities of limits (see ex. in LN)

Random variable: Measurable function. P({ω : X (ω) ∈ B)
exists for Borel sets B

Probability space: (Ω,F ,P)

34



Basic concepts

Borel set, set in B, the Borel σ-algebra, = minimal σ-algebra
containing the open sets in R.

Probability distribution function:
PX (B) = P({ω : X (ω) ∈ B})
Distribution function: FX (x̄) = PX ({x : x ≤ x̄})

35



Basic concepts

Theorem

Every distribution function can be uniquely decomposed into a
convex combination of a discrete, an absolutely continuous, and a
continuous singular distribution function.

Absolutely continuous: FX (x) =
∫ x
−∞ pX (γ)dγ pX probability

density function (pdf)

Discrete: Piecewise constant. Right-continuous. At most
countable number of discontinuities.

Singular: Derivative exists almost everywhere and is zero.
Continuous and can only increase on a set of measure zero.

The distribution function can be used to compute probabilities
for any Borel set.

⇒ We can pretend that a r.v. is defined on R with probability
measure FX .

36
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Stochastic processes
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Stochastic processes

Theorem (Kolmogorov)

For every set of consistent finite dimensional distributions

Ft1,...,tn(x1, . . . , xn) := PX(X (t1) ≤ x1, . . . ,X (tn) ≤ xn), t1 < . . . < tn

there exists a probability space (Ω,F ,P), where P is unique, and a
stochastic process {X (t)} such that F is consistent with X and P.

Different stochastic processes can have the same distributions but
different realizations

39



Stochastic processes
Example: (δ Kronecker’s delta)
η uniformly distributed on [0, 1]. X (t) = δ(t − η), t ∈ [0, 1]. ⇒

PX(X (t) ∈ B) =

{
1 0 ∈ B
0 otherwise

since η = t with probability 0, and for the same reason

PX(X (t1) ∈ B1, . . . ,X (tn) ∈ Bn) =

{
1 0 ∈ ∩nk=1Bk

0 otherwise

Let Y (t) = 0 · η for t ∈ [0, 1]. ⇒
X ,Y have same finite dim. prob. dist.
However,

P( sup
t∈[0,1]

Y (t) = 0) = P( sup
t∈[0,1]

X (t) = 1) = 1

⇒ Sample paths X and Y do not coincide w.p. 1
40
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Partial specifications
First and second order moments

Mean function:

mX(t) := E [X(t)]

Cross-correlation function:

RX,Y(t, s) := E
[
X(t)YT (s)

]

Cross-covariance function:

CX,Y(t, s) := E
[
(X(t)−mX(t))(Y(s)−mY(s))T

]
Auto-correlation function (akf): RX,X(t, s)
Covariance function: CX,X(t, s) 42



Partial specifications

X(t) stochastic process with RX,X as akf ⇒

0 ≤ E

[
|
∑
i

a∗i X(ti )|2
]

=
m∑
i=1

m∑
j=1

a∗(i)RX,X(ti , tj)a(j)

The opposite is true as well!

Theorem

K is a positive definite function, i.e.

m∑
i=1

m∑
j=1

a∗(i)K (ti , tj)a(j) ≥ 0, ∀a(i) ∈ Cn, ti ∈ T , m ∈ N

if and only if K is the akf of a stochastic process.

43



Modeling considerations

How do we model a family of akf’s?

Obvious parametrization

R(t, s) =
∞∑
k=1

λkϕk(t)ϕT
k (s), ∞ > λ1 ≥ λ2 ≥ . . . ≥ 0,

ϕk pre-specified basis functions, {λk} hyperparameters

Generalization:
Let Φ : T → Hn, i.e. Φi (t) ∈ H, H Hilbert space

R(t, s) = bΦ(t),Φ(s)c

44



Modeling considerations

The parametrization

R(t, s) =
∞∑
k=1

λkϕk(t)ϕT
k (s), ∞ > λ1 ≥ λ2 ≥ . . . ≥ 0,

seems like a great idea, but maybe it does not fit the requirements
for a particular application?

To study this we need to take a deviation over positive definite
kernels

45



Positive definite kernels
T a compact domain (e.g. closed interval in R)

Integral operators with kernel R:

IR(f )(t) =

∫
T
R(t, s)f (s)ds

Maps a function f into another function. If R ∈ L∞(T 2), then

IR(f ) : L2(T )→ L2(T )

Positive definite kernel:∫
T

∫
T
f ∗(t)R(t, s)f (s)dtds ≥ 0, ∀f ∈ L2(T )

Very similar to definition of positive definite function, but not quite.
L2(T ) Hilbert space ⇒ Exists orthonormal basis {ϕk}.
This basis can be chosen such that {ϕk} is bounded:
supk supt |ϕk(t)| <∞

46



Positive definite kernels

Theorem (Mercer’s theorem)

R is a bounded positive definite kernel if and only if

R(t, s) =
∞∑
k=1

λkϕk(t)ϕ∗k(s),

where the series converges absolutely and uniformly almost
everywhere, where λk > 0 are absolutely summable and where
{ϕk} is a bounded orthonormal basis for L2(T ).

47



Positive definite functions vs kernels
There are other positive definite functions than those in Mercer’s
theorem. But

Theorem

Let T = [a, b] be a compact interval and let R : T × T → C be
continuous. Then R is a positive definite function if and only if∫

T

∫
T
f (t)R(t, s)f (s)dtds ≥ 0

for all complex-valued continuous functions f with domain of
definition including T .

Now

All continuous functions on T ∈ L2(T )
In fact they are dense in L2(T ) (any function in L2(T ) can be
approximated arbitrarily well using a continuous function)
⇒ Above can be taken as criterion for R being a positive
definite kernel

48



Positive definite functions vs kernels

⇒ If we restrict {ϕk} so that R is continuous, i.e. take ϕk ,
k = 1, 2, . . . to be continuous, then Mercer’s theorem gives:

Theorem

All continuous positive definite functions can be expressed as

R(t, s) =
∞∑
k=1

λkϕk(t)ϕ∗k(s),

where {ϕ} is a bounded continuous orthonormal basis for L2(T )

Complete parametrization of all continuous auto-correlation
functions of a stochastic process

49
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Gaussian processes (GP)

Pdf of a Gaussian vector:

N (x; m,Σ) :=
1√

det 2πΣ
e−

1
2

(x−m)T Σ−1(x−m)

All finite dimensional distributions GaussianX(t1)
...

X(tn)

 ∼ N

m(t1)

...
m(tn)

 ,
C (t1, t1) . . . C (t1, tn)

... . . .
...

C (tn, t1) . . . C (tn, tn)


 , ∀ti
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Stationary stochastic processes

Properties invariant to translation in time ⇔

Ft1+∆,...,tn+∆(x1, . . . , xn) = Ft1,...,tn(x1, . . . , xn),

Consequence for first and second order statistics

m := m(0) = m(t)

RX,Y(τ) := RX,Y(τ, 0) = RX,Y(t, t − τ)

CX,Y(τ) := CX,Y(τ, 0) = CX,Y(t, t − τ)

Wide-sense stationarity if only the above holds

GP: Wide-sense stationarity ⇔ (strict)stationarity

53
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Wide-sense stationarity

Positivity condition

m∑
i=1

m∑
j=1

a∗i R(ti − tj)aj ≥ 0, ∀ai ∈ Cn, ti ∈ T , m ∈ N

⇔

T =


R(t1 − t1) R(t1 − t2) . . . R(t1 − tm)
RT (t1 − t2) R(t2 − t2) . . . R(t2 − tm)

...
...

. . .
...

RT (t1 − tm) RT (t2 − tm) . . . R(tm − tm)

 ≥ 0

for all Toeplitz matrices of the above type.
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Quasi-stationarity

E {f (t)} = lim
N→∞

1

N

N∑
t=1

E [f (t)]

Definition

X(t) is said to be a quasi-stationary signal if

|mX(t)| ≤ C ∀t
|RX,X(t, s)| ≤ C ∀t, s

RX,X(τ) : = E
{

X(t)XT (t − τ)
}
, exists ∀τ

Two signals X(t) and Y(t) are said to be jointly quasi-stationary if[
XT (t) YT (t)

]T
is quasi-stationary.
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Frequency-domain characterization

Recall f (t)f (s) positive definite function ⇒
e iωte−iωs = e iω(t−s) is a positive definite function ⇒
R(t) = e iωt is a positive definite function ⇒
R(t) =

∑n
k=1 λke

iωk t is a positive definite function

Herglotz theorem: All positive definite functions can be
generated in this way

Definition

F is a matrix valued distribution function on [a, b] (or R), if
F (a) = 0 (or limω→−∞ F (ω) = 0), F is right-continuous,
F (ω)− F (µ) is non-negative definite for all ω ≥ µ.
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Frequency-domain characterization

Theorem (Herglotz theorem)

R : T → Rm×m, with T = Z, is a positive definite function if and
only if

R(τ) =
1

2π

∫ π

−π
e iωτdF (ω)

where F is an m ×m matrix valued distribution function on
[−π, π], called the spectral distribution function

Bochner’s theorem in continuous time, see LN
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Frequency-domain characterization

Corollary

Suppose that R : T → Rm×m, with T = Z, is absolutely summable∑∞
τ=−∞ ‖R(τ)‖F <∞. Then R is a positive definite function if

and only if

R(τ) =
1

2π

∫ π

−π
e iωτQ(ω)dω

for some continuous function Q ∈ L1(R), satisfying
Q(ω) ≥ 0, ω ∈ [−π, π], called the spectrum.

Notation Φ(e iω) = Q(ω)

E
[
X(t)XT (t)

]
= RX(0) =

1

2π

∫ π

−π
Φx(e iω)dω

ΦX distribution of signal power over frequencies
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Modeling considerations

Some parametrizations of spectra:

pdf’s (i.e. use characteristic functions as akf’s)

Φ(ω) =
∑∞

k=1 αkBk(e iω), Bk(e iω) ≥ 0, αk ≥ 0, k = 1, 2, . . .

Φ(e iω) = H̃(e iω)H̃∗(e iω)

The last can be given a filtering interpretation:

G BIBO stable

y(t) = G (q)u(t) ⇒ Φyy (e iω) = G (e iω)Φuu(e iω)G ∗(e iω)

More on this in the next lecture
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A swatch of building blocks

Let us study a GP

f (·) ∼ N (0,K (·, ·))

for different choices of kernel K
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A swatch of building blocks
Disturbances and noise: Behaviour often does not change over time

K (v(t), v(s)) =
1

2π

∫ π

−π
|H(e iω|2e iω(t−s)dω
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A swatch of building blocks
Impulse responses of stable linear systems: Decays exponentially

K (g(t), g(s)) = η1 η
min(t,s)
2 , |η2| < 1

0 5 10 15 20 25 30 35 40 45 50

t

-3

-2

-1

0

1

2

3

4

5
g(

t)

65



A swatch of building blocks
Gaussian kernel: Often used when modeling a non-linear function

K (f (x), f (y)) = η1 e
− |x−y|2

2η2 , η1 > 0, η2 > 0
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