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Introduction

e FEL3201 (8hp) / FEL3202 (12hp)
@ Course elements

>
>
>

13 lectures to provide an orientation

Q&A follow up the next lecture

Recommended reading in the form of lecture notes
(continuously updated - feedback welcome!), and L. Ljung:
system identification - Theory for the User (available online
through KTHB)

Weekly homework problems. Peer correction.

Project. Groups of 2. Complete system id. problem.
Preferrably real data. Optimal with something from your own
research. Proposals due to hjalmars@kth.se by June 22.
Deadline for reports September 15. 5 min. presentations. Date
October TBD.

48h take home exam starting at 9:00. Window: August 29 -
September 13. Notify hjalmars@kth.se before August 25.
Reminder at 8:30 at the day of the exam.



Introduction

@ Course requirements
» Homeworks: 80% solved
» Exam: 50% for FEL3201. 65% for FEL3202.
» Project: Approved report & presentation. Project for FEL3202
expected to be extensive (aim for conference paper).
e Many different areas blend together (Systems & Control
theory, Mathematical statistics, Probability theory, Machine
learning, Optimization theory,. . .)
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Course Outline

1.

Introduction (Friday 15/5, 15-17) . Chapter 1-2 in Lecture Notes (LN). Chapter
1-2 in Ljung.
o Signals and systems
The basic problem
Some examples
Introduction to parameter estimation
Some pitfalls
o HW:1.1a-d (1.1f). 2.1 (2.2, 2.5) ) Deadline Tuesday 26/5.

)
o
o
o

. Probabilistic models (Tuesday 19/5, 10-12). Chapter 3 in LN. Chapter 4 in

Ljung.
o Models and model structures
o Estimators
o A probabilistic toolshed

. Estimation theory and Wold decomposition (Tuesday 26/5, 10-12). Chapter 4

in LN. Chapter 3 in Ljung
o Estimation theory
= Information contents in random variables
= Estimation of random variables
o Wold decomposition

. Unbiased parameter estimation (Friday 29/5, 15-17). Chapter 5 in LN. Chapter

7 in Ljung.

The Cramér-Rao lower bound

Efficient estimators

The maximum likelihood estimator

Data compression

Uniform minimum variance unbiased estimators
Best linear unbiased estimator (BLUE)

Using estimation for parameter estimation

00 o00o0O0oO



Course Outline

5. Biased parameter estimation (Tuesday 2/6, 10-12) . Chapter 6 in LN.
o The bias-variance trade-off
o The Cramér-Rao lower bound
o Average risk minimization
o Minimax estimation
o Pointwise risk minimization
6. Asymptotic theory (Friday 5/6, 15-17). Chapter 7 in L.N. Chapter 8 in Ljung
o Limits of random variables
o Large sample properties of estimators
o Using estimation for parameter estimation, part Il
o Large sample properties of biased estimators
7. Computational aspects (Tuesday 9/6, 08-10). Chapter 10 in Ljung.
o Gradient based optimization
o Convex relaxations
o Integration by Markov Chain Monte Carlo (MCMC) methods
8. Case studies | (Friday 12/6, 10-12)
o Parametric LTI models
o Impulse response models
9. Case studies Il (Tuesday 16/6, 10-12)
o Uncertain input models
o Nonlinear stochastic state-space models
10.Model accuracy (Friday 19/6, 15-17) Chapter 9 in Ljung.
11.Model structure selection and model validation (Tuesday 23/6, 10-12).
Chapter 16 in Ljung
12.Experiment design (Tuesday 25/8, 10-12) . Chapter 13 in Ljung.
13. Continuous time identification (Friday 28/8, 15-17)



Introductory example: Shock absorber

T REEEEEEEEEEEEEPEEEREE CAR CHASSIS | | (1) _ 1ng




System identification, an iterative procedure

Prior knowledge

10
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Continuous time signals
Definition
The space L,(C), 0 < p < oo consists of all measurable functions
F:C— C™™on C for which

1Fllp = ( /| ||F(r>rr‘;dr) L.

The class Lo(C) consists of all measurable functions
F:C— C™™on C for which

| Flloo := esssupa(F(t)) < oo
teC

where G(A) denotes the largest singular value of the matrix A.
The essential supremum for a real-valued function f is defined as

esssup f(t) = inf{a: f(t) < a almost everywhere (a.e.) in C
teC

12



Continuous time signals
Fourier transform and its inverse

S(iw) = / T s(t)e e, (1) :% /_ Z S(iw)e ™t dw

—0o0
Theorem

i) Suppose that s € L1(R), then its Fourier transform S is uniformly
continuous and vanishes at infinity.

ii) Suppose that s € L1(R) and that its Fourier transform S € L;(R).
ee .
i () = / S(iw)e ™t dw
—00

is continuous, vanishes at infinity and 5(t) = s(t) a.e.
iii) Suppose that s € L,(R), 1 < p < oo, with Fourier transform S.

Then Iim/ S(iw)e™tdw = s(t) a.e.
wI<R

R—o0

13
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Discrete time signals
Definition
The class £,, 0 < p < oo, consists of all sequences {s(t)} for which

1/p
Isllp := (Z!S(t)lp> < o0
K

The class (., consists of all sequences {s(t)} for which
Islloo = sup|s(t}] < 0o

lp Clgforl<p<qg<oo.
s € {1 = Discrete Time Fourier transform (Fourier series)
o0
S(e)= Y s(t)e ™!

t=—00

Seli(T), = 5(t) = — /7r S(e™)eit — s(1)

=5 B



Discrete time signals
¢ and Ly(T) Hilbert spaces with inner products

(s,v) = Z:Tram:e{v*(t)s(t)}7 (S,V) = x /7r Trace{V*(ei“)S(ei“)}

2 J_,
bx(w) = e/“k, complete orthonormal system for L(T)

Theorem

Any S € Ly(T) can be represented as S(e™) = > 22 s(t)e ™t
where

1 " iw\ Siw
s(t):%/ S(e)eivt

What does S = 0 mean in Lp(T)? ||S||2 = 0. Equivalence classes.
¢y and Ly(T) isomporphic: 1-1 relationship between elements.

Geometric properties preserved: (S, V) = (s, v)

1 " iw .
S(e™)Pdw = [ISIE=Islz = ) Is(t)]?

2m - t=—o0 16



Discrete time signals

z-transform: S(z) := >3 s(k)z~* (Laurent series)
Holomorphic (analytic) in an annulus centered at the origin.
Definition

Hp(T), 0 < p < oo is the class of functions F : T — C"™*™ for

which all elements are holomorphic in |z| > 1 and for which there
is an M < oo such that

[ IFCe o <, 1<r <o
Theorem (H,(T) vs L,(T):)

Letl1<p<oo. Se€HT) e S(z) =) 72,5(t)z*
where {5(t)}22, are the Fourier coefficiencts of some function in
L,(T).

17



Dynamic systems
Linear time-invariant (LTI)

y(1)= > g(k)u(t— k),
k=—00
Short hand: y(t) = G(q)u(t)
where G(q) = >_32_ g(k)g~* transfer function
z-transform: Y(z) = G(z)U(z)
Bounded-Input-Bounded-Output (BIBO) stability: g € ¢;
G maps signals to signals: e.g. £oo — f~. An operator

Gu
1G] = sup 1GHllee _ g,
P el
G .
161 = sup 19402 _ 516 (ey)
Pl

18



Dynamic systems
@ Linear state space description

x(t+1) = A@)x(t) + B(8)u(t) + K(8)e(t)

> {e(t)} noise/disturbance
» @ vector of unknown parameters
> Black-box or (semi-)physical (grey-box)

@ Non-linear

19



Common linear black-box structures

o FIR

y(t) = bru(t — 1) + ... byu(t — n) + e(t)
by
=[u(t—1) ... u(t—n)]|:|+e(t)=¢ (t)0+e(t)
bn

Compact form:
y(t) = B(q)u(t) +e(t) = (b1g™* + ...+ bog ")u(t) + e(t).

@ General:
y(t) = G(q,0)u(t) + H(q, 0)e(t)

where G and H are rational discrete-time transfer functions.

20



Common linear black-box structures

o FIR

y(t) = bru(t — 1) + ... byu(t — n) + e(t)
by
=[u(t—1) ... u(t—n)]|:|+e(t)=¢ (t)0+e(t)
bn

Compact form:
y(t) = B(q)u(t) +e(t) = (b1g™* + ...+ bog ")u(t) + e(t).

@ General:
y(t) = G(q,0)u(t) + H(q, 0)e(t)

where G and H are rational discrete-time transfer functions.
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Common linear black-box structures
o General: y(t) = G(q,0)u(t) + H(q,0)e(t)

e(t)
e ARX
By, L
7(6) = G u(e) + el g
A(q):1+al+...+(a,)7 o)
u(t 5 y(t
Can be written A(q)y(t) = B(q)u(t) + e(t)
which is equivalent to
y(t) =970+ e(t)
e(t)=[-y(t=1) ...—y(t—n) u(t—1) ... u(t—n)
6=1[a1 ... an b ... by

]T

22



Common linear black-box structures

e(t)

@ Output-Error (OE)

U(t)
- F(q)

@ Box-Jenkins (BJ)

V(t)y(t)

e(t)

23



Continuous time models

x(t) = A(0)x(t) + B(O)u(t) + w(t)
y(t) = C(0)x(t) + D(O)u(t) + v(t)

Sampling gives

x(t+1) = A(0)x(t) + B(O)u(t) + K(0)e(t)
y(t) = C(0)x(t) + D(0)u(t) + e(t)

Important to use correct intersample behaviour of input.

24



Common nonlinear black-box models

@ Predictor models

y(t) = g(p(t),0) + e(t)

where (t) (nonlinear transformations of) past inputs and
outputs.

» Neural networks

» Radial basis functions

»> NLARX: ¢(t) past inputs and outputs
| 4

>
>

@ Block oriented models

25



Block-oriented models

ic nonline

@ Hammerstein (nonlinear actuator)

u(t)

@ Wiener (nonlinear sensor)

u(t)

@ Hammerstein-Wiener

u(t)

26
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Example 1: Scalar LTI model

M T}'}
. H@
y

y=%g+e,

o Measurements: y € RV (u known exactly and can be
considered part of the model)

@ Unknowns: g € R", e, € RN

28



Example 2: Scalar LTI state-space model

I
M Ty
. HC?

x=F(O)u+ G(0)w
y=H@®@)x+e, ycRV

@ Measurements: y € RV
o Unknowns: w € R™N g ¢ Rm*+2m e, € RN



Example 3: Scalar LTI state-space EIV model

w

|
HT M TY/

@eu e H@

u y

x = F(@)u+ G(O)w
u=uo-+e,
y=H(O)x+e,

@ Model order: m
@ Measurements: u € RV, y e RV
o Unknowns: w € R™_ g ¢ R™+2m o, c RN, e, € RN
30
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Key issue #1: More unknowns than measurements
Collect all unknowns in & € =.

e Model: z(&)

@ Data: z
Unfalsified parameter set: Z(z) .= {£€ € =: z(§) =z}

Any further inference must be based on introducing a prejudice
among the &'s in =(z). How can we do this? Ranking!

Introduce ranking function: p(§) > 0, fE p(&)d¢ =1

Maximum of rankings estimate:

& (z) :=arg max p(€)
£€€Z(2)

Notice that the ranking function has nothing to do with the data.

The only connection to the data is that we maximize over the
unknowns consistent with the data.

32



Encoding the set of unfalsified models

Recall Dirac’s delta function: [ f(t)d(t)dt = £(0)
Multivariable version:

5(x) == []o(x(k)), x=[x(1) ... x(n)] eR"
k=1

The joint ranking of model parameters £ and observations z:

p(&,2) := p(§)d(z — M(£)),

Gives:

&(z) = arg max p(€,2)

33



Key issue #1: More unknowns than measurements

Alternative: Average of rankings estimate:

Jz € P&) dE [ ¢ p(g,2) dt
p(z)  pe2)
ple) e = [ ple.) et

€a2) =
where p,(z) := /

=(z

Simplification: Use p(&|z) := p(&,2)/p-(2):

£a(2) = / € p(&]z)de

That's it folks - the course is finished!

From here on it can only become more confusing
34



Example 1 cont'd

Y(gvey):¢g+eY7 EZ |:egy:|

Introduce ranking:

p(&) = N(ey;0,X, /) N (8,0, Kg)
@ Stochastic modeling is just a convoluted way to rank
@ p(&) pdf for all unknowns
@ py(y) pdf for y
Estimates:

A

Emly) ::agrg n(qa)x/\/(ey;O, Ae,I) N(g,0,Kg) =
c=(y

gnm(y) =argmax N(y — ®g; 0, A\, /) NV (g,0, Kg)
g

p(g.y)=p(gly)r(y)

galy) = / g p(gly) dg

35



Example 1 cont'd
y(g,e)) =dPg+e, e ~ N(0, Aeyl)7 g~ N(g, Ke)

o (BB =)
L’] g Xy Ly
Yoo T K K o7
where | =88 gy] _ [ g g
{ ve Ly PK, K T + Ae, !
From the theory of Gaussian rv:
p(gly) = N(g:E {gly}  Cov{gly})
E{gly} = T4 %, (y — E{y}) + E{g}
Both the maximum of rankings estimate and the average ranking
estimate of g are thus given by

-1
=55, (y—8)+8= KT (¢Kgq>T n )\eyl) (y—8)+8
Special case: y=g+e, (¢ =1), Kg = Azl

Ag A
)‘g+)\eyy+

g = Y,

© g = trust in data X y + trust in ranking X §

36



Estimating functions of unknowns

Estimates:

Alternatives:

On(z) = argmax p(0; z)
0

p(6;z) = / p(§)d¢
S(2)N{£EE: F(£)=0}

Nuisance parameters have been marginalized (integrated) out
R = &) d¢
Oa(z) == Jz f

Py(Y)

— [ f©)nelz) de =E(r(¢) )

Average over fs that are unfalsified

37
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Choosing the ranking function p(&)
Notice that {=(z)}, are disjoint sets (M(&) single valued).

For given data z, the ranking function is only used to rank the
parameters in =(z).

Thus we only need to choose the rankings for £ in this set.
Common approach: Parameterized ranking p = p(§; n(z))
How to determine the (hyper-) parameters 1(z)?

Let us use the rankings relevant for the data z, p(§;n), € € =(2),
to compute rankings for 7:

i) Average ranking: p,(z;n)

i) Optimistic ranking: SUPge=(z) p(&mn)
How can we use the rankings of i for estimation of n?
One possibility: 7(z) = 71y (z) := arg max,, p-(z;n)

Maximize the average of the rankings
39



Example 1 cont'd: Special case
y(g.e)=g+e, ycRY

e, ~ N(0, A, /), g~ N(E, \!)

gl (8] el Al
HE(HR VW)

@ )\, does not directly influence the model y(g, e,)
@ Such parameters are called hyperparameters

@ The noise variance A, and g are also hyperparameters but we
will for simplicty assume them to be fixed.

1 _ -1 _ 1
—log p(y; Ag) = 5(y —-g)" ()\g/ + )\eyl) (y—g8)+ 5 log det ()\gl + )\ey/)

y-gl
)‘g +)\ey

+ Nlog(Ag + Ae,)

40



Example 1 cont'd: Special case
y(g.e)=g+e, ycRY

ey ~ N(0,Ae, /), &~ N(8 Ag!)

—log p(y; Ag) = Iy —&|” g’ + Nlog(Ag + Ae,)
e T A,
Estimate
N 1 _
Ag = NHy - g||2 - /\ey

Spread of y around g, accounting for spread of e, .

AR A )\e )\e
Ehg)=c——y=1|1- —— |y + 8
Rt e, ( Hly —&l? sly —gl?

41



Example 1 cont'd: Special case
y(ge)=g+e, ycR"

ey ~ N(0,Ae, /), g~ N(8 Ag!)

ML-estimate

~

>‘g = Hy_g||2_)\ey

ArR )\ey )\ey _
8(%) = (1 my—gnZ) Y Ty gt
Interpretation:

o With g fix, y ~ N (g, Ao, /)

@ Hypothesis H,: g =g

o Under Ho, T := |ly — g[|?/Xe, ~ X3(N)

o Under Hy,: E{T} =N = g(}\,) = g if H, true

@ Hypothesis violated (T large) = Data used

=~

42



Exercise

@ )\, estimated as well = James-Stein estimator
@ James-Stein estimator outperforms ML
@ As does our estimator

Let for simplicity g = 0 so that

. Ae
Erg)=(1-1+"5 |y
¢ ( sillyl?

Take 5 min and think if it makes sense that this estimator beats
the ML estimator

EmL=Y

in terms of the MSE
Starting point: y ~ N (g, \e/)

43



Example 1 cont'd
y(g,ey) = dg+ey,
Let instead
p(g,e,) = N(ey; 0, e, 1)3(g — 1)

= g is a singleton n which is to be determined from data.

=(y) = {(ey.8) - y(g,ey) =y} = (y — ®n,n) singleton

py(y;g) == N(y — ®g;0, )\, /)

° gu(y) = (7o) o7y
@ In our special case ® =1, gu(y) =y

44
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Summary

e Constructive model z(§), parametrized by vector of unknowns
Ee=

Among the set of unfalsified parameters, the ranking
determines the estimate

Different functions can be used for this, e.g. average and
maximum.

Ranking function can also be parametrized (n)

7 can be estimated using the ranking function as well

» Elements of 1 directly mapped to elements of £ are usually
referred to as model parameters, cf. g in Example 1.

» Elements of 1 not directly mapped to elements of £ are usually
referred to as hyper-parameters, cf. Az in Example 1.

Computations requires integration and optimization

46



Model simulation

Model b1
T

t) = ——ul(t

Y = ()

Data
Input-Output Data

y1

o

ui

Amplitude

o N S

o

100 200 300 400 500 600 700
Time (seconds)

800

900

1000

47



Model simulation
b and f determined by minimizing

N
((6) = 92, b))
3(t:b.) 1= T gu(t)

Computed from
(1+fq~1)9(t: b, f) = bg ' u(t)
that is

9(5; b, f) = —F3bu(1) + F2bu(2) — fbu(3) + bu(4)

48



Model simulation

Magnitude (dB)

Bode Diagram
From:ut1 To:y1

True system
Simulation model

-10
10

1072

107!
Frequency (rad/s)

10°

10°

49



Model simulation

(14 fq~")9(t) = bg " u(t)

Very nonlinear optimization problem. Can we simplify?
Our model

(1+fq)y(t) = bg " u(t)
can be written as
y(t) = —fy(t — 1)+ bu(t — 1)
Take y(t) = —fy(t — 1) + bu(t — 1) = Minimize

N

> () = fr(t = 1) = bu(t — 1))

t=1
Least-squares problem!!!

50



Model simulation

Bode Diagram

From:u1 To:y1
20 T T

True system

Magnitude (dB)
(6]

ok Equation error model | |
,5 = 4
10 ‘ ‘ ‘
107 102 107! 100 10°

Frequency (rad/s)

Why different results. Which one to use?
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Closed loop identification
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Closed loop identification

Result:

B)

Phase (deg)

-180

Magnitude (d

Closed loop identification
From:u1 To: y1

o
T

N
o
T

30

180

90 [

T
True system
First order model

107 10°
Frequency (rad/s)
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Closed loop identification
Open loop identification

u(t)
—-

Data same characteristics as in closed loop experiment:

Closed loop data

Open loop data

0 1000 2000 3000 4000 50000 . 5C| n > 1000 2000 3000 4000 5000

54



Closed loop identification

Result

Open loop identification

From:u1 To: y1
0 ——— T

-

o
T

L

Magnitude (dB)
&

True system
First order model | |

25+ 4

n
o
T

30 \ \ \
103 102 107 10° 10"
Frequency (rad/s)

What so peculiar about closed loop identification?
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Closed loop identification

Close up
20

Closed loop data

Input
Output

10 20 30
Opposite response to the

40
eyel!

50
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Sampling

) =31

Data:

Input

015

02

025
o

Time (5)
Output

100 200 300 400 500
Time (s)

57



Sampling

> i1 bkg™*
)/(nT) = 1_|_k2211 fkq—ku(nT)
=1

Bode Diagram
From: ul To:y1
T T

20 T

Continuous time system
1st order discrete time model | |
3rd order discrete time model

Magnitude (dB)
3

220+

.30 F

40 . . . .
103 102 107 10° 10' 102
Frequency (rad/s)

Noise free data, fast sampling. Yet problem???
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Sampling

y(nT)

_ Timba™
1+ 22:1 fkqfk

Bode Diagram

From: ul To:y1
T T

20 : :
10 F | 4
/
—~ 0 1
& -
k=2
8
S0t ,
H
[=] . "
(o] Continuous time syslem
= 0l 1st order discrete time model | |
3rd order discrete time model
30k ]
40 . . . .
103 102 107 10° 10’

Frequency (rad/s)
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Measurement errors
uy uy X2

R

Interested in G, but also Gy (high order) unknown
Large data set (100.000 samples) First 1000 shown

5
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Measurement errors

Using up as input
Bode Diagram
From:ut To: y1

-10

-15

Magnitude (dB)

—G.2
Model from u_2 and y_2 using 100.000 data points

-20 -

30 . . .

1073 102 107 10°
Frequency (rad/s)



Measurement errors

Using y1 as input in the model

Magnitude (dB)

Bode Diagram
From:utl To:y1

0 T
N

s N ,

-10 \ ]
\
-15 b
— G2
20+ Model fromy_1 and y_2 using 100.000 data points | _|
Model from y_1 and y_2 using 200.000 data points
\

251 b
30 . . .

10 102 107 10°

Frequency (rad/s)

How handle measurement errors on inputs?

10"
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Complex models

System of known order 25

State-of-the art:

Input Data

Ampiitude

04
02

0
02
04
08

0 20 40 6

00

800 1000 1200 1400 1600 1800 2000
Time (seconds)
Output Data

Ampiitude

0 20 400 600

800 1000 1200 1400 1600 1800 2000
Time (seconds)

Bode Diagram
From: ut To: y1

100

50

g o
3
2

g 0
H

\
100
True system

150

10° 102

107
Frequency (radis)
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Complex models

Recall: Highly non-linear optimization problem. Need good inital
values. Let us start at true values.

Bode Diagram
From: u1 To:y1
T

20

0

-20

-40

-60

-80

Magnitude (dB)

-100 |

-120

True system
Identified model
n

-140
10°

102

107
Frequency (rad/s)

Still problems. How to deal with complex systems?
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Hilbert spaces
Let V be a vector space equipped with an inner product (-, )
1. (u+v,w) = (u,w) + (v,w)
2. (Au,v) = Xu, v)
3. (u,v) = (v, u)*
4. (v,v) > 0 with equality iff v =0

Norm: ||v|| = \/{v, V)
Hilbert space H: Complete inner product space (Cauchy sequences
converge)

Extend definition to column vectors u and v of elements of H:
(u,v) =M, Mij=(uj,vj)
Example 1: Consider the columns of X € RVN*"™ and Y € RV*n
as elements of RV, then
(X,Yy=XTy

Example 2: Let x € R™ and y € R™ be random vectors with
finite second moments. Then

(x,y) =E{xyT}

65



Orthogonal projections

Orthogonality
An element u € H is orthogonal to the subspace S C H if

(u,v) =0 YveS.

We write u 1. S
Projection theorem

Let u € H be given and let S C H be a closed subspace to H.
Then there exists a unique v € S such that u — v L S. The
element v is the unique solution to

min ||u — v||
veS

v is called the orthogonal projection of v onto S and is denoted ug

It follows that u € H has a unique decomposition

U= us+ ug., where ug. = u— us € S* (subspace orthogonal to S)
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Orthogonal projections: Pythagoras relation

u=us+ust = ||lul®=fus|® + Just|?
In our context often written as
lul® = llus|® = lus:[* = [lu— us]|?
The projection theorem:
lu—=vI? > [lu—us)?= llus: | = [lul® — |us|* >0 Yves
Vector version:

(u—v,u—v)y>(u—us,u—us)=(uu) —(us,us) >0 Yves
Matrix inequality

Note: Projection us has smaller "norm” than u: (u,u) — (us, us) > 0
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Orthogonal projections: Finite dimensional subspaces

Problem: Project all elements of the n,-dimensional vector u on
the linear span of the elements of the vector y (solve n,
projections simultaneously)

S={Ly: LeR™*™}
Optimality condition:
0= (u—Ly,y) = (u,y)—Ly,y)
= L*=(uy)(y,y)™"
= us =LYy = (u,y)y,y)" 'y
Projection theorem and Pythagoras: v =Ly =
<U— v,u— V> Z <U_ L*yvu_ L*y> = <U,U> - <U,y><y,y>71<y, U>

Example: Rows of U € R"*N to be projected on the rows of
Y € Rnny

Us=UTY(YTY) ly
0>(U—-Us)"(U=Us)=UTU-UTY(YTY)tyTu
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