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Introduction

FEL3201 (8hp) / FEL3202 (12hp)

Course elements
I 13 lectures to provide an orientation
I Q&A follow up the next lecture
I Recommended reading in the form of lecture notes

(continuously updated - feedback welcome!), and L. Ljung:
system identification - Theory for the User (available online
through KTHB)

I Weekly homework problems. Peer correction.
I Project. Groups of 2. Complete system id. problem.

Preferrably real data. Optimal with something from your own
research. Proposals due to hjalmars@kth.se by June 22.
Deadline for reports September 15. 5 min. presentations. Date
October TBD.

I 48h take home exam starting at 9:00. Window: August 29 -
September 13. Notify hjalmars@kth.se before August 25.
Reminder at 8:30 at the day of the exam.
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Introduction

Course requirements
I Homeworks: 80% solved
I Exam: 50% for FEL3201. 65% for FEL3202.
I Project: Approved report & presentation. Project for FEL3202

expected to be extensive (aim for conference paper).

Many different areas blend together (Systems & Control
theory, Mathematical statistics, Probability theory, Machine
learning, Optimization theory,. . .)
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Course Outline

1. Introduction (Friday 15/5, 15-17) . Chapter 1-2 in Lecture Notes (LN). Chapter 
1-2 in Ljung. 

o Signals and systems 
o The basic problem 
o Some examples 
o Introduction to parameter estimation 
o Some pitfalls 
o HW: 1.1 a-d  (1.1f). 2.1 (2.2, 2.5) ) Deadline Tuesday 26/5. 

2. Probabilistic models (Tuesday 19/5, 10-12). Chapter 3 in LN. Chapter 4 in 
Ljung.  

o Models and model structures 
o Estimators 
o A probabilistic toolshed 

3. Estimation theory and Wold decomposition (Tuesday 26/5, 10-12). Chapter 4 
in LN. Chapter 3 in Ljung 

o Estimation theory 
 Information contents in random variables 
 Estimation of random variables 

o Wold decomposition 
4. Unbiased parameter estimation (Friday 29/5, 15-17). Chapter 5 in LN. Chapter 

7 in Ljung. 
o The Cramér-Rao lower bound 
o Efficient estimators 
o The maximum likelihood estimator 
o Data compression 
o Uniform minimum variance unbiased estimators 
o Best linear unbiased estimator (BLUE) 
o Using estimation for parameter estimation 
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Course Outline
5. Biased parameter estimation (Tuesday 2/6, 10-12) . Chapter 6 in LN. 

o The bias-variance trade-off 
o The Cramér-Rao lower bound 
o Average risk minimization 
o Minimax estimation 
o Pointwise risk minimization 

6. Asymptotic theory (Friday 5/6, 15-17). Chapter 7 in L.N. Chapter 8 in Ljung 
o Limits of random variables 
o Large sample properties of estimators 
o Using estimation for parameter estimation, part II 
o Large sample properties of biased estimators 

7. Computational aspects (Tuesday 9/6, 08-10). Chapter 10 in Ljung. 
o Gradient based optimization 
o Convex relaxations 
o Integration by Markov Chain Monte Carlo (MCMC) methods 

8. Case studies I (Friday 12/6, 10-12)  
o Parametric LTI models 
o Impulse response models 

9. Case studies II (Tuesday 16/6, 10-12)  
o Uncertain input models 
o Nonlinear stochastic state-space models 

10. Model accuracy (Friday 19/6, 15-17)  Chapter 9 in Ljung. 
11. Model structure selection and model validation  (Tuesday 23/6, 10-12). 

Chapter 16 in Ljung 
12. Experiment design (Tuesday 25/8, 10-12) . Chapter 13 in Ljung. 
13. Continuous time identification (Friday 28/8, 15-17)  

 

Warning: It may be a rough ride, but hopefully rewarding in the end
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Introductory example: Shock absorber

9



System identification, an iterative procedure

Experiment design

Experiment

Model structure selection

Parameter estimation

Model validation

Ok?

Prior knowledge

Yes!
No :(
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Continuous time signals

Definition

The space Lp(C ), 0 < p <∞ consists of all measurable functions
F : C → Cn×m on C for which

‖F‖p :=

(∫
C
‖F (t)‖pFdt

)1/p

<∞

The class L∞(C ) consists of all measurable functions
F : C → Cn×m on C for which

‖F‖∞ := ess sup
t∈C

σ(F (t)) <∞

where σ(A) denotes the largest singular value of the matrix A.

The essential supremum for a real-valued function f is defined as

ess sup
t∈C

f (t) = inf{a : f (t) ≤ a almost everywhere (a.e.) in C

12



Continuous time signals
Fourier transform and its inverse

S(iω) =

∫ ∞
−∞

s(t)e−iωtdt, s̄(t) =
1

2π

∫ ∞
−∞

S(iω)e iωtdω

Theorem

i) Suppose that s ∈ L1(R), then its Fourier transform S is uniformly
continuous and vanishes at infinity.

ii) Suppose that s ∈ L1(R) and that its Fourier transform S ∈ L1(R).

Then s̄(t) =

∫ ∞
−∞

S(iω)e iωtdω

is continuous, vanishes at infinity and s̄(t) = s(t) a.e.

iii) Suppose that s ∈ Lp(R), 1 < p <∞, with Fourier transform S .

Then lim
R→∞

∫
|ω|≤R

S(iω)e iωtdω = s(t) a.e.
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Discrete time signals

Definition

The class `p, 0 < p <∞, consists of all sequences {s(t)} for which

‖s‖p :=

(∑
k

|s(t)|p
)1/p

<∞

The class `∞ consists of all sequences {s(t)} for which

‖s‖∞ := sup
t
|s(t)| <∞

`p ⊂ `q for 1 ≤ p < q ≤ ∞.
s ∈ `1 ⇒ Discrete Time Fourier transform (Fourier series)

S(e iω) =
∞∑

t=−∞
s(t)e−iωt

S ∈ L1(T), ⇒ s̄(t) :=
1

2π

∫ π

−π
S(e iω)e iωt = s(t)
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Discrete time signals
`2 and L2(T) Hilbert spaces with inner products

〈s, v〉 =
∑
t

Trace {v∗(t)s(t)} , 〈S ,V 〉 =
1

2π

∫ π

−π
Trace

{
V ∗(e iω)S(e iω)

}
dω

bk(ω) = e iωk , complete orthonormal system for L2(T)

Theorem

Any S ∈ L2(T) can be represented as S(e iω) =
∑∞

t=−∞ s(t)e−iωt

where

s(t) =
1

2π

∫ π

−π
S(e iω)e iωt

What does S = 0 mean in L2(T)? ‖S‖2 = 0. Equivalence classes.
`2 and L2(T) isomporphic: 1-1 relationship between elements.

Geometric properties preserved: 〈S ,V 〉 = 〈s, v〉

1

2π

∫ π

−π
|S(e iω)|2dω = ‖S‖22 = ‖s‖22 =

∞∑
t=−∞

|s(t)|2
16



Discrete time signals

z-transform: S(z) :=
∑∞

k=−∞ s(k)z−k (Laurent series)
Holomorphic (analytic) in an annulus centered at the origin.

Definition

Hp(T), 0 < p <∞ is the class of functions F : T→ Cn×m for
which all elements are holomorphic in |z | > 1 and for which there
is an M <∞ such that∫ π

−π
‖F (reω)‖pFdω ≤ M, 1 < r <∞

Theorem (Hp(T) vs Lp(T):)

Let 1 < p <∞. S ∈ Hp(T) ⇔ S(z) =
∑∞

t=0 s̄(t)z−t

where {s̄(t)}∞t=1 are the Fourier coefficiencts of some function in
Lp(T).
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Dynamic systems
Linear time-invariant (LTI)

y(t) =
∞∑

k=−∞
g(k)u(t − k),

Short hand: y(t) = G (q)u(t)
where G (q) =

∑∞
k=−∞ g(k)q−k transfer function

z-transform: Y (z) = G (z)U(z)
Bounded-Input-Bounded-Output (BIBO) stability: g ∈ `1
G maps signals to signals: e.g. `∞ → `∞. An operator

‖G‖ = sup
u

‖Gu‖∞
‖u‖∞

= ‖g‖1

‖G‖ = sup
u

‖Gu‖2
‖u‖2

= sup
ω
|G (e iω)|
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Dynamic systems

Linear state space description

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K (θ)e(t)

y(t) = C (θ)x(t) + D(θ)u(t) + e(t)

I {e(t)} noise/disturbance
I θ vector of unknown parameters
I Black-box or (semi-)physical (grey-box)

Non-linear

x(t + 1) = f (x(t), u(t),w(t), θ)

y(t) = h(x(t), u(t), e(t), θ)
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Common linear black-box structures

FIR

y(t) = b1u(t − 1) + . . . bnu(t − n) + e(t)

=
[
u(t − 1) . . . u(t − n)

] b1...
bn

+ e(t) = ϕT (t)θ + e(t)

Compact form:
y(t) = B(q)u(t) + e(t) = (b1q

−1 + . . .+ bnq
−n)u(t) + e(t).

General:

y(t) = G (q, θ)u(t) + H(q, θ)e(t)

where G and H are rational discrete-time transfer functions.

20



Common linear black-box structures
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Common linear black-box structures
General: y(t) = G (q, θ)u(t) + H(q, θ)e(t)

ARX

y(t) =
B(q)

A(q)
u(t) +

1

A(q)
e(t)

A(q) = 1 + a1 + . . .+ an

B(q)
A(q)

1
A(q)

e(t)

y(t)
v(t)

u(t)

Can be written A(q)y(t) = B(q)u(t) + e(t)
which is equivalent to

y(t) = ϕT θ + e(t)

ϕ(t) =
[
−y(t − 1) . . .− y(t − n) u(t − 1) . . . u(t − n)

]T
θ =

[
a1 . . . an b1 . . . bn

]T
22



Common linear black-box structures

Output-Error (OE)

B(q)
F (q)

1

e(t)

y(t)
v(t)

u(t)

Box-Jenkins (BJ)

B(q)
F (q)

C(q)
D(q)

e(t)

y(t)
v(t)

u(t)
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Continuous time models

ẋ(t) = A(θ)x(t) + B(θ)u(t) + w(t)

y(t) = C(θ)x(t) +D(θ)u(t) + v(t)

Sampling gives

x(t + 1) ≈ A(θ)x(t) + B(θ)u(t) + K (θ)e(t)

y(t) ≈ C (θ)x(t) + D(θ)u(t) + e(t)

Important to use correct intersample behaviour of input.
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Common nonlinear black-box models

Predictor models

y(t) = g(ϕ(t), θ) + e(t)

where ϕ(t) (nonlinear transformations of) past inputs and
outputs.
I Neural networks
I Radial basis functions
I NLARX: ϕ(t) past inputs and outputs
I
I
I

Block oriented models

25



Block-oriented models

LinearStatic nonlinearity

Hammerstein (nonlinear actuator)

u(t) y(t)

Wiener (nonlinear sensor)

u(t) y(t)

Hammerstein-Wiener

u(t) y(t)

26
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Example 1: Scalar LTI model

M

u

ỹ

+ey

y

y = Φg + ey

Measurements: y ∈ RN (u known exactly and can be
considered part of the model)

Unknowns: g ∈ Rn, ey ∈ RN

28



Example 2: Scalar LTI state-space model

M

w

u

ỹ

+ey

y

x = F (θ)u + G (θ)w

y = H(θ)x + ey , y ∈ RN

Measurements: y ∈ RN

Unknowns: w ∈ RmN , θ ∈ Rm2+2m, ey ∈ RN

29



Example 3: Scalar LTI state-space EIV model

ũ M

w

+ eu

u

ỹ

+ey

y

x = F (θ)u + G (θ)w

u = ũ + eu

y = H(θ)x + ey

Model order: m

Measurements: u ∈ RN , y ∈ RN

Unknowns: w ∈ RmN , θ ∈ Rm2+2m, eu ∈ RN , ey ∈ RN
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Key issue #1: More unknowns than measurements
Collect all unknowns in ξ ∈ Ξ.

Model: z(ξ)

Data: z

Unfalsified parameter set: Ξ(z) := {ξ ∈ Ξ : z(ξ) = z}

Any further inference must be based on introducing a prejudice
among the ξ’s in Ξ(z). How can we do this? Ranking!

Introduce ranking function: p(ξ) ≥ 0,
∫

Ξ p(ξ)dξ = 1

Maximum of rankings estimate:

ξ̂M(z) := arg max
ξ∈Ξ(z)

p(ξ)

Notice that the ranking function has nothing to do with the data.
The only connection to the data is that we maximize over the
unknowns consistent with the data.
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Encoding the set of unfalsified models

Recall Dirac’s delta function:
∫
f (t)δ(t)dt = f (0)

Multivariable version:

δ(x) :=
n∏

k=1

δ(x(k)), x =
[
x(1) . . . x(n)

]T ∈ Rn

The joint ranking of model parameters ξ and observations z:

p(ξ, z) := p(ξ)δ(z−M(ξ)),

Gives:

ξ̂(z) = arg max
ξ

p(ξ, z)
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Key issue #1: More unknowns than measurements
Alternative: Average of rankings estimate:

ξ̂A(z) :=

∫
Ξ(z) ξ p(ξ) dξ

pz(z)
=

∫
ξ p(ξ, z) dξ

pz(z)

where pz(z) :=

∫
Ξ(z)

p(ξ) dξ =

∫
p(ξ, z) dξ

Simplification: Use p(ξ|z) := p(ξ, z)/pz(z):

ξ̂A(z) =

∫
ξ p(ξ|z)dξ

That’s it folks - the course is finished!

From here on it can only become more confusing
34



Example 1 cont’d
y(g, ey ) = Φg + ey , ξ =

[
g
ey

]
Introduce ranking:

p(ξ) = N (ey ; 0, λey I ) N (g, 0,Kg )

Stochastic modeling is just a convoluted way to rank

p(ξ) pdf for all unknowns

py (y) pdf for y

Estimates:

ξ̂M(y) := arg max
ξ∈Ξ(y)

N (ey ; 0, λey I ) N (g, 0,Kg ) ⇒

ĝM(y) = arg max
g

N (y − Φg; 0, λey I ) N (g, 0,Kg )︸ ︷︷ ︸
p(g,y)=p(g|y)p(y)

ĝA(y) =

∫
g p(g|y) dg

35



Example 1 cont’d
y(g, ey ) = Φg + ey , ey ∼ N (0, λey I ), g ∼ N (ḡ,Kg )[

g
y

]
∼N

([
ḡ
ḡ

]
,

[
Σgg Σgy

Σyg Σyy

])
where

[
Σgg Σgy

Σyg Σyy

]
=

[
Kg KgΦT

ΦKg ΦKgΦT + λey I

]
From the theory of Gaussian rv:

p(g|y) = N (g;E {g|y} ,Cov {g|y})
E {g|y} = ΣgyΣ−1yy (y − E {y}) + E {g}

Both the maximum of rankings estimate and the average ranking
estimate of g are thus given by

ĝ = ΣgyΣ−1yy (y − ḡ) + ḡ = KgΦT
(

ΦKgΦT + λey I
)−1

(y − ḡ) + ḡ

Special case: y = g + ey (Φ = I ), Kg = λg I

ĝ =
λg

λg + λey
y +

λey
λg + λey

ḡ = trust in data × y + trust in ranking × ḡ
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Estimating functions of unknowns

θ = f (ξ)

Estimates:

θ̂ = f (ξ̂M), θ̂ = f (ξ̂A)

Alternatives:

θ̂M(z) = arg max
θ

p(θ; z)

p(θ; z) :=

∫
Ξ(z)∩{ξ∈Ξ: f (ξ)=θ}

p(ξ)dξ

Nuisance parameters have been marginalized (integrated) out

θ̂A(z) :=

∫
Ξ(y) f (ξ)p(ξ) dξ

py (y)
=

∫
f (ξ)p(ξ|z) dξ = E {f (ξ)|z}

Average over f s that are unfalsified
37
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Choosing the ranking function p(ξ)

Notice that {Ξ(z)}z are disjoint sets (M(ξ) single valued).

For given data z, the ranking function is only used to rank the
parameters in Ξ(z).

Thus we only need to choose the rankings for ξ in this set.

Common approach: Parameterized ranking p = p(ξ;η(z))

How to determine the (hyper-) parameters η(z)?

Let us use the rankings relevant for the data z, p(ξ;η), ξ ∈ Ξ(z),
to compute rankings for η:

i) Average ranking: pz(z;η)

ii) Optimistic ranking: supξ∈Ξ(z) p(ξ;η)

How can we use the rankings of η for estimation of η?

One possibility: η(z) = η̂ML(z) := arg maxη pz(z;η)

Maximize the average of the rankings

39



Example 1 cont’d: Special case
y(g, ey ) = g + ey , y ∈ RN

ey ∼ N (0, λey I ), g ∼ N (ḡ, λg I )[
g
y

]
∼N

([
ḡ
ḡ

]
,

[
λg I λg I
λg I λg I + λey I

])

λg does not directly influence the model y(g, ey )

Such parameters are called hyperparameters

The noise variance λey and ḡ are also hyperparameters but we
will for simplicty assume them to be fixed.

− log p(y;λg ) =
1

2
(y − ḡ)T

(
λg I + λey I

)−1
(y − ḡ) +

1

2
log det

(
λg I + λey I

)
=
‖y − ḡ‖2

λg + λey
+ N log(λg + λey )
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Example 1 cont’d: Special case
y(g, ey ) = g + ey , y ∈ RN

ey ∼ N (0, λey I ), g ∼ N (ḡ, λg I )

− log p(y;λg ) =
‖y − ḡ‖2

λg + λey
+ N log(λg + λey )

Estimate

λ̂g =
1

N
‖y − ḡ‖2 − λey

Spread of y around ḡ, accounting for spread of ey .

ĝ(λ̂g ) =
λ̂g

λ̂g + λey
y =

(
1−

λey
1
N ‖y − ḡ‖2

)
y +

λey
1
N ‖y − ḡ‖2

ḡ

41



Example 1 cont’d: Special case
y(g, ey ) = g + ey , y ∈ RN

ey ∼ N (0, λey I ), g ∼ N (ḡ, λg I )

ML-estimate

λ̂g =
1

N
‖y − ḡ‖2 − λey

ĝ(λ̂g ) =

(
1−

λey
1
N ‖y − ḡ‖2

)
y +

λey
1
N ‖y − ḡ‖2

ḡ

Interpretation:

With g fix, y ∼ N (g, λey I )

Hypothesis Ho : g = ḡ

Under Ho , T := ‖y − ḡ‖2/λey ∼ χ2(N)

Under Ho : E {T} = N ⇒ ĝ(λ̂g ) ≈ ḡ if Ho true

Hypothesis violated (T large) ⇒ Data used

42



Exercise

λey estimated as well ⇒ James-Stein estimator

James-Stein estimator outperforms ML

As does our estimator

Let for simplicity ḡ = 0 so that

ĝ(λ̂g ) =

(
1−

λey
1
N ‖y‖2

)
y

Take 5 min and think if it makes sense that this estimator beats
the ML estimator

ĝML = y

in terms of the MSE
Starting point: y ∼ N (g, λe I )

43



Example 1 cont’d

y(g, ey ) = Φg + ey

Let instead

p(g, ey ) = N (ey ; 0, λey I )δ(g − η)

⇒ g is a singleton η which is to be determined from data.

Ξ(y) = {(ey , g) : y(g, ey ) = y} = (y − Φη,η) singleton

py (y; g) := N (y − Φg; 0, λey I )

ĝM(y) = (ΦTΦ)−1ΦTy

In our special case Φ = I , ĝM(y) = y

44
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Summary

Constructive model z(ξ), parametrized by vector of unknowns
ξ ∈ Ξ

Among the set of unfalsified parameters, the ranking
determines the estimate

Different functions can be used for this, e.g. average and
maximum.

Ranking function can also be parametrized (η)

η can be estimated using the ranking function as well
I Elements of η directly mapped to elements of ξ are usually

referred to as model parameters, cf. g in Example 1.
I Elements of η not directly mapped to elements of ξ are usually

referred to as hyper-parameters, cf. λg in Example 1.

Computations requires integration and optimization

46



Hilbert spaces
Let V be a vector space equipped with an inner product 〈·, ·〉

1. 〈u + v ,w〉 = 〈u,w〉+ 〈v ,w〉
2. 〈λu, v〉 = λ〈u, v〉
3. 〈u, v〉 = 〈v , u〉∗
4. 〈v , v〉 ≥ 0 with equality iff v = 0

Norm: ‖v‖ =
√
〈v , v〉

Hilbert space H: Complete inner product space (Cauchy sequences
converge)
Extend definition to column vectors u and v of elements of H:

〈u, v〉 = M, Mi ,j = 〈ui , vj〉

Example 1: Consider the columns of X ∈ RN×nx and Y ∈ RN×ny

as elements of RN , then

〈X ,Y 〉 = XTY

Example 2: Let x ∈ Rnx and y ∈ Rny be random vectors with
finite second moments. Then

〈x, y〉 = E
{

xyT
}

47



Orthogonal projections

Orthogonality

An element u ∈ H is orthogonal to the subspace S ⊆ H if

〈u, v〉 = 0 ∀v ∈ S.

We write u ⊥ S
Projection theorem

Let u ∈ H be given and let S ⊆ H be a closed subspace to H.
Then there exists a unique v ∈ S such that u − v ⊥ S. The
element v is the unique solution to

min
v∈S
‖u − v‖

v is called the orthogonal projection of u onto S and is denoted uS

It follows that u ∈ H has a unique decomposition

u = uS + uS⊥ , where uS⊥ = u − uS ∈ S⊥ (subspace orthogonal to S)
48



Orthogonal projections: Pythagoras relation

u = uS + uS⊥ ⇒ ‖u‖2 = ‖uS‖2 + ‖uS⊥‖2

In our context often written as

‖u‖2 − ‖uS‖2 = ‖uS⊥‖2 = ‖u − uS‖2

The projection theorem:

‖u − v‖2 ≥ ‖u − uS‖2 = ‖uS⊥‖2 = ‖u‖2 − ‖uS‖2 ≥ 0 ∀v ∈ S

Vector version:

〈u − v , u − v〉 ≥ 〈u − uS , u − uS〉 = 〈u, u〉 − 〈uS , uS〉 ≥ 0 ∀v ∈ S

Matrix inequality

Note: Projection uS has smaller ”norm” than u: 〈u, u〉 − 〈uS , uS〉 ≥ 0
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Orthogonal projections: Finite dimensional subspaces
Problem: Project all elements of the nu-dimensional vector u on
the linear span of the elements of the vector y (solve nu
projections simultaneously)

S = {Ly : L ∈ Rnu×ny }

Optimality condition:
0 = 〈u − Ly , y〉 = 〈u, y〉 − L〈y , y〉
⇒ L∗ = 〈u, y〉〈y , y〉−1

⇒ uS = L∗y = 〈u, y〉〈y , y〉−1y
Projection theorem and Pythagoras: v = Ly ⇒
〈u − v , u − v〉 ≥ 〈u − L∗y , u − L∗y〉 = 〈u, u〉 − 〈u, y〉〈y , y〉−1〈y , u〉
Example: Rows of U ∈ Rnu×N to be projected on the rows of
Y ∈ Rny×N

US = UTY (Y TY )−1Y

0 ≥ (U − US)T (U − US) = UTU − UTY (Y TY )−1Y TU
50



Model simulation
Model

y(t) =
bq−1

1 + fq−1
u(t)

Data
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Model simulation
b and f determined by minimizing

N∑
t=1

(y(t)− ŷ(t, b, f ))2

ŷ(t; b, f ) :=
bq−1

1 + fq−1
u(t)

Computed from

(1 + fq−1)ŷ(t; b, f ) = bq−1u(t)

that is

ŷ(t; b, f ) = −f ŷ(t − 1, b, f ) + bu(t − 1)

ŷ(1; b, f ) = 0

...
...

ŷ(5; b, f ) = −f 3bu(1) + f 2bu(2)− fbu(3) + bu(4)

...
... 52



Model simulation
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Model simulation

(1 + fq−1)ŷ(t) = bq−1u(t)

Very nonlinear optimization problem. Can we simplify?
Our model

(1 + fq−1)y(t) = bq−1u(t)

can be written as

y(t) = −fy(t − 1) + bu(t − 1)

Take ŷ(t) = −fy(t − 1) + bu(t − 1) ⇒ Minimize

N∑
t=1

(y(t)− fy(t − 1)− bu(t − 1))2

Least-squares problem!!!
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Model simulation
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Why different results. Which one to use?
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Closed loop identification
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Closed loop identification

Result:
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Closed loop identification
Open loop identification

Go
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e(t)

y(t)
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Data same characteristics as in closed loop experiment:
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Closed loop identification

Result
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What so peculiar about closed loop identification?
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Closed loop identification

Close up
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Sampling

G (s) =
1

s + 1

Data:
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Sampling

y(nT ) =

∑n
k=1 bkq

−k

1 +
∑n

k=1 fkq
−k u(nT )
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Noise free data, fast sampling. Yet problem???
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Sampling

y(nT ) =

∑n
k=1 bkq

−k

1 +
∑n

k=1 fkq
−k u(nT )
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Measurement errors

G1 G2

u1 u2 x2

e1 e2
y1 y2

Interested in G2 but also G1 (high order) unknown
Large data set (100.000 samples). First 1000 shown
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Measurement errors

Using u2 as input
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Measurement errors

Using y1 as input in the model
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How handle measurement errors on inputs?
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Complex models

System of known order 25
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Complex models

Recall: Highly non-linear optimization problem. Need good inital
values. Let us start at true values.
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Still problems. How to deal with complex systems?
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