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This is an annotated version of the slides.

It may be good to use the slides in parallel to reading the book.



Vector spaces

A set V is a vector space over a field F (for example, the field
of real R or complex numbers C) if, given
I an operation vector addition defined in V , denoted v + w

(where v ,w ∈ V ), and
I an operation scalar multiplication in V , denoted a ∗ v

(where v ∈ V and a ∈ F),
the following ten properties hold for all a, b ∈ F and u, v , and
w ∈ V :
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Vector spaces cont’d

1. v +w belongs to V . (Closure of V under vector addition.)
2. u + (v + w) = (u + v) + w . (Associativity of vector

addition in V .)
3. There exists a neutral element 0 in V , such that for all

elements v in V , v + 0 = v . (Existence of an additive
identity element in V .)

4. For all v in V , there exists an element w in V , such that
v + w = 0. (Existence of additive inverses in V.)

5. v + w = w + v . (Commutativity of vector addition in V .)
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Vector spaces cont’d

6. a ∗ v belongs to V . (Closure of V under scalar
multiplication.)

7. a ∗ (b ∗ v) = (ab) ∗ v . (Associativity of scalar
multiplication in V .)

8. If 1 denotes the multiplicative identity of the field F, then
1 ∗ v = v . (Neutrality of one.)

9. a ∗ (v + w) = a ∗ v + a ∗ w . (Distributivity with respect
to vector addition.)

10. (a + b) ∗ v = a ∗ v + b ∗ v . (Distributivity with respect to
field addition.)
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Vector spaces, cont’d

The concept of a vector space is entirely abstract. To
determine if a set V is a vector space, one only has to specify
the set V , a field F, and define vector addition and scalar
multiplication in V . Then, if V satisfies the above ten
properties, it is a vector space over the field F.

The members of a vector space are called vectors.
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Examples

We will typically encounter vector spaces formed by n-tuples of
scalars from F denoted Fn. (E.g., Rn and Cn.)

Note however that vector spaces are also generated by, e.g.,
(i) polynomials with coefficients from F
(ii) or functions over an interval [a, b] ⊂ R.

Some other examples are:
I C is a vector space over R
I R is a vector space over the rational numbers
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Subspaces and Span

A subspace of a vector space V is a subset of V that is by
itself a vector space.

Examples: {[α 2α]T : α ∈ R} is a subspace of R2.
and, similarly, {α + j2α : α ∈ R} is subspace of the vector
space C over the field R.

Let S be a subset of V then
span(S) = {

∑
i aivi : ai ∈ F, vi ∈ S}. Note that span(S) is

always a subspace even if S may not be.

A set S is said to span V if span(S) = V .
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Sum and Direct sum

The sum of two subspaces S1 and S2 is the subspace:

S1 + S2 = span{S1 ∪ S2} = {x + y : x ∈ S1, y ∈ S2}

If S1 ∩ S2 = {0}, we say that the sum is a direct sum

S1 ⊕ S2

Every z ∈ S1 ⊕ S2 can be uniquely written as z = x + y with
x ∈ S1 and y ∈ S2.
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Basis

I A set of vectors {vi} is linearly dependent if
∑

i aivi = 0
for some ai ∈ F not all zero.

I Otherwise it is linearly independent.

I A subset S of the vector space V is said to span V if
every element of V can be represented as a linear
combination of elements from S .

I A linearly independent set spanning V is a basis for V .
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Basis cont’d

I A basis is non-unique BUT, given a basis, any element in
V can uniquely be represented in terms of that basis.

I All bases for V have the same number of elements and
that number is the dimension of V , denoted by dim(V ).

I The “standard basis” of Rn (or Cn) is {e1, ..., en} where
e1 = [1 0 0...]T etc.
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Isomorphism

Let U and V be vector spaces over F and let f : U → V be an
invertible function such that
f (ax + by) = af (x) + bf (y); ∀x , y ∈ U and a, b ∈ F.

Then f is said to be an isomorphism and U and V are
isomorphic.

If U and V are finite dimensional then they are isomorphic iff
they have the same dimension. This implies that all n-dim real
vector spaces are isomorphic to Rn.
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Example

Consider the vector space V generated by nth order real
polynomials with basis B = {1, x , x2, . . . , xn}.

All elements p ∈ V can be represented uniquely by
p =

∑
i aix

i with ai ∈ R and hence we can associate p with
[p]B = [a0, a1, . . . , an]T .

The mapping p → [p]B is an isomorphism between V and
Rn+1 for any basis B.
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Matrices

A Matrix: “Array of scalars” or “linear transformation between
two vector spaces”

Notation: A ∈ Mm,n(F). Simplifications: Mn,n(·) = Mn(·)
often Mm,n(C) = Mm,n.
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Linear transformation

Let U (n-dim) and V (m-dim) be vector spaces over F.
Further let BU and BV be bases and let the vectors in U and
V be represented by their n- and m-tuples over F.

A linear transformation is a function T : U → V such that
T (a1x1 + a2x2) = a1T (x1) + a2T (x2) for all ai ∈ F and
xi ∈ U.

The linear transformation y = T (x) can be represented by a
matrix A ∈ Mm,n(F) as follows: [y ]BV = A[x ]BU .

Note that the matrix representation depends on the bases!
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Range and null-space

With no loss of generality we will think of A ∈ Mm,n(F) as a
linear transformation from Fn to Fm.

The domain is Fn and the range is
{y ∈ Fm : y = Ax , x ∈ Fn}.

The null-space of A is {x ∈ Fn : Ax = 0}.

It always holds that

n = dim null-space of A + dim range of A
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Matrix multiplication and commutation

Matrix multiplication (in the usual way) of A ∈ Mm,n(F) and
B ∈ Mp,q(F) is only defined if p = n. It corresponds to a
composition of linear transformations.

Note that AB do not in general commute; that is, AB 6= BA.
Special cases exist, but the (scaled) identity matrix is the only
matrix that commutes with any other matrix.
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Transpose and conjugate transpose

If A = [aij ] ∈ Mm,n(F) then the transpose of A,
AT ∈ Mn,m(F), has aij as its (j , i):th element.

The conjugate transpose A∗ of A ∈ Mm,n(C) is defined as
A∗ = ĀT where Ā is the conjugate of A.

Other names for conjugate transpose are: adjoint, Hermitian
adjoint, Hermitian transpose. Often it is also denoted AH .

Note that (AB)T = BTAT .

A matrix is symmetric if AT = A and skew symmetric if
AT = −A.
A matrix is Hermitian if A∗ = A and skew Hermitian if
A∗ = −A.
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Trace

The trace of A = [aij ] ∈ Mm,n(F) is the sum of the main
diagonal elements:

tr(A) =

q∑
i=1

aii ; q = min{m, n}
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Determinants

Let A = [aij ] ∈ Mn(F) and let Aij denote the submatrix
obtained by deleting row i and column j of A.
Laplace expansion:

det(A) =
n∑

j=1

(−1)i+jaij det(Aij) =
n∑

i=1

(−1)i+jaij det(Aij)

det(aij) = aij

det(A) = 0 iff a subset of its rows (or equiv. columns) is
linearly dependent.

Multiplicativity: det(AB) = det(A) det(B)
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Elementary operations

I Interchange of two rows
I Multiplication of a row by a scalar
I Addition of a scalar multiple of one row to another row

Each A ∈ Mm,n(F) can be reduced to its RREF (row reduced
echelon form) by elementary operations: Canonical (unique)
form for matrices (theoretically) useful for determining rank,
solving linear system of equations, computing determinants.
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Rank

rank(A) = is the largest number of linearly independent
columns (or rows) of A.

Linear system of equations:
Note that Ax = b has either 0, 1, or ∞ many solutions x .

If it has solutions, it is called consistent. That happens iff
rank([A b]) = rank(A).
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Rank cont’d

Characterizations of rank: see book 0.4.4
Rank inequalities: see book 0.4.5
Rank equalities: see book 0.4.6.

Note in particular: If A ∈ Mm,n(F) and rank(A) = k then it
can always be written as

A = XBY

where X ∈ Mm,k(F), Y ∈ Mk,n(F) are full rank, and
B ∈ Mk,k(F) is nonsingular.
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Nonsingularity

A linear transformation (or matrix) is said to be nonsingular if
it produces the output 0 only for the input 0, otherwise it is
singular.

If A ∈ Mm,n(F) and m < n then A is always singular.

A ∈ Mn(F) is invertible if there exists a matrix A−1 such that
A−1A = I ; then also AA−1 = I and A−1 is unique.

Equivalently, A ∈ Mn(F) is invertible if the linear
transformation A is one-to-one and the inverse (linear)
transformation exists.
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Inner product

I Consider elements of Fn as column vectors
(Fn = Mn,1(F)).

I Let x , y ∈ Cn. The scalar y∗x ≡ 〈x , y〉 is the (standard or
usual) inner (scalar) product of x and y on Cn (there are
others).

I We say x , y ∈ Cn are orthogonal if 〈x , y〉 = 0.
I The Euclidean length of x ∈ Cn is 〈x , x〉1/2.
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Inner product cont’d

I The Cauchy-Schwartz inequality:
|〈x , y〉| ≤ 〈x , x〉1/2〈y , y〉1/2 with equality iff x and y are
dependent.

I The angle between two vectors is defined by:
cos(θ) = |〈x ,y〉|

〈x ,x〉1/2〈y ,y〉1/2

I Gram-Schmidt orthonormalization – orthonormal bases –
orthogonal complements
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Partitioned matrices

If

A =

[
A11 A12
A21 A22

]
then the Schur complement to A11 is S11 = A22 −A21A

−1
11 A12.

Similarly, S22 = A11 − A12A
−1
22 A21 is the Schur complement of

A22.

One way of writing the inverse of A is

A−1 =

[
S−1

22 −A−1
11 A12S

−1
11

− S−1
11 A21A

−1
11 S−1

11

]
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“Matrix inversion lemma”

or the Sherman-Morrison-Wodbury formula...

If B = A + XRY , then (assuming the inverses exist)

B−1 = A−1 − A−1X (R−1 + YA−1X )−1YA−1
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More topics ...

(Classical) Adjoint of A: Adj(A) (also called adjugate)

Cramér’s rule

Schur complements and determinants

Special matrices :
I Diagonal – triangular etc
I Permutation
I Circulant – Toeplitz – Hankel – Hessenberg – tridiagonal
I Vandermonde

Change of basis
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