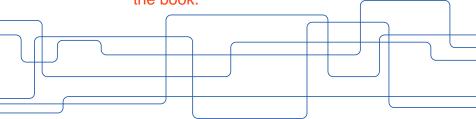


Lecture 1 : Chapter 0 Review and Miscellanea

This is an annotated version of the slides.

It may be good to use the slides in parallel to reading the book.



Vector spaces

A set V is a vector space over a field F (for example, the field of real R or complex numbers C) if, given

- ▶ an operation vector addition defined in V, denoted v + w (where $v, w \in V$), and
- ▶ an operation scalar multiplication in V, denoted a * v (where $v \in V$ and $a \in F$),

the following ten properties hold for all $a, b \in F$ and u, v, and $w \in V$:

Vector spaces cont'd

- 1. v + w belongs to V. (Closure of V under vector addition.)
- 2. u + (v + w) = (u + v) + w. (Associativity of vector addition in V.)
- 3. There exists a neutral element 0 in V, such that for all elements v in V, v+0=v. (Existence of an additive identity element in V.)
- **4.** For all v in V, there exists an element w in V, such that v + w = 0. (Existence of additive inverses in V.)
- 5. v + w = w + v. (Commutativity of vector addition in V.)

Vector spaces cont'd

- a * v belongs to V. (Closure of V under scalar multiplication.)
- 7. a*(b*v) = (ab)*v. (Associativity of scalar multiplication in V.)
- 8. If 1 denotes the multiplicative identity of the field \mathbf{F} , then 1 * v = v. (Neutrality of one.)
- 9. a*(v+w) = a*v + a*w. (Distributivity with respect to vector addition.)
- 10. (a + b) * v = a * v + b * v. (Distributivity with respect to field addition.)

Vector spaces, cont'd

The concept of a vector space is entirely abstract. To determine if a set V is a vector space, one only has to specify the set V, a field \mathbf{F} , and define vector addition and scalar multiplication in V. Then, if V satisfies the above ten properties, it is a vector space over the field \mathbf{F} .

The members of a vector space are called vectors.

Examples

We will typically encounter vector spaces formed by n-tuples of scalars from \mathbf{F} denoted \mathbf{F}^n . (E.g., \mathbf{R}^n and \mathbf{C}^n .)

Note however that vector spaces are also generated by, e.g.,

- (i) polynomials with coefficients from **F**
- (ii) or functions over an interval $[a, b] \subset R$.

Some other examples are:

- C is a vector space over R
- R is a vector space over the rational numbers

Subspaces and Span

A subspace of a vector space V is a subset of V that is by itself a vector space.

The may verify that this space.

Examples: $\{[\alpha \ 2\alpha]^T : \alpha \in \mathbf{R}\}$ is a subspace of \mathbf{R}^2 . (It's a line) and, similarly, $\{\alpha + j2\alpha : \alpha \in \mathbf{R}\}$ is subspace of the vector space C over the field R.

Let S be a subset of V then $\operatorname{span}(S) = \{\sum_i a_i v_i : a_i \in \mathbf{F}, v_i \in S\}$. Note that $\operatorname{span}(S)$ is always a subspace even if S may not be.

A set S is said to span V if span(S) = V.

Sum and Direct sum

The sum of two subspaces S_1 and S_2 is the subspace:

$$S_1+S_2=\text{span}\{S_1\cup S_2\}=\{x+y\ :\ x\in S_1,\ y\in S_2\}$$

If
$$S_1 \cap S_2 = \{0\}$$
, we say that the sum is a direct sum $S_1 \oplus S_2$

Every $z \in S_1 \oplus S_2$ can be *uniquely* written as z = x + y with $x \in S_1$ and $y \in S_2$.

▶ A set of vectors $\{v_i\}$ is *linearly dependent* if $\sum_i a_i v_i = 0$ for some $a_i \in \mathbf{F}$ not all zero.

- A set of vectors $\{v_i\}$ is *linearly dependent* if $\sum_i a_i v_i = 0$ for some $a_i \in \mathbf{F}$ not all zero.
- ▶ Otherwise it is *linearly independent*.

- A set of vectors $\{v_i\}$ is linearly dependent if $\sum_i a_i v_i = 0$ for some $a_i \in \mathbf{F}$ not all zero.
- Otherwise it is linearly independent.
- A subset S of the vector space V is said to span V if every element of V can be represented as a linear combination of elements from S.

- A set of vectors $\{v_i\}$ is linearly dependent if $\sum_i a_i v_i = 0$ for some $a_i \in \mathbf{F}$ not all zero.
- Otherwise it is linearly independent.
- A subset S of the vector space V is said to span V if every element of V can be represented as a linear combination of elements from S.
- ► A linearly independent set spanning V is a basis for V.

Basis cont'd

Mere hoices

A basis is non-unique BUT, given a basis, any element in V can uniquely be represented in terms of that basis.

Basis cont'd

- ► A basis is non-unique BUT, given a basis, any element in *V* can *uniquely* be represented in terms of that basis.
- All bases for V have the <u>same number of elements</u> and that number is the dimension of V, denoted by $\dim(V)$.

Basis cont'd

- ► A basis is non-unique BUT, given a basis, any element in *V* can *uniquely* be represented in terms of that basis.
- ► All bases for V have the same number of elements and that number is the dimension of V, denoted by dim(V).
- The "standard basis" of \mathbb{R}^n (or \mathbb{C}^n) is $\{e_1, ..., e_n\}$ where $e_1 = \begin{bmatrix} 1 & 0 & 0 ... \end{bmatrix}^T$ etc.

Isomorphism

Let U and V be vector spaces over F and let $f:U\to V$ be an <u>invertible</u> function such that

$$f(ax + by) = af(x) + bf(y); \ \forall x, y \in U \text{ and } a, b \in F.$$

Then f is said to be an isomorphism and U and V are isomorphic. = "same structure"

If U and V are finite dimensional then they are isomorphic iff they have the same dimension. This implies that all n-dim real vector spaces are isomorphic to \mathbb{R}^n .

Example

Consider the vector space V generated by nth order real polynomials with basis $\mathcal{B} = \{1, x, x^2, \dots, x^n\}$.

All elements $p \in V$ can be represented uniquely by $p = \sum_i a_i x^i$ with $a_i \in \mathbb{R}$ and hence we can associate p with $[p]_{\mathcal{B}} = [a_0, a_1, \dots, a_n]^T$. The mapping $p \to [p]_{\mathcal{B}}$ is an isomorphism between V and

The mapping $p \to [p]_{\mathcal{B}}$ is an isomorphism between V and \mathbb{R}^{n+1} for any basis \mathcal{B} .


```
Matrices early there are A Matrix: "Array of scalars" or "linear transformation between
```

A Matrix: "Array of scalars" or "linear transformation between two vector spaces"

a matrix with m rows and m columns two vector spaces"

Notation: $A \in M_{m,n}(\mathbf{F})$. Simplifications: $M_{n,n}(\cdot) = M_n(\cdot)$ often $M_{m,n}(\mathbf{C}) = M_{m,n}$.

Square

Tell two field m matrices

is omitted it is C

Linear transformation

Let U (n-dim) and V (m-dim) be vector spaces over \mathbf{F} . Further let \mathcal{B}_U and \mathcal{B}_V be bases and let the vectors in U and V be represented by their n- and m-tuples over \mathbf{F} .

A linear transformation is a function $T: U \to V$ such that $T(a_1x_1 + a_2x_2) = a_1T(x_1) + a_2T(x_2)$ for all $a_i \in F$ and $x_i \in U$.

The linear transformation y = T(x) can be represented by a matrix $A \in M_{m,n}(\mathbf{F})$ as follows: $[y]_{\mathcal{B}_V} = A[x]_{\mathcal{B}_U}$.

Note that the matrix representation depends on the bases!

Same transformation but different matrices (but they will share certain properties!?)

Range and null-space

With no loss of generality we will think of $A \in M_{m,n}(F)$ as a linear transformation from F^n to F^m .

The domain is
$$\mathbf{F}^n$$
 and the range is $\{y \in \mathbf{F}^m : y = Ax, \ x \in \mathbf{F}^n\}$. Subspace of \mathbf{F}^m

The null-space of A is
$$\{x \in \mathbf{F}^n : Ax = 0\}$$
. Subspace of \mathbf{F}^n

It always holds that

 $n = \dim \text{ null-space of } A + \dim \text{ range of } A$

Matrix multiplication and commutation

Matrix multiplication (in the usual way) of $A \in M_{m,n}(\mathbf{F})$ and $B \in M_{p,q}(\mathbf{F})$ is only defined if p = n. It corresponds to a composition of linear transformations.

Note that AB do not in general commute; that is, $AB \neq BA$. Special cases exist, but the (scaled) identity matrix is the only matrix that commutes with any other matrix.

diagonal matrices commute

Notice the notation

Transpose and conjugate transpose

If $A = [a_{ij}] \in M_{m,n}(F)$ then the *transpose* of A, $A \in M_{n,m}(F)$, has a_{ij} as its (j,i):th element.

The *conjugate transpose* \underline{A}^* of $A \in M_{m,n}(\mathbf{C})$ is defined as $A^* = \bar{A}^T$ where \bar{A} is the conjugate of A.

Other names for conjugate transpose are: adjoint, Hermitian adjoint, Hermitian transpose. Often it is also denoted \underline{A}^H .

Note that $(AB)^T = B^T A^T$.

A matrix is symmetric if $A^T = A$ and skew symmetric if $A^T = -A$.

A matrix is Hermitian if $A^* = A$ and skew Hermitian if $A^* = -A$.

Trace

The trace of $A = [a_{ij}] \in M_{m,n}(\mathbf{F})$ is the sum of the main diagonal elements:

$$tr(A) = \sum_{i=1}^{q} a_{ii}; \quad q = \min\{m, n\}$$

note that A may be reetangular but it is most commonly used when A is square.

tr() and det(.) are two common scalar valued functions of a matrix

Recursively defined in terms of dimension

Let $A' = [a_{ij}] \in M_n(F)$ and let A_{ij} denote the submatrix obtained by deleting row i and column j of A. Laplace expansion:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

$$\det(a_{ij}) = a_{ij}$$

 $\det(A) = 0 \text{ iff a subset of its rows (or equiv. columns) is linearly dependent.}$ A is simple A $Multiplicativity: \det(AB) = \det(A) \det(B)$ A is simple Afor square

Elementary operations

- ► Interchange of two rows (or columns)
- Multiplication of a row by a scalar
- Addition of a scalar multiple of one row to another row

Each $A \in M_{m,n}(\mathbf{F})$ can be reduced to its RREF (row reduced echelon form) by elementary operations: Canonical (unique) form for matrices (theoretically) useful for determining rank, solving linear system of equations, computing determinants.

```
not numerically robust!
```


Rank

```
rank(A) = is the largest number of linearly independent columns (or rows) of A.

The rank (A) = rank (A) = clim (range (A))
```

Linear system of equations:

Note that Ax = b has either 0, 1, or ∞ many solutions x.

If it has solutions, it is called *consistent*. That happens iff $rank([A\ b]) = rank(A)$.

```
since b can be written
as a linear combination
of the columns of A
(b=Ax)
```


Rank cont'd

Characterizations of rank: see book 0.4.4

Rank inequalities: see book 0.4.5 Rank equalities: see book 0.4.6.

Note in particular: If $A \in M_{m,n}(\mathbf{F})$ and rank(A) = k then it can always be written as

where $X \in M_{m,k}(F)$, $Y \in M_{k,n}(F)$ are full rank, and $B \in M_{k+1}(F)$ is zero. $B \in M_{k,k}(\mathbf{F})$ is nonsingular.

We will encounter some matrix factorization algorithms later.

Nonsingularity

A linear transformation (or matrix) is said to be <u>nonsingular</u> if it produces the output 0 only for the input 0, otherwise it is <u>singular</u>.

If
$$A \in M_{m,n}(\mathsf{F})$$
 and $m < n$ then A is always singular.

 $A \in M_n(\mathsf{F})$ is *invertible* if there exists a matrix A^{-1} such that $A^{-1}A = I$; then also $AA^{-1} = I$ and A^{-1} is unique.

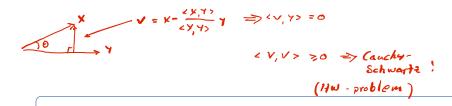
Equivalently, $A \in M_n(F)$ is *invertible* if the linear transformation A is one-to-one and the inverse (linear) transformation exists.

Inner product

- Consider elements of F^n as column vectors $(F^n = M_{n,1}(F))$.
- Enclidean
- Let $x, y \in \mathbb{C}^n$. The scalar $y^*x \equiv \langle x, y \rangle$ is the (standard or usual) inner (scalar) product of x and y on \mathbb{C}^n (there are others).
- ▶ We say $x, y \in \mathbb{C}^n$ are orthogonal if $\langle x, y \rangle = 0$.
- ▶ The Euclidean length of $x \in \mathbb{C}^n$ is $\langle x, x \rangle^{1/2}$.

Inner product cont'd

- The Cauchy-Schwartz inequality: $|\langle x,y\rangle| \leq \langle x,x\rangle^{1/2} \langle y,y\rangle^{1/2}$ with equality iff x and y are dependent.
- The angle between two vectors is defined by: $\cos(\theta) = \frac{|\langle x,y \rangle|}{\langle x,x \rangle^{1/2} \langle y,y \rangle^{1/2}}$
- Gram-Schmidt orthonormalization orthonormal bases orthogonal complements



Partitioned matrices

lf

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

then the *Schur complement* to A_{11} is $S_{11} = A_{22} - A_{21}A_{11}^{-1}A_{12}$.

Similarly, $S_{22} = A_{11} - A_{12}A_{22}^{-1}A_{21}$ is the Schur complement of A_{22} .

One way of writing the inverse of A is

$$A^{-1} = \begin{bmatrix} S_{22}^{-1} & -A_{11}^{-1}A_{12}S_{11}^{-1} \\ -S_{11}^{-1}A_{21}A_{11}^{-1} & S_{11}^{-1} \end{bmatrix}$$

"Matrix inversion lemma"

or the Sherman-Morrison-Wodbury formula...

If
$$B = A + XRY$$
, then (assuming the inverses exist)
$$B^{-1} = A^{-1} - A^{-1}X(R^{-1} + YA^{-1}X)^{-1}YA^{-1}$$
One proof: we use the facts that $(PQ)^{-1} = G^{-1}P^{-1}$ and $(I+uV)^{-1}U = U(I+vU)^{-1}$ we have
$$A^{-1} - A^{-1}X(R^{-1}+YA^{-1}X)^{-1}YA^{-1} = A^{-1}-A^{-1}XR(R^{-1}+YA^{-1}X)^{-1}YA^{-1}$$

$$= A^{-1} - A^{-1}XRY(I+A^{-1}XRY)^{-1}A^{-1}$$

$$= [(I+A^{-1}XRY) - A^{-1}XRY]^{-1}(I+A^{-1}XRY)^{-1}A^{-1} = (I+A^{-1}XRY)A^{-1}$$

$$= (A+XRY)^{-1}$$

$$Q \in D$$

More topics ...

(Classical) Adjoint of A: Adj(A) (also called adjugate)

Cramér's rule _ solve Ax= b by determinants

Schur complements and determinants

Special matrices:

- Diagonal triangular etc
- Permutation
- ► Circulant Toeplitz Hankel Hessenberg tridiagonal
- ► Vandermonde -> appears in interpolation and Change of basis spectral analysis (FFT)