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Vector spaces

A set V is a vector space over a field F (for example, the field
of real R or complex numbers C) if, given
» an operation vector addition defined in V/, denoted v + w
(where v,w € V), and
» an operation scalar multiplication in V, denoted a * v
(where v € V and a € F),
the following ten properties hold for all a, b € F and u, v, and
weV:
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Vector spaces cont’d

1. v+ w belongs to V. (Closure of V' under vector addition.)

2. u+ (v+w) = (u—+v)+ w. (Associativity of vector
addition in V.)

3. There exists a neutral element 0 in V/, such that for all
elements v in V, v + 0 = v. (Existence of an additive
identity element in V.)

4. For all v in V, there exists an element w in V, such that
v + w = 0. (Existence of additive inverses in V.)

5. v+ w = w+ v. (Commutativity of vector addition in V)
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Vector spaces cont’d

6.

7.

10.

ax v belongs to V. (Closure of V under scalar
multiplication.)

ax (bx*v)=(ab) * v. (Associativity of scalar
multiplication in V.)

If 1 denotes the multiplicative identity of the field F, then
1% v = v. (Neutrality of one.)

. ax(v+w)=axv+axw. (Distributivity with respect

to vector addition.)
(a+ b) * v =ax* v+ bxv. (Distributivity with respect to
field addition.)

4/28



Vector spaces, cont’'d

The concept of a vector space is entirely abstract. To
determine if a set V is a vector space, one only has to specify
the set V, a field F, and define vector addition and scalar
multiplication in V. Then, if V satisfies the above ten
properties, it is a vector space over the field F.

The members of a vector space are called vectors.
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Examples

We will typically encounter vector spaces formed by n-tuples of

scalars from F denoted F". (E.g., R” and C".)

Note however that vector spaces are also generated by, e.g.,
(i) polynomials with coefficients from F
(ii) or functions over an interval [a, b] C R.

Some other examples are:
» C is a vector space over R
> R is a vector space over the rational numbers
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Subspaces and Span

A subspace of a vector space V is a subset of V that is by
itself a vector space. verty Hiak this

:‘:7 vechrr $78E
G

Examples: {[a 2a]" : a € R} is a subspace of RZ.(1#% « line )
and, similarly, {a + j2a : & € R} is subspace of the vector
space C over the field R.

. e Qe in bhe tomplex plane
poin¥s ov & fine

- 4% line
Let S be a subset of V then -t
span(S) ={>_;ajvi : ai € F,v; € S}. Note that span(S5) is
always a subspace even if S may not be.

A set S is said to span V if span(S) = V.
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Sum and Direct sum

The sum of two subspaces S; and S is the subspace:

Si+S=span{S1US}={x+y : x€ 5, ye S}

If 51N Sz = {0}, we say that the sum is a direct sum

S1 @‘{2_/_’

Every z € 51 @ S, can be uniquely written as z = x + y with
x€ Syand y € So.

E){_ s.,_ o ?lanc w 613 aonel s‘ vbs nor mef
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Basis

» A set of vectors {v;} is linearly dependent if ). ajv; =0
for some a; € F not all zero.
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» A set of vectors {v;} is linearly dependent if ). ajv; =0
for some a; € F not all zero.

» Otherwise it is linearly independent.

> A subset S of the vector space V is said to span V if
every element of V can be represented as a linear
combination of elements from S.
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Basis

» A set of vectors {v;} is linearly dependent if ). ajv; =0
for some a; € F not all zero.

» Otherwise it is linearly independent.

> A subset S of the vector space V is said to span V if
every element of V can be represented as a linear
combination of elements from S.

» A linearly independent set spanning V is a basis for V.
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. , (
Basis cont’d e oo™
sz e
» A basis is non-unique BUT, given a basis, any element in
V' can uniquely be represented in terms of that basis.
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Basis cont’d

» A basis is non-unique BUT, given a basis, any element in
V' can uniquely be represented in terms of that basis.

» All bases for V have the same number of elements and
that number is the dimension of V/, denoted by dim(V).
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Basis cont’d

» A basis is non-unique BUT, given a basis, any element in
V' can uniquely be represented in terms of that basis.

» All bases for V have the same number of elements and
that number is the dimension of V/, denoted by dim(V).

» The “standard basis” of R” (or C") is {ey, ..., en} where

e =[100.]Tetc. T
over L over €

What s dim € over 2
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Isomorphism

Let U and V be vector spaces over F and let f : U — V be an
invertible function such that
f(ax + by) :Laf(x) + bf(y); Vx,y € Uand a,b € F.

\\wear
Then f is said to be an isomorphism and U and V are
isomorphic. = “geme shruckire . \'2 M‘""g
[ Y

oM
If U and V are finite dimensional then they are isomorphic@
they have the same dimension. This implies that all n-dim real
vector spaces are isomorphic to R".
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Example

Consider the vector space V generated by nth order real
polynomials with basis B = {1, x,x2,...,x"}.

All elements p € V can be represented uniquely by
= >, aix’ with a; € R and hence we can associate p with
[p]B - [307 ai, .. an]T
T e baS!S B
The mapping p — [p]s is an isomorphism between V and
R+ for any basis B.
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be uié (&&"o
Matrices ¢/ - the” -
¢ oS
A Matrix: “Array of scalars” or\('linear transformation between
two vector spaces” mahax st v @ ot n columng

‘/a. Dotk eleonctbs browm the eield r
Notation: A € My, o(F). Simplifications: M, 5(-) = Mu(-)
often My, o(C) = My, 1.
7 ’ Squere
tt“ 1*\‘ e'seu wmebrice s
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Linear transformation

Let U (n-dim) and V (m-dim) be vector spaces over F.
Further let By and By be bases and let the vectors in U and
V be represented by their n- and m-tuples over F.

A linear transformation is a function T : U — V such that
T(a1x1 + azx2) = a1 T(x1) + a2 T(x2) for all a; € F and

X,'EU.
~

The linear transformation y = T(x) can be represented by a
matrix A € Mp, o(F) as follows: [y]|z, = A[x]s,-

Note that the matrix representation depends on the bases!
Do.wme Preaus Cocvmetion ur ditferewt wmaabrices 2\
o !

-

(b-.\- EM\( well  shewre Cer*%\"b\ Wpt\e‘s *
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Range and null-space

With no loss of generality we will think of A € My, ,(F) as a
linear transformation from F" to F™. .
av h[wa‘j"l
The domain is F" and the range is
{y € F™: y = AX, X € Fn} 3&‘03?&(:@ P ?M

The null-space of Ais {x € F" : Ax = 0}. Sebspace oy T
o lerael”

It always holds that

n = dim null-space of A+ dim range of A
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Matrix multiplication and commutation

Matrix multiplication (in the usual way) of A € M, ,(F) and
B € M, 4(F) is only defined if p = n. It corresponds to a
composition of linear transformations.

Note that AB do not in general commute; that is, AB # BA.
Special cases exist, but the (scaled) identity matrix is the only
matrix that chmutes with any other matrix.

Adie3onel wbrices commube
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Vokiee Xwe aotabion

Transpose/and conjugate transpose
If(A = [aj]] € Mm n(F) then the transpose of A,
A" €M, m(F), has aj as its (j, /):th element.

The conjugate tr‘znsposeﬁ\_* of A€ Mp, 5(C) is defined as
A* = AT where A is the conjugate of A.

Other names for conjugate transpose are: adjoint, Hermitian
adjoint, Hermitian transpose. Often it is also denoted A"

Note that (AB)T = BTAT.

A matrix is symmetric if AT = A and skew symmetric if
AT = —A

A matrix is Hermitian if A* = A and skew Hermitian if
A* = —A.
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Trace

The trace of A = [aj] € M, »(F) is the sum of the main
diagonal elements:

q
tr(A) = Za;,-; g = min{m, n}
i=1

no‘e f‘kal‘ A ey be r‘eaf&s«sﬂdu‘&f
bal (t (&5 wmost comumonrly wsed wNeu
A f.s Stg‘.uore,

‘\"() M(\ d@"’('\ cre ¢ we c°...“,.-.“_.,,‘
sceler velwed Bielbions oF o weebeix
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¢
/ 69‘:::{“ (
. Loty detined  Jn ternes
Determinants M“:E“li:usi‘n

Let A = [ajj] € M,(F) and let Aj; denote the submatrix
obtained by deleting row i and column j of A.
Laplace expansion:

n —_— n
T , .
det(A) = 3 (~1) Fay det(Az) = > (~1) "2 det(Ay)
= e:pc.us(m .\“izl ;,‘?_ n berwg
det(ajj) = aj teome of cous ¢ of column
;4‘5 -’J-CA‘QF..
by det(A) = 0 iff a subset of its rows (or equiv. columns) is
Vt( linearly dependent. A s sweguler!
Q@ Multiplicativity: det(AB) = det(A)det(B) (.. squeve

mebrice s
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Elementary operations

as)

> Interchange of two rows (or colaw

» Multiplication of a row by a scalar

> Addition of a scalar multiple of one row to another row
Each A € M, n(F) can be reduced to its RREF (row reduced
echelon form) by elementary operations: Canonical (unique)
form for matrices (theoretically) useful for determining rank,
soylvﬁg_@rfsy_s:cg_m of eqrations, computing determinants.

ot nuwmertcally cobush ‘
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Rank

rank(A) = is the largest number of linearly independent
columns (or rows) of A. _ .

rewle AL = f&uk(A') 2 c‘\n(rwc“@(l\\)
Linear system of equations:
Note that Ax = b has either 0, 1, or co many solutions x.

If it has solutions, it is called consistent. That happens iff

rank([A b]) = rank(A). La#’luetu.;;’e“‘
—_—— e e - I -conSd

Swnce b ceewe e werrtey
as o }L‘wsec«f Combine bicn

Oe He colwnsg og A
( bz AvY)
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Rank cont’d

Characterizations of rank: see book 0.4.4
Rank inequalities: see book 0.4.5
Rank equalities: see book 0.4.6.

Note in particular: If A € My, ,(F) and rank(A) = k then it
can always be written as

A— XBY eor 5|'MP‘Y & |

de= 1~
where X € M, «(F), Y € Mk,,,?F) are full rank, and
B € M «(F) is nonsingular.

A
We wvill ewncormber gowme wae o

Qqc\‘wf\"}_-q,h.an e\ 19!&'“"#1 s \oker N

22 /28


Magnuss iPad

Magnuss iPad

Magnuss iPad

Magnuss iPad

Magnuss iPad

Magnuss iPad

Magnuss iPad


Nonsingularity

A linear transformation (or matrix) is said to be nonsingular if
it produces the output 0 only for the input 0, otherwise it is
singular. PN RYO nul‘.G,,P:ce_ -0

If A€ Mp n(F) and m < n then A is always singular.

AxsO Lor ome x 0 "’““’""‘.“"f’e
— bases

A € M,(F) is invertible if there exists a matrix A~! such that
A1A = I; then also AA~! =/ and A1 is unique.

Equivalently, A € M,(F) is invertible if the linear
transformation A is one-to-one and the inverse (linear)
transformation exists.
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Inner product

>

>

. . G 4o
Consider elements of F" as column vectors EMP““’

(F" = Mp1(F)). Y

Let x,y € C". The scalar y*x = (x, y) is the (standard or
usual) inner (scalar) product of x and y on C”" (there are
others).

We say x,y € C" are orthogonal if (x,y) = 0.

The Euclidean length of x € C™ is (x, x)'/2.

—_——

NOC
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Inner product cont’d

» The Cauchy-Schwartz inequality:
[(x, ¥)| < (x, x)Y2(y, y)1/? with equality iff x and y are

dependent.
» The angle between two vectors is defined by:
cos(f) = [(x: )]
(xx)22(y.y)1/2

» Gram-Schmidt orthonormalization — orthonormal bases —
orthogonal complements

vex- 2y vy o

X
/ <)l"-[>
/\‘/__ZL_, )
< VI\/> z0 = (4“4"-"‘

Schwartz
(/-I«J - prcbl&m )
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Partitioned matrices

If

A A
A=
[A21 A22}

then the Schur complement to A1y is S11 = Axp — AglAfllAlg.

Similarly, Sy = A11 — A12A§21A21 is the Schur complement of
A22.

One way of writing the inverse of A is
5251 —AfllAlzsﬂl

Al = i 1 1
— Sfl A21AI1 5;1
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“Matrix inversion lemma”

or the Sherman-Morrison-Wodbury formula...

If B= A+ XRY, then (assuming the inverses exist)

B l=A1_-AIX(R1+ YA 1lX)lya!

One prool : We use tue Pacts that PQ) =GP aud
(j_’(»ul/)_il T UTvUT we hewve

R ARy AT A A"-A-kﬂ(f‘VA”XZ)h"’*”

,‘J‘:‘;)Q,m A At ey (e axay) AT
[(u AxY) - A"xﬂ:/J (_uA;(fZV) a = (L4 A xay)A’
(A foY) aco.
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e~ /—\c‘J(A)
A TR
(Classical) Adjoint of A: Adj(A) (also called adjugate)

Cramér's rule . gelve /Ax<9 by delerminants

More topics ...

Schur complements and determinants

Special matrices :
» Diagonal — triangular etc
» Permutation
» Circulant — Toeplitz — Hankel — Hessenberg — tridiagonal
» Vandermonde s qppears (a inderpolebion and
Change of basis spechrl cnalysns  (FF9)
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