Multimedia communication Delay and loss control

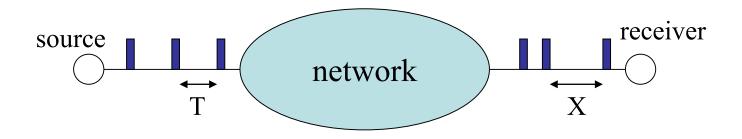
• Lecture material:

- E. de Souza e Silva, et al., "Performance Issues of Multimedia Applications," Performance 2002, tutorial
- Reading for next lecture:
 - N. Laoutaris, I. Stavrakakis, "Adaptive playout strategies for packet video receivers with finite buffer capacity," IEEE ICC 2001.
 - X. Yu, J.W. Modestino, X. Tian, "The accuracy of Gilbert models in predicting packet-loss statistics for a single multiplexer network model," IEEE Infocom, 2005

Multimedia communication

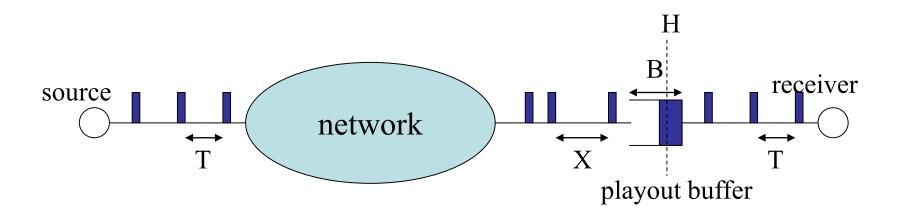
- Multimedia communication classes and requirements
- Delay control
 - Playout buffer control
- Loss control
 - Forward Error Correction (FEC)

Multimedia transmission


- Different cases of media distribution according to
 - availability of content
 - delay requirements
- File download
 - content is available at servers or at users for P2P applications
 - download then playback
 - no delay limitations
- Video on Demand offline streaming
 - content is available at the servers or at the users
 - playback while downloading (offline streaming)
 - some delay limitation
- Live streaming online streaming
 - content is generated during playback
 - playback delay have to be minimized

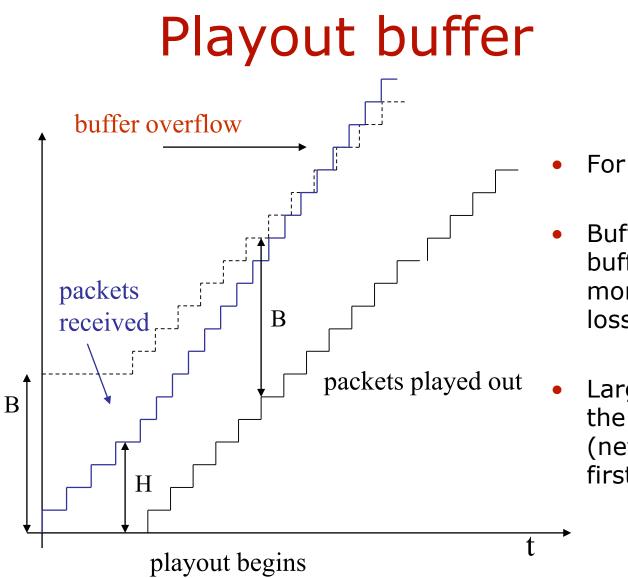
Streaming

- Delay-jitter control
 - to compensate delay variations (jitter) due to varying congestion at the network nodes
 - method: playout buffer at the receiver, playout delay control
- Loss control
 - to deal with packet losses, when retransmission is too slow
 - method: increase redundancy at the source, forward error correction
- All control methods have to consider the end-to-end delay limits
- In the case of live streaming the traffic characteristics is not known a-priori, this makes jitter and loss control challenging
- In general it is hard to find appropriate end-to-end delay and loss models.

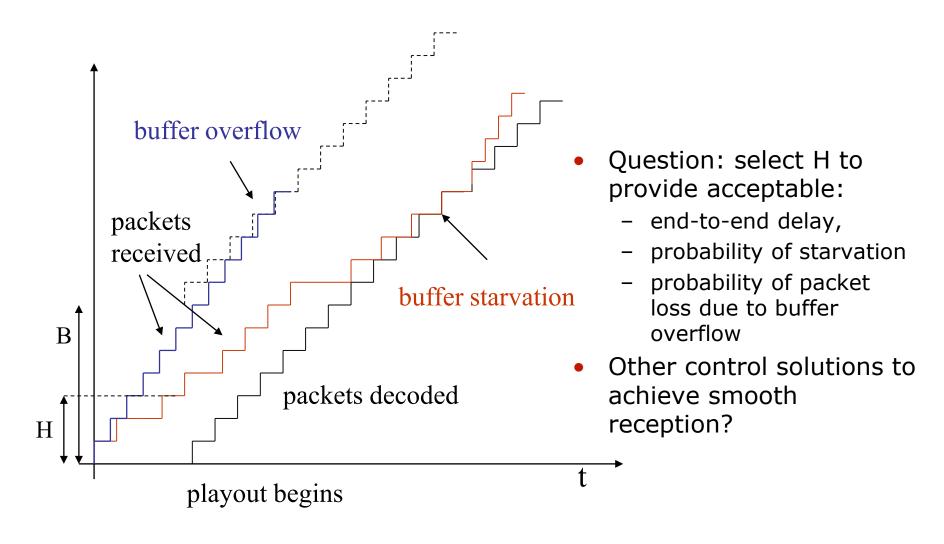

Delay-jitter control

- What is jitter:
 - T packet generation interval (constant or random v.)
 - X interarrival time at the receiver (random v.)
 - Jitter: J=X-T (random variable)

Playout buffer


- Playout buffer to compensate for jitter
 - at the receiver side
 - to store received, but not decoded packets
 - decoding rate determined by the coding scheme
 - buffer size B
 - threshold H, when decoding starts

Playout buffer - starvation



- B: playout buffer size
- H: playout threshold
- Buffer starvation: the buffer is empty, there is no available content to play out
- Jitter, increased delay between two samples
- H should be increased

- For larger H:
- Buffer overflow:
 buffer can not store
 more packets, packet
 loss
- Large H also increases the end-to-end delay (network delay of the first packet + H)

Playout buffer

Adaptive playout control ideas

- H should depend on the jitter level of the incoming stream
 - Zero jitter means H=0!
- For streams with silent periods (e.g., voice)
 - Reset H after each silent period
 - Based on previous experiences
 - The length of silent periods might change, but it is not that disturbing.
- For all flows:
 - reset H when starvation happens
 - starvation periods get longer, but their probability decreases
- For all flows:
 - decrease playout rate if queue length is below H
 - e.g., video: keep the frames on display for a longer time (frame freezes)

Playout control: an example

- N. Laoutaris, I. Stavrakakis, "Adaptive playout strategies for packet video receivers with finite buffer capacity," IEEE ICC 2001.
- Here basic ideas, then home reading:
 - ideally: constant playout time
 - increase playout time if queue length is below TH
- Modeling:
 - system state: number of frames in buffer (i)
 - frame arrival: Poisson(μ) (note, this models the effect of the varying end to end delay at the receiver)
 - service process (playout): deterministic, state dependent (B(i), $\mu(i)$)
 - Markov chain:
 - model the system at frame departure instances
 - discrete time Markov chain
 - Performance measures: considering both delayed playout and packet loss due to buffer overflow

Playout buffer – discrete time MC

$$\mu(i) \triangleq \begin{cases} \min(\frac{\mu \cdot i}{\text{TH}}, \mu) & \text{if } 1 \le i \le N \\ \frac{\mu}{TH} & \text{if } i = 0 \end{cases}$$

$$E(i) \triangleq \begin{cases} \max(\frac{\mathrm{TH}}{\mu \cdot i}, \frac{1}{\mu}) & \text{if } 1 \leq i \leq N \\ \frac{\mathrm{TH}}{\mu} & \text{if } i = 0 \end{cases}$$

$$p_{i,j} = \begin{cases} P\{j, B(0)\} & i = 0, 0 \le j < N \\ 1 - \sum_{k=0}^{N-1} P\{k, B(0)\} & i = 0, j = N \\ P\{j - i + 1, B(i)\} & 0 < i < N, i \le j < N \\ 1 - \sum_{k=0}^{N-i} P\{k, B(i)\} & 0 < i \le N, j = N \\ P\{0, B(i)\} & 0 < i \le N, j = i - 1 \\ 0 & \text{elsewhere} \end{cases}$$

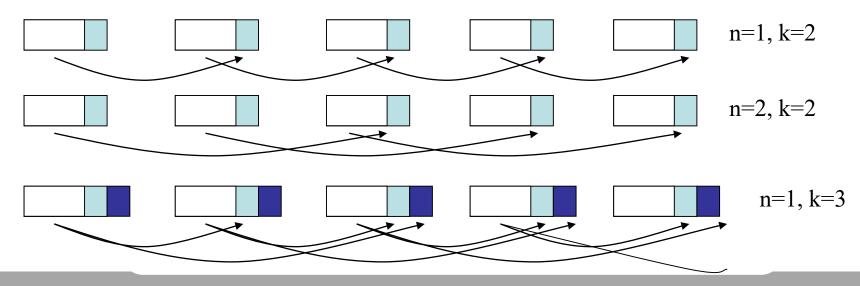
 $P\{m,t\}$: Poisson(m arrivals in interval t)

Playout control model

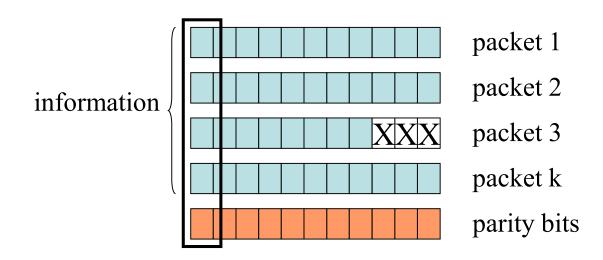
- Consider: arrival rate: 25 frames per second, TH=4
- Draw the function B(i)
- Assume that the buffer is empty after playout.
 - What is the expected time until the start of a new frame?
 - For how long will it be played out?
- Assume there are 2 frames in the buffer after a playout.
 - What is the playout time of the next frame?
 - What is the probability that there will be exactly 2 packets in the buffer after this playout?
 - What is the probability that after playing out the two frames the buffer will be empty?

Loss control for multimedia

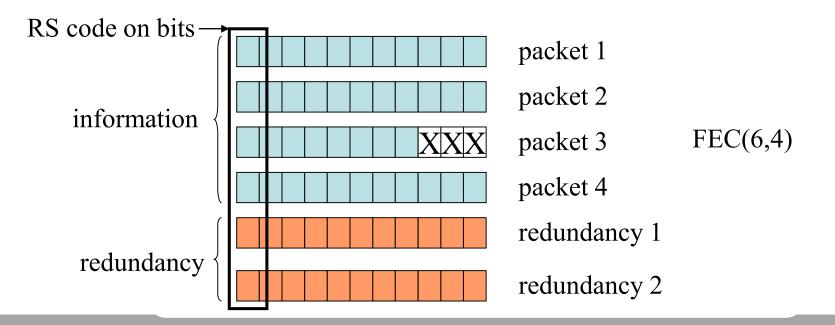
- Loss control for elastic flows is often based on retransmission
 - This may not work for streaming applications due the the playout delay limit
 - At the same time some loss is tolerated by the application
- Solutions with lower delay based on information redundancy
 - Application layer, utilizing the characteristics of the media content
 - Network layer multimedia specific or not...


Loss control on application layer

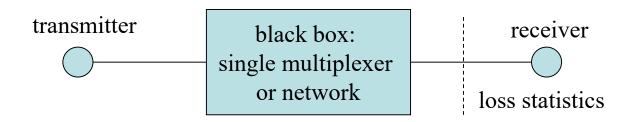
- Error concealment at the receiver
 - reconstruct the signal from available information
 - reuse last sample
 - interpolate from neighboring samples
- Error resilience with source coding
 - error propagation due to source coding (e.g., interframe coding in video coders)
 - limit error propagation (e.g., I frames in MPEG)
 - increases bandwidth
- Layered source coding
 - divide information into important and less important parts
 - transmit important information with high priority (requires network support!) or with higher redundancy
- Multiple description coding (this is source coding as well)
 - code the information in two redundant streams
 - receiving both streams gives good quality but receiving one stream only gives acceptable quality as well


Loss control for multimedia

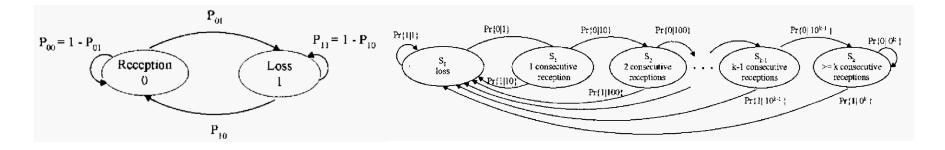
- Loss control in the network layer (IP)
 - Interleaving of packets
 - loss can happen in bursts (buffer overflow)
 - single packet losses are easier to compensate for
 - scrambles the packets at the source
 - introduces latency, but does not consume extra bandwidth
 - Forward Error Correction (FEC)
 - adds redundancy to the stream of packets
 - uses this redundancy to reconstruct lost packets
 - introduces latency and uses extra bandwidth


- Media dependent FEC parameters: n,k
 - add redundant copy to a consecutive packet
 - with low coding rate media dependence
 - for low bitrate sources, with delay limitations
 - implemented in VoIP tools, IETF recommendation
 - for increased performance
 - increase the delay between the original and the copy (n=1,2,...)
 - add multiple copies (k=2,3,4...)

- Media independent FEC (block codes)
 - apply error correction codes on a block of packets
 - e.g., parity bit can regenerate one lost packet


- Media independent FEC (block codes)
 - e.g., Reed-Solomon codes
 - FEC(n,k): k information packets, n-k redundant packets
 - all packets reconstructed if at least k received, otherwise no reconstruction
 - redundancy rate: (n-k)/n

- For both schemes:
 - performance depends both on the average packet loss probability and on the distribution of packet losses
 - consecutive packet losses (media dependent case)
 - number of lost packets in a block of n packets P(j,n) (media independent case)
 - experience: packet losses in the Internet are correlated
- Modeling the loss process at the receiver
 - detailed queuing model
 - Bernoulli model each packet gets lost with the same probability
 - Gilbert models (reading)
 - Requirement: calculate information loss probability for simple cases


Modeling the loss process

- Queuing models
 - modeling the reasons of packet losses
 - e.g., congestion: queuing networks with finite queues, appropriate arrival and service processes
 - or at least one queue, at the bottleneck link of the connection
 - needs packet arrival process and packet length distribution
 - can be exact, but very complex
- Black-box models:
 - do not model the reason, just the outcome (discrete time process)
 - simple, but not that accurate
 - Bernoulli and Gilbert models

Modeling the loss process

- Bernoulli model
 - All packets get lost with the same probability, losses are independent
- Gilbert model basic version
 - To model the burstiness of the loss process
 - Two state discrete time Markov chain
 - Parameters to calculate:
 - Steady state packet loss probability
 - Average loss burst length
 - When does the Gilbert model reduce to Bernoulli model?
- Extended Gilbert model (reception run lengths)

The accuracy of loss models

- Reading assignment: The accuracy of Gilbert models ...
- Packet loss process Gilbert models for a single multiplexer
 - Single source
 - Multiple sources
- Performance of Forward Error Correction (media independent)
 - RS(n,k): k information packets, and additional n-k parity packets
 - Steps of modeling
 - P(j,n) Probability of loosing j out of n packets
 - Number of lost packets given j
 - Average number of lost packets in a block
 - Average number of lost information packets in a block
 - Rate of loosing an information packet

Modeling the loss process The Bernoulli example – Group work

- Bernoulli model, loss probability p
- Media dependent FEC(n,k)
 - n: redundant copy in the nth packet
 - k: altogether k copies (1 original, k-1 copies)
 - Calculate P(information is lost) for
 - n=1, k=2
 - n=2, k=2
 - n,k
- Media independent FEC(n,k) block code with k information packets
 - P(j,n)=P(j packet lost out of n)
 - P(uncorrected losses despite redundancy)
 - N=E[number of lost packets in block after reconstruction]
 - I=E[number of lost information packets in a block after reconstruction]
 - Information packet loss rate (information loss probability)

Summary

- Multimedia transmission
 - File download, off-line and on-line streaming
 - Delay and loss control
- Delay control: Playout buffer control
 - Playout buffer modeling with discrete time MC
- Loss control: FEC
 - Media-dependent and media independent
 - FEC modeling with Gilbert models

Course Summary

- Traffic modeling
 - Modeling hierarchy, characterization of traffic sources
 - Markovian models
 - Non-markovian models: heavy tail, long-range dependence, self similarity
- Medium access control
 - Classification
 - ALOHA and its improvements: Poisson arrival, infinite number of sources
 - Detailed modeling of CSMA/CA: saturated sources, fixed number of sources
- Congestion control
 - Possible solutions for congestion control
 - Fixed window based congestion control, problems
 - Dynamic window based congestion control performance: saturated source, deterministic loss at given W
 - TCP modeling steps: random "first loss" in a window
 - Rate control, leaky bucket

Course Summary

- Scheduling
 - Objective of scheduling, work-conserving and non work-conserving
 - Max-min fairness on a single link, GPS, PGPS, model: M/M/1-PS queue
 - Comparison of various scheduling solutions pre defines set of packets

• Fairness

- Fairness definitions in networks
- Max-min fairness, definitions, proof of max-min fairness
- Rate proportional fairness
- Fairness with distributed control: congestion control + scheduling
- Modeling: predefined set of flows
- Multimedia communication
 - Delay control: playout control solutions
 - Loss control on various network layers
 - Forward error correction (FEC) solutions
 - Loss models and FEC performance
 - Modeling of loss processes on a packet level