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Abstract

In this paper the main approaches of Automatic Music Transcription using Neural
Networks are reviewed and explained. As an experimental study to these ap-
proaches, different models of Neural Networks are proposed to be compared for
the application of Polyphonic Piano Music Transcription. This experimentation
is first focused on the dataset preprocessing and alignment and is continued by
a empirical comparison between Deep Neural Networks and Long Short-Term
Memory (LSTM) Networks performances. The objective of the current project
is to serve as a first step for future Neural Network design and optimization for
Automatic Music Transcription by enclosing the best combination of methods and
parameters for this particular task.

1 Introduction

Automatic music transcription is considered a significant step in the field of music signal processing.
Some of the applications of Automatic Music Transcription(AMT) are : music information retrieval,
music processing (such as changing the instrument set), human-computer interaction [7]] or even
some commercial Music Transcriptors. Many researchers have worked in different methods to
improve the performance of automatic music transcriptors throughout the last decades. However, few
actual improvements were achieved during the recent years. Low computational power and obsolete
algorithms impose a ceiling for AMT accuracy. The parallel improvement and development of Deep
Neural Networks and computational power restored the interest in Automatic Music Transcription,
and incited the arise of investigations focused on this new approach.

The main goal of this project is, after reviewing the different techniques and methods for data
preprocessing and AMT implementations, experiment with different data preprocessing methods
(Mel Filterbank Cepstrum Coefficients, Constant Q Transform) and a small variety of Neural Networks
(Dense Neural Networks and Long Short Time Memory Networks). The model architecture, parameter
settings, data preprocessing and representation will be described in the Section[2] The proceedings
of the subsequent experimentation is stated in Section 3] In section[d]the results are described and
discussed. Finally, Future work and Conclusions are developed in Section 3]

1.1 Background

It was not until the 1970s when the first approach to music transcription was developed by Moorer
[LO] [L1]. He was the first researcher to be convinced that a computer could detect, analyze and
transcribe the pitches, chords and rhythm accents from a piece of music. His first investigations
were focused on the development of vocal compositions transcriptions. Following his work, many
researches diverged in new lines of investigation during the 1980s. Later, in the 1990s, Goto and
Muraoka [[6] worked in an algorithm for beat and rhythm tracking from and audio signal. After several
years of investigation, both Goto and Muraoka were able to achieve decent polyphonic percussion
tracks transcription. It was not until the 1990s when the first attempts to achieve polyphonic music
transcriptors arose. Unsupervised learning became the state of art of AMT. In this methods, very few
a prior assumption of the input signal were made, and they can be considered as the first step towards



the application of Deep Learning in Music Transcription applications [7]]. Further information in
traditional transcriptors can be found in [2],[/1]

Throughout the last years, the interest in Neural Networks has grown considerably and so does the
number of papers and publications focused on the possible applications of Deep Learning for music.
One of these applications has gained significant importance over the last years: AMT. The main goal
was to improve the best accuracies that were obtained using traditional Automatic methods and try to
get closer to a professional musician transcription ability. The approaches were several, however, the
aim of the current project is to experiment with different sets of Neural Networks in the application of
Automatic Piano Music Transcriptions, and therefore, the publications of Sigtia [14]] and [[15] were of
main interest. In [[14], an Hybrid Recurrent Neural Network was proposed to be trained for Automatic
music transcription using as input, the short-time Fourier transform (STFT) spectrogram of a set
of Audio Files. The same principles and techniques were applied in [15] However, the objective in
this case was to experiment and study the performance of a Convolutional Network for this duty.
Also, instead of using the STFT, the Constant Q Transform(CQT) was used. Both innovations lead to
significant improvements in the accuracy of the transcriptions.

1.2 Deep Neural Networks

Deep Neural Networks DNN are a sort of machine learning models that can be used for linear and
non linear classification and regression tasks. The main characteristic of the DNNs is that they have
several layers that are able to perform non linear transformations:

hlayer+1 = f(Wlayerhlayer + blaycr), (1)

Where Wigyer and byqy e, are the Weight matrix and Bias vector respectively, hiqyer+1 and hiqyer the
output values of the current layer and previous layer, h;4y¢- and f is the activation function of the units
in the layer. The parameters Wigye, and byqy e, are estimated using the backpropagation algorithm
and Stocastic Gradient Descent (SGD). However, DNNs are designed for static data, not sequential.
In the case of AMT, the time sequence must be included if we want to improve the performance of
the transcriptorf{/15]].

1.3 Recurrent Neural Networks

The Recurral Neural Networks(RNN) were conceived as a solution for the restricted ability of DNNs
to handle sequential data. Due to this, RNNs are considered, a priori, a better option for AMT
applications as consecutive frames will include both present and past features. In this case, the
transformations done in each layer are:

h?ayer-‘rl = f(I/VlJ;yerh;ayer + VVlCLye’rht_l + blayer)> (2)

layer

Where I/VlJ;ye,r, is the weight matrix of the forward pass of the layer, W, .. is the weight matrix for
the recurrent connection and by, the Bias vector.The parameters VVlZ yer’ I/szyer and bygy e, are

estimated using using the back propagation through time algorithm (BPTT) and SGD [15]].

1.4 Long Short-Time Memory Networks

One of the main limitations of RNN is that they are not able to learn dependencies that are separated
several time steps in time due to the well known issue of vanishing gradients[[13]]. They are just able
to efficiently learn those dependencies that occurred in the previous step time. On the contrary, Long
Short-Time Memory Networks (LSTM) are able to overcome this limitation. LSTM are a kind of
RNNSs architecture capable of learning long term dependencies by using the so called memory cell.
This memory cell does not use any activation function within its recurrent components. Oppositely, the
update step is done over 4 neural networks included in each memory cell commonly called gates.(See
Fig[T]) As a consequence, the stored value or state vector is not iteratively squashed over time, and
the gradient does not tend to vanish during Back-propagation. Due to its main characteristics, LSTMs
have replaced traditional RNNs for the majority of sequential/time series tasks.
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Figure 1: Individual Memory Cell of a LSTM network. In yellow, the main 4 neural network inside
each LSTM unit, being from left to right: Forget gate, Input gate, tanh input cell and Output Gate

2 Method

2.1 Dataset Description

To accomplish the proposed goals of the current project the selection of the dataset was as important as
the Neural Network structures chosen. In this case, MIDI Aligned Piano Sounds (MAPS) dataset was
an optimal dataset for the experiments designed for the current project [4]], [S]. The main advantage
of these dataset is that every WAV file comes along with a text file with the different pitches duration
and exact onset time. Therefore, label aligning was straight-forward. MAPS dataset is divided in 4
main sets of audio files: isolated notes and monophonic excerpts, chords with random pitch notes,
usual chords from Western music and complete pieces of piano music. For the experiments arranged
for this project, only the full musical piano pieces will be used. MAPS dataset includes 270 pieces
of classical music from the main authors e.g.: Chopin, Mozart, Beethoven... These audio files are
subdivided in 9 categories depending on the kind of piano and recording conditions, having 30 audio
files and the corresponding transcriptions in each category, up to > 21 hours of music in total. Two of
the categories were recorded in a real Disklavier piano, while the rest were recorded using different
MIDI synthesizers.

2.2 Dataset Preprocessing

The first step was to divide the dataset in 3 subsets for training, validation and testing. For training,
the 7 software-based categories were chosen. To ensure that the best possible performance of the
networks was obtained, early stopping was going to be used. Therefore the selection of the validation
data was very important as some of the songs of the dataset are repeated in several categories. For the
validation data, 18 not repeated songs from the training data were chosen ( 700 mb of 7.7 gb of the
entire training set). This way, the validation set was composed only of unseen songs. The objective
of testing the network was not only studying the overall performance of the network over unseen
data, but also its robustness under different conditions. As a consequence, two different test sets
were arranged. The first one was designed to test the overall performance: the validation set and the
unseen songs recorded in the real pianos were used (now on 7est set ). The second test set has the
objective of testing not only the robustness of the network but also analyze the possible applications
of the network as a real time AMT(now on Test set 2). As a consequence, this second test set was
composed by the two categories that were recorded in the real piano, including both seen and unseen
songs. This last set was also useful to determine the level of over-fitting in the trained network.

Next, the main features of the WAV audio files had to be extracted as training from raw audio data is
considerably ineffective for this particular task. Historically, in AMT applications, the spectrum of
the audio signal is used as the main features for the system. However, it was interesting to study first
the performance of the Mel Filterbank Cepstrum Coefficients (MFCC) as the main features to use as
the input for the networks as they have been rarely used in Music Transcription and they have proven
to be optimal for Speech and Speaker recognition[9]] and Music Genre Classification[§]]. In order
to compare and determine the adequacy of this features for the task of music transcription, parallel



experiments will be done using other kind of frequency spectrum features: Constant Q Transform
features. This features are proposed in [15] as an optimal input representation for Automatic Music
Transcription for two reasons: CQT is an optimal time-frequency representation for music signals, as
the frequency axis is linear in pitch [3]]. Furthermore, CQT features are dimensionally smaller than
other frequency representations.

The audio files were individually transformed first from stereo to mono by computing the mean of
the dual signal, and then MFCC features and Constant Q Transform were separately extracted from
the mono audio signal. For the MFCC features, a 20ms window size was used along with a 10ms
window separation. 40 filters were used with 40 coefficients. In the case of the CQT, and following
the recommendations in [15]], the audio signal was downsampled from 44.1kHz to 16kHz in order to
reduce the amount of data that had to be transformed using CQT. The CQTs were computed over 7
octaves with 36 bins per octave and a hop size of 512 samples (32ms for 16kHz). As a result, 252
features per frame were obtained. In Fig. 2] there is a visual comparison between both transformations.
We can see that for the CQT we get similar representation to a piano roll. We can conclude then
that CQT is a priori a better option for AMT applications. In both cases, the data was represented
as a matrix of dimensions number of frames x number of features. The frames of each song were
concatenated together and split in individual files of 40000 frames per file.

The last step was data normalization. To do so, all the Training, Validation and Test sets were
normalize within the limits of the training sets. Later, Training mean was calculated and subtracted
from the three sets. Parallel to feature extraction, labeling alignment was computed. As each audio
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Figure 2: On the left: MFCC features of 30s of Piano Sonata No. 14 (Beethoven) song. On the right:
CQT features of 30s of Piano Sonata No. 14 (Beethoven) song

file had a text file with the information about the pitch, its duration and onset time, time pairing the
pitches with each frame was simple. The number of possible pitches were 88, and therefore, the
label for each frame was represented as a vector of dimension 88, setting to one the pitches that were
played in the current frame and zero otherwise. This vectors were stacked together and separated in
files of 40000 thousand frames per file. This way, each CQT features file has its corresponding paired
labels file.

2.3 Networks Structure

Due to time constraints, this project will focus only in two types of Networks: DNNs and LSTMs.
It would have also been interesting to perform some experiments over a set of RNNs in order to
compare its performance with a LSTM network, but RNNs experimentation under the same dataset
and similar conditions is done in [15]. All the networks were built and trained using Keras with
Tensorflow backend. The source code can be found in: https://github.com/diegomoring/
Deep-Neural-Networks-for-Piano-Music-Transcription

The basic principles of simple DNN's is already stated in Section[I] Four sets of DNN will be used for
the experimentation: 1,2,3 and 4 hidden layers DNNs with 256 units in each hidden layer. Parameters
tuning is out of the scope of this project due to time limitations, and Adam optimizer[12], which is a
variant of the traditional Stochastic Gradient Descent (SGD), is used as in [[15]] it showed a correct
performance on the proposed Networks. All the hidden layers used ReLU activation and the output
layer’s activation was set as Sigmoid as both the target output and Sigmoid function are bounded by
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[0,1], being this function defined by:
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The input size depended on the number of input features. As a consequence, the networks designed
for the MFCC features had an input size of 40 compared to the 252 input size that the networks
designed for the CQT features. In both cases the output has to represent all the possible pitches, 88 in
total, and therefore, the output layer size has to be of 88 units. Last but not least, Mean Squared Error
(MSE) between the output and the labels vector for each frame was set as the loss function.

As in the case of the DNNs, four different structures of LSTM will be trained: 1,2,3 and 4 hidden
layers LSTMs with 256 units in each hidden layer. In Section[I.4]it was explained how LSTMs are
able to learn long term dependencies. It was important to determine how long this dependencies
window/batch was going to be. 100 frames or time steps were chosen, being the window’s size of 3.2
s. Doing this, the network would be able not only to classify the pitches in each frame, but also have
into account important temporal dependencies such as global coherence, rhythm.... Then, each input
matrix size was modified from [number of frames, number of features] to [number of frames / 100,
100, number of features]. Consequently, the input size of the network is [100, number of features].
As studied in [[16], the optimal activation function for LSTM hidden units is the hyperbolic tangent.
In the output layer, with size of 88 units, the activation function was set to be Sigmoid. For the same
reason as with the DNNs, MSE was chosen as the loss function.In both the DNNs and the LSTMs, a
dropout rate of 0.2 was added to avoid over-fitting.

2.4 Evaluation

To compute the evaluation, the output predictions were rounded: if the output values were lower
than 0.5, they were rounded to zero, otherwise, the output was set to one. Later, the evaluation was
frame-based, by calculating both the Average over the entire Test set, and the F measure. These
parameters are calculated as:

N

o TruePositives(t)
P P) =
recision(P) tz:; TruePositives(t) + FalsePositives(t)
N
TruePositives(t)
Recal(R) =
ecal(R) ; TruePositives(t) + FalseNegatives(t) 4)
N L
TruePositives(t)
A A) =
ccuracy(A) ; TruePositives(t) + FalsePositives(t) + FalseNegatives(t)
2PR
F-measure(F) = PR

where N denotes the number of Frames in the data set that is being evaluated. Due to the characteris-
tics of the dataset, it was really important to design a strategy to avoid over-fitting, as many songs
were repeated in the different categories. Hence, after every epoch, the validation set was evaluated
in order to stop the training if the evaluation F-measure did not improve for more than 15 epochs,
avoiding this way possible over-fitting, as the validation set was composed by unseen songs. The
weights were saved after every epoch. During testing, the same evaluation procedure was used.

2.5 Postprocessing

After the training was done, some cleaning of the predictions was performed. Typically, this
postprocessing is done using complex but really effective techniques such as using and adaptive
threshold during training to maximize the accuracy (instead of simply rounding the predictions) or
training HMM models. However, in order to adapt to the time and job allocation constraints of this
project, a simple post processing was designed. The main idea was to erase those predicted pitches
which duration was smaller than the minimum duration of a pitch and filling small gaps between
pitches.



3 Experiments

3.1 Audio signal features: MFCC and CQT

This first experiment had as main goal to perform an empirical comparison between MFCCs and
CQTs as main features for AMT. There is no documentation on the possible applications of MFCC
feaures in AMT, therefore, these features were compared in this first experiment with the CQT
features, more common in AMT applications. To do so, two identical one hidden layer with 256
hidden units networks were used. The activation used was ReLU in the hidden later and sigmoid in
the output layer. Early stopping was set as explained in Section [2.4]

3.2 Neural Network Structure: Deep Neural Networks and Long Short-Time Memory
Networks

DNN’s performance with sequential data has been proven to be very limited compared to other type
of model structures. An example of a network that can handle, not only sequential dependencies but
also long time dependencies are LSTM as described in Section[T.4]

In [14]] and [15], different model structures are compared, such as DNNs, RNNs or Convolutional
Networks. However, LSTM has not been studied yet for the task of Automatic Music Transcription.
The current experiment was designed to compare the performance between traditional DNNs and
LSTMs. To do so, 4 DNNs and 4 LSTMs were used, with 1,2,3 and 4 hidden layers respectively. All
of them had 256 units in each hidden layer. The detailed explanation on both structures is reflected
in Section[2.3] In all the cases, early stopping was done using the accuracy on the validation set in
order to avoid possible over-fitting. All the networks were tested in the trained networks using both
the Test set 1 and 2 (see Section2.2). During this experiment, post processing is computed, and the
final performance after post processing is compared to the performance obtained before this cleaning
operation.

4 Results

4.1 Audio signal features: MFCC and CQT

After training two identical networks with the MFCC and CQT features respectively, the Accuracy
and F-measure of the predictions over the First Test set were computed and summarized in Table[T]
Even though a more exhaustive experimentation on this comparison should be done to completely
discard MFCC features as an optimal feature for Music Transcription, on the following experiments
MEFCC was not considered as the obtained accuracy over the Test set is significantly lower when
MECC features were used.

Table 1: MFCC and CQT features accuracies. DNN with 1 hidden layer of 256 units. ReLU activation

Feature Type F-measure Accuracy

MFCC 3.46% 1.76%
CQT 62.89% 45.88%

4.2 Neural Network Structure: Deep Neural Networks and Long Short-Time Memory
Networks

In this case, after all the networks were trained, they were tested using the First Test set. The computed
Accuracies and F-measures are shown in the Table 2]

We can observe that in the case of the DNNs the best results are obtained by the network with 3
hidden layers. The LSTM performance is quite similar to the one obtained by the DNNs, contrary to
what happened with the RNN networks in [15] that improved the accuracy of the DNNs. Either way,
as expected the post-processing operation did not improve the accuracies significantly. The method
used is very inefficient compared to other sophisticated methods as Hidden Markov Models (HMM).



Table 2: Accuracies and F-measures comparison table for different networks, after testing using the
First Test set.

Predicted Post Processed

Model Layers Units F-measure Accuracy epoch F-measure Accuracy

DNN  1layer 256 units 69.13% 52.83% 100 70.45% 54.37%
LSTM 1layer 256 units 65.80% 49.029% 203 66.07% 49.34%
DNN  2layer 256 units 68.61% 52.22% 45 69.84% 53.65%
LSTM 2layer 256 units 68.55% 52.15% 99 69.01% 52.68%
DNN  3layer 256 units 69.36% 53.09 % 111 70.61% 54.58 %
LSTM 3layer 256 units 68.95% 52.61% 98 69.36% 53.09%
DNN  4layer 256 units 68.78% 52.42% 154 69.99% 53.83%
LSTM 4layer 256 units 64.05% 47.11% 178 64.52% 47.62%

The same trained networks, were tested using the Second Test set to test the performance of the
network when a real recorded audio of a piano was used to check the robustness of the network. Also,
as some of the tracks in this test set were included in the training set, it was indeed a good method to
test the level of over-fitting in the trained network. The results of this testing are shown in the table[3]

Table 3: Accuracies and F-measures comparison table for different networks, after testing using the
First Test set

Predicted Post Processed

Model Layers Units F-measure Accuracy epoch F-measure Accuracy

DNN 1 layer 256 units 64.41% 47.50% 100 65.60% 48.81%
LSTM 1layer 256 units 61.77% 44.68% 203 61.84% 44.76%
DNN  2layer 256 units 64.54% 47.65% 45 65.77% 48.96%
LSTM 2layer 256 units 63.23% 46.23% 99 63.48% 46.50%
DNN  3layer 256 units 65.29% 48.47% 111 66.54% 49.86 %
LSTM 3layer 256 units 66.05% 49.31% 98 66.37% 49.67%
DNN  4layer 256 units 65.29% 48.47% 154 66.53% 49.85%
LSTM 4layer 256 units 63.75% 46.79% 178 64.17% 47.24%

We can observe that in the case of the LSTMs the best results are obtained by the network with 3
hidden layers. However, after post-processing is the DNN with 3 hidden layer the Network with
better performance. Comparing Tables [2]and 3]s easy to observe that using the Second Data set for
testing arises worse accuracy results. This can be understood as a low level of over-fitting in the
network along with sufficient robustness against changes in the recording environment. However, the
results of this second testing are quite similar to the ones obtained for DNNs networks in [[15] using a
similar set of parameters, being this a positive indicator on the method used for the current project.

In figure. 3]an example of the predicted sequence before and after post-processing is shown in the
format of a piano roll along with the ground truth sequence and the prediction from a 3 layer LSTM
network.

5 Discussion and Conclusions

The first objective of the project was to check the possible applications of MFCC for AMT. Regarding
the results shown in the Table[I]it can be concluded that MFCC features are significantly less optimal
for AMT applications than CQT features.

Besides, we can observe that the results obtained after testing the final networks with the Second
Test set on the DNNSs are really similar to [[15]. This investigation paper was used as a reference
to build and train the DNNs. Therefore, these DNNs and the RNNs tested in [[15] can be used as a
comparison reference for the LSTM. Between this three models of networks, the RNNs are the ones
that have a higher performance. In pitching classification, local coherence is more important than



10+

e AL o R I T IR I
ey e, =

70} N , 70

80} , Bl 80
o] 500 1000 1500 2000 0 500 1000 1500 2000
(@) (b)
0 0
10} P e . ] 10 '
2 b wmte= = 2 e -
[ amna -, - == mmm = — mmmn
— = o I =
300 -n—-l-rf"-iu'"—u. "oy L e 30 ﬁl—“.lw:“"“.“’.‘ Tl [ e o
- o =t P — . - A — - -
- - = we ) o mnwam” "= Tm
20 us ] - - u
J-_u_i-l-i—n\.-uﬂ- R
o
E
o
- - -
60 utr= it
V.
- -
70+
80+ H 80
0 500 1000 1500 2000 0 500 1000 1500 2000
(c) (d)

Figure 3: (a) Rounded prediction for the 3 hidden layer DNN of an unseen piece of audio file (b)
Post-processed prediction (c) Rounded prediction of the 3 hidden layer LSTM(d) Ground truth of the
piece of audio file

global features. LSTM will perform better, for instance, in music generation tasks. The comparisopn
between DNNs and LSTMs is, however, not evident: both of them have different drawbacks. We
can observe in Figure. [3(b) and (c) that while DNNs can identify the pitches better than LSTM
they estimate the duration of the pitches much worse than the LSTM (note that Figure. [3(c) was
not post-processed). Hence, it will be interesting to test an hybrid DNN-LSTM set to complement
their advantages reducing this way the main withdraws of each method. This can become the most
probable and interesting future line of investigation.

Last but not least, the early stopping strategy worked correctly as the networks did not suffered from
severe over-fitting during training as we can observe that the accuracy for the Second Test set is
similar to the one obtained for completely unseen data. Also, as the network was trained on classical
music piano pieces, it is more likely to perform better with this type of music.

To have a further understanding of the results, a simple code to transform the predicted transcriptions
to a MIDI music was written. Different commonly known songs along with some examples from the
Test Set 1 where inputed to the network and the predicted were transformed back to MIDI file and
the results were gathered in https://goo.gl/U1FKnr. In this examples, some of the artifacts that
appear in the predicted transcriptions are Classical music alike. Therefore, as another future line of
work, it would be interesting to train the network using the entire MAPS dataset, including individual
pitches, chords and scales to reduce this artifacts and improve the accuracy.
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