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Abstract

The combination of deep neural network (DNN) and hidden Markov model has
been proved to outperform Gaussian mixture model, mainly due to the fact that
DNN can model features with more complex correlations. In this paper, we
investigate Convolutions Neural Network (CNN) for continuous speech recognition.
Compared with DNN, CNN has shown remarkable progress in speech recognition
task nowadays. It can reduce the size of the neural network model significantly
and at the same time achieve an even better recognition accuracy. We experiment
on different network structures on TIMIT dataset and give an understanding of the
factors that control the accuracy of CNN.

1 Introduction

1.1 Automatic speech recognition & related works

With the development of the technology, the interaction between the computer and human beings
becomes more and more prevalent. To achieve this objective by voice interaction, we need to achieve
three goals: Automatic Speech Recognition (ASR), Speech Encoding, and Speech synthesis. What
we focus on in this paper is Automatic Speech Recognition. The traditional method for ASR is to use
the hybrid structure of Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) where
HMM models the temporal behavior and GMM estimates the posterior probability for each phone.
However, this method comes with some limitations. To make a breakthrough, researchers start to
apply artificial neural network to solve the problem.

By 2006, people applied the artificial neural networks to estimate the posterior probabilities of a
continuous density HMMs’ state given the acoustic features and then backpropagation algorithm was
used to train that network[3]], however most of them failed because the gradient in the traditional
network is unstable and the structure of a network with more than two layers is complicated. Even
though the deep neural network is developed, the high requirement of the initial parameter setting
in the network makes it relatively hard to train. Until 2006, Hinton[4] proposed the layer wise
pre-training deep network, and later on, Microsoft’s research based on Context-Dependent Deep
Neural Network[3] made deep neural network become increasingly popular in Automatic Speech
Recognition.

1.2 Convolutions neural network

Even with Hinton’s pre-training method, it is still difficult to introduce the traditional training
method in DNN. Whereas Convolutional Neural Network(CNN) is a special case which can use
Back Propagation to train the network. CNN is actually a variant of DNN, different from the fully-
connected DNN. It uses a small shared filter to connect layers and each filter can produce a feature
map of a current layer. Thus compared with the fully-connected DNN, CNN has fewer parameters,
which can accelerate the training process with Back Propagation algorithm.

At the beginning of the CNN study on speech recognition, researchers usually focus on the convolution
along the time axis[S]], while Ossama et.al[2]] found a hybrid CNN-HMM approach delegating



temporal variability to the HMM, which concerned more about the convolution along the frequency
axis. And they also found that[1] the success of CNN was attributed to the learned features that are
invariant to small frequency shifts of speech patterns (e.g. formants), which increases the robustness
to speaker variations, explaining why CNN works well on phoneme classification.

In the paper, we consider to use Ossama’s data processing method, using static, delta, delta-delta
three-layer data instead of simply using MFCC to fit and build a CNN model. We try different
parameter settings and make some slight changes to the network structure in order to evaluate and
compare the performance with the result of DNN.

The paper is organized as follows. In Section 2, we introduce how we extract features and the network
structure of CNN including convolutional layer, pooling layer, activation function, fully-connected
layer and decoding. In Section 3, we describe in detail that how we perform the experiments including
data preparation, tool, training and testing process. Then we report our results generated by our CNN
with different hyper-parameter settings and final error rate. In Section 4, we discuss and conclude
what limitations we are facing currently and how we plan to improve our network model.

2 Methods

2.1 Feature extraction

When a pattern recognition task is solved by CNN, the input data needs to be organized into a series
of feature maps. When processing with images, RGB can be viewed as three channels of input and
each channel is a feature map. In the process of extracting speech features, the image can be loosely
represented as a spectrogram with static, delta and delta-delta features(first and second temporal
derivatives). Each kind of spectrogram can be considered as one channel which corresponds to that
of R,G,B in a real image. For example, we divide the spectrogram with a small window in DNN like
the context-dependent trick, where each window is an input image, as shown in figure 1. As for the
frequency, Ossama’s work[2] shows that if MFCC is used, the discrete cosine transform projects the
spectral energies into a new basis that can not maintain locality, thus we turn to utilize mel-frequency
spectral coefficients(MFSC) and its delta and delta-delta as our feature map. In fact, MFSC is the
MFCC feature before doing DCT transform.
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Figure 1: We use 40 MFSC features and the first and second derivatives with a context window of 11
frames for each speech frame, the figure is from[2]



2.2 Network structure

2.2.1 Convolutional layer

The convolution layer is the core part of the CNN. It can generate a series of feature maps using
several filters. The convolution process for feature maps can be written as:

D—1
A= f(Y XaxWatb) (1)
d=0
where A is the output feature map, and D represents the number of input channels. The multiply sign
here is actually the convolutional process. We can also express it more specifically, that is:

D—-1M-1N-1

Qi 5 = f(z Z Z Wd,m;ﬂ * Td,i+m,j+n + wb) (2)

d=0 m=0 n=0

where filter size is M x N. It has D dimensions and wy is the bias added to the result after the
summation. As shown in figure 2, D is 1, which means we only have one channel as input. The blue
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Figure 2: An example of convolution process

square frame in graph B of figure 2 is filter window (also called kernel), it will be slided to cover all
"pixels" in the map. And "stride" is used to define the way we move the window. For example, stride
of size 1 means every time we move the window with only one row or one column. And in our case,
as the input feature map is already small enough(3 x 11 x 40), the stride will always be 1.

2.2.2 Pooling layer

Pooling layer is commonly used in CNN with the purpose of reducing the spatial size of the
representation gradually to decrease the number of features and complexity of the model. Every time
a filter process is over, we need to carry out a down-sampling to reduce the number of parameters
further (The filter has already reduced the number of parameters). This down-sampling is also known
as pooling. Pooling helps to remove unimportant messages and reduce the size of the input map to
accelerate the training.
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Figure 3: An example of 2x2 pooling process from [8]]

The most common pooling method is max-pooling, which is shown in figure 3. In each pooling
window, the largest pixel value is selected to represent this pooling window. The other pixels in



this pooling window will be considered as irrelevant and being ignored. Also, there are some other
methods like mean-pooling. But we choose to use max-pooling in our CNN and the pooling size will
be described in the experiment section.

2.2.3 Activation function

With the experience of multi-layer perception network, we know that if a layer is just a linear
combination, then we can use only one layer to represent this multi-layer structure. Thus to avoid
this situation, we need to transform our cost calculation into a non-linear combination. That is why
an activation function is needed. We choose sigmoid function and tanh function that are commonly
used as the activation functions in CNN (Because of the version incompatibility between toolkits that
we use, we are not able to implement the ReLu activation function.) After each pooling process, an
activation function is applied to the output feature map.

2.2.4 Fully-connected layer

After two or three iterations of Convolution and Pooling we will get a group of small feature maps.
Then they are flattened into a long vector as the input of a fully-connected layer. Also like DNN, we
could have a few hidden layers which are also fully-connected with each other. And for the last layer,
we use softmax to calculate the posterior probability of each node.

2.3 Decoding

In the DNN part, just similar to what we have done in lab3. The outputs of DNN are not the exact
phonemes. Instead, they are the sub-phonemes. A phoneme can be split into several sub-phones.
For example, a phoneme aa could be split into several sub-phones, such aa_1, aa_2... .And in the
decoding part, we will merge them together. To achieve this goal, we use decoding functions provided
by Kaldi. When decoding, as it is suggested in [6]], we map the 61 phonemes to 39 classes as shown
in figure 4.

aa,ao | aa
ah, ax, ax-h | ah
er, axr | er
hh, hv | hh
ih, ix | ih
lel |1
m,em | m
n,en,nx | n
ng, eng | ng
sh, zh | sh
uw, ux | uw
pel, tcl, kel, bel, dcl, gel, h#, pau, epi | sil
ql-

Figure 4: Mapping from 61 phonemes to 39 classes. The phonemes in the left column are folded into
the labels of the right column and q is discarded

3 Experiments & results

We decided to use this system to finish the phoneme recognition task . So in this section we present
the steps we take to achieve this goal. A first overview is given by the following summary:

e Data preparation

— We use TIMIT dataset and split the original training set into training and validation set.
— Using Kaldi to extract and normalize the MFSC feature.



CNN training

— We use PDNN to train CNN network.
— Try different hyper-parameters setting and obverse the change of the error rate on
training and validation set.

Decoding

— Firstly put the test file into CNN and get an output by PDNN.
— Then, Use Kaldi to decode and evaluate this output.

Kaldi : PDNN : Kaldi

Data Set | Feature Extraction [—— CNN Training  [——| Decoding

Figure 5: An overview of the working process

3.1 Data preparation

We use TIMIT (Acoustic-Phonetic Continuous Speech Corpus) dataset for the training and testing
data. Different from TIDIGIT dataset that is to recognize digit 0-9 in the lab, TIMIT contains a
total of 6300 sentences (5.4 hours), consisting of 10 sentences spoken by each of 630 speakers from
8 major dialect regions of the United States. And TIMIT is split on phone-level and labeled with
phones manually.

There are five steps of data pre-processing:

Split dataset
Choose around 95% training data files as the training set and the remaining 5% as validation
set.

Forced aligned transcriptions
Create level time aligned transcription for the training to increase the readability with MFSC
features as Lab3.

Feature extraction

Like we have already talked in Section 2, we will extract the MFSC features and its first and
second derivatives using Kaldi. Actually, the MFSC features are the FBANK features. The
sampling rate of the TIMIT is 16kHz and we use 40 mel bins to get the MFSC features.

Feature normalization

Features are normalized to make sure that every feature coefficient has unit variance and
zero mean. The computed original mean and variance from the whole training set are also
used for normalizing test set.

File formats
As speech is a type of sequential problem, we need to keep track of the sequence boundaries.
Thus, we choose to use specially designed data format pfile from a number of feasible ways.

3.2 CNN training

3.2.1 Training basic networks

For the first training, the size of input is 3 x 11 x 40. We apply two filters with the size of 9 x 9 and
3 x 4. We also add two max-pooling layers after each convolutional transformation with the size of



1 x 3 and 1 x 1, which means we only focus on the frequency, assuming that the time variability can
be modeled by HMM. Two fully-connected layers with 1024 hidden units per layer are followed by
convolutional layers and the dimension of output is 1947, which is the default class number used in
Kaldi while using the GMM model instead of neurual network. So we will keep this class number
and consider the phone is generated from 1947 different probability density functions(PDF). Figure 6
shows our CNN network architecture for the training. The number before @ sign indicates the depth
of feature representation for each layer. Also, we set momentum to be 0.9 since CNN over filterbanks
seems to converge slowly. Thus we increase momentum to speed up convergence.

Feature Feature Feature Feature Hidden Hidden
units units Dutputs
3@11)(40 147@3)(32 147@3}(30 147@1}(27 147@1)(27 1024 1024 1947
Convolution  Max-pooling Convolution Max-pooling Fatten Fully Full’

y
9x9 kernel Ix3 3x4 kernel 1x1 connected connected

Figure 6: The network architecture

3.2.2 Network structure parameters

The network parameters in the convolutional layers we use are represented in the format: ¢ X n x m :
a,b X ¢, pd X e, where the first part t X n X m means there are t input feature maps, each with
the dimension of n x m. The second part a,b X ¢, pd X e describes one convolutional layer and
a indicates the number of feature maps (the number of filters) where b x ¢ means the size of
local filters (kernels). d x e means the max-pooling size. We set our basic network structure as:
3 x 11 x 40:147,9 x 9,pl x 3:147,3 x 4,pl x 1, two fully-connected layers with 1024 hidden
nodes and the dimension of outputs is 1947. The learning rate of our network is defined as follows:
D:0.08:0.5:0.2,0.2:4, that is, the learning rate starts with 0.08, if the validation error reduction between
two consecutive epochs is less than 0.2, the learning rate is scaled by 0.5 during each of the remaining
epochs. Training finally terminates when the validation error reduction two consecutive epochs falls
below 0.2. And 4 is the minimum epoch number after which scaling can be performed.

The following figure is the training and validation error of the network training (not the final error
rate of phoneme recognition) after each epoch for the first four networks in the table shown in section
3.3. network (a) has two convolutional layers and two fully-connected layers, network (b) has one
convolutional layer and two fully-connected layers, network (c) has two convolutional layers and one
fully-connected layer, network (d) has two convolutional layers and three fully-connected layers.
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Figure 7: The training and validation error after each epoch



3.2.3 Dropout

We also add dropout with rate 0.2 to the best network from the first-round experiment for each default
activation layer. Dropout is a regularization technique where randomly selected neurons are ignored
during training for reducing overfitting, which means the contribution of these drop-out units to the
activation is temporarily removed on the forward pass and weight updates are not applied to the
neuron on the backward pass|[7].

3.2.4 Activation function

After comparing the test accuracy of the above four networks, we find that the network (a) as the best
with two convolutional layers and two fully-connected layers is superior than the others. The default
activation function for both convolutional and full-connected layer is sigmoid. We now change the
activation function on the network into tanh and test the performance on this new network. The
phoneme error rate on validation and test set are shown in next section.

3.3 Decoding

Since the time cost of decoding is huge, we only select 24 utterances from the original test set as our
own test set. We perform decoding process on the validation set with 15057 words and test set with
7215 words. The phoneme error rate (PER) is computed as follows:

S+D+1
PER—T 3)

where N is the number of words, S is the number of substitutions, D is the number of deletions and 1
is the number of insertions.

Table 1 shows the average phoneme error rate on the validation and test set for different network
structures, regularization techniques and activation functions. We find that the network (e) with two
convolutional layers, two fully-connected layers, sigmoid activation function and dropout 0.2 gives
the lowest test error rate, which is 18.0%. From network (a) and (f), we cannot make an obvious
distinction between using sigmoid and tanh function. However, once dropout technique is added,
both validation and test error rate decline significantly, which can be seen from network (a) and
(e). Typically, a CNN network with more convolutional and fully-connected layers within normal
limits tends to produce a better result. However, in our case network (d) with the most layers gives a
relatively high error rate. Due to the complexity of the network caused by number of hidden nodes
and layers, we analyze that there is an overfitting situation in the model.

Table 1: Phoneme error rate on validation and test set

No. | Conv layer ~Fully-con layer Dropout Acti func | Valid err  Test err

a 2 2 0.0 sigmoid 17.4 18.4
b 1 2 0.0 sigmoid 17.4 18.6
c 2 1 0.0 sigmoid 17.5 19.2
d 2 3 0.0 sigmoid 17.5 19.2
e 2 2 0.2 sigmoid 17.1 18.0
f 2 2 0.0 tanh 17.3 18.9
g 2 2 0.2 tanh 17.4 18.7

We also carry on a statistical analysis for network (a) to (d), to calculate the correct rate for each
phoneme. Here is the result:
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Figure 8: The statistic results for the phone recognize result with network(a)-(d).

In this color mesh, each point represents a normalized statistical count. Lighter color means the
count is higher. Thus the diagonal of this map is very shallow, indicating that most phonemes can be
correctly recognized.

We also experiment on DNN with the same setting as our best model and the average error rate is
19.9% on validation set and 22.3% on test set in total. Therefore, we conclude that the performance
of phoneme recognition with CNN is better than that with DNN for TIMIT dataset.

4 Discussion & conclusions

In the paper, we describe and explore how CNN can be used in Automatic Speech Recognition with
different network structures from feature extraction to classification of recognized phonemes. The
experimental results of PER indicates that there is an obvious improvement in relation to traditional
DNN methods. We delegate HMM to finish the temporal variability instead of doing convolutional
process over time, rather convolving along the frequency axis, which provides small frequency shifts
invariance to some extent.

In the future work, we intend to adjust our model on large vocabulary task where there are a lot
of challenges. For instance, words may not be distinguishable based on their acoustic information
alone in continuous speech and the memory and computational requirements will become very large
especially in terms of decoding. To implement this, we will perform CRBM-based pretraining on
convolutional layers in CNN referred to [1]]’s attempt, which is found to improve performance on a
large vocabulary speech recognition task.
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