
LSTM for Classifying Speech with a Sparse
TIDIGITS Dataset

Gabriel Carrizo, Carl-Johan Larsson
carrizo,cjlars@kth.se

Abstract

A sparse dataset of TIDIGTs single digit utterances has been used to investigate
the hyperparameters relative to performance using a LSTM-RNN. The dataset
contains speakers uttering the digits 0-9. The models have been trained using a
K420 GPU and no model is trained for more than one hour. The hyperparameters
with the most impact on the test set performance was the amount of hidden states
and learning rate, the best performance achieved was 98.63%. The main objective
of the paper is to present results for future researchers on speech recognition using
an LSTM-RNN on a sparse dataset to give understanding of the hyperparameter
impact.

1 Introduction

1.1 Neural Networks and Sequential Data

Classifying sequential data, such as speech, written text or any time dependent signal has recently
made progress with deep neural networks (DNNs). The traditional DNN is a feed forward neural net
which uses a weight matrix to construct a hyper plane which it then uses to separate data into specific
classes. Regular feed forward DNNs have no way of processing contextual or sequential data but
classify the data in its input frame as if it were independent in time. A work around method to this is
to train the network with data in chunks (for example: word for word or sentence by sentence) and
doing the same when classifying. However, this method would still ignore the temporal dependence
within the input.

When reading a sentence the human brain sequentially processes input information while simultane-
ously taking previous information into account in order to build context and understanding. Standard
recurrent neural networks (RNN) have attempted to mimic this process by utilizing a network which
builds context by cycling input data and storing its internal state for all previous inputs. However,
memorizing all previous input information can be costly in terms of memory and effort which is
why the human brain will latch on to only the information that is most necessary to build context. In
contrast to RNNs, long short term memory (LSTM) select which information to keep and also judges
when this information is no longer relevant for present context.

1.2 Long Short Term Memory - LSTM

The core of the LSTM unit is a cell that has three gates that regulate the flow and influence of certain
data throughout the cell. The three gates are as follows:

• The forget gate is the output of a sigmoid function (essentially a differentiable indicator
function which can output the values 0 or 1) which decides how much of previous data is
still relevant to cell state or if the data is relevant at all. If the forget gate is 0 the cell state is
reset.

• The input gate layer is also a sigmoid function and it decides if information should be
added to the cell state and if so, how much of it.



• The output gate (also a sigmoid) decides how much of the cell state should be passed to
the cells hidden layer which is then passed on to the next iteration of the LSTM cell. The
hidden layer can also be passed on to an output layer or other LSTM cells.

See Figure 1 below for a visualisation of the LSTM cell.

Figure 1: Generic schematic of an LSTM cell with the three gates annotated as σ. Left to right:
Forget, input and output gates. The pink circles and ellipse represent point wise operations and joined
arrows represent concatenations.

Rather than sequentially updating the cell state with all input and as such avoids vanishing and
exploding gradients, the LSTM RNN selectively decides when to update its weights. Since RNNs
use the networks’ gradients to learn tasks, this is a problem that has lead to basic RNNs not being
favorable in classification of sequential data.[1]

For more in depth information on LSTMs, consult Cristopher Olah’s blog post regarding LSTMs [2]
or Hasim Sak et al’s paper about LSTMs [3]

1.3 Why LSTM?

In the recent past Hidden Markov Models (HMMs) in combination with DNNs have dominated
speech recognition. Recently however, Graves et al have mananged to show that LSTM networks
outperform HMM-DNNs with large vocabulary datasets [3].

1.4 Previous Work

Graves et al [4] with Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Switzerland, have
previously performed a simillar study with great success on the TIDIGITS dataset. Furthermore,
Wang et al [5] at National Institute of Informatics, Japan, has done a thourough evaluation comparing
HMM, DNN and LSTM-RNN. LSTM-RNN is shown to achieve the same performance as DNN in a
10th of the time, and the same result as a HMM in one percent of the time. The LSTM-RNN was
trained for ten hours.

1.5 Project Aim

The aim of this project has primarily been an extended reproduction of Graves et al’s approach [4]. In
addition, it has also been to evaluate the effects of hyperparameters on a LSTM network by analyzing
the accuracy, cost and confusion matrix generated by different network architectures.

2 Method

2.1 Pre-Processing of the Data

In general, LSTMs have been utilized for large vocabularies. For example, Hasim Sak et al have
trained LSTMs on 3 million utterances for Google English Voice Search Task [3]. For the purpose

2



of this project an LSTM network will be trained on a smaller dataset, TIDIGITS [6]. TIDIGITS
is a dataset recorded by Texas Instruments which consists of approximately 300 speakers each
pronouncing 77 digit sequences consisting of digits in the range 0-9 (note that the pronunciations ’oh’
and ’zero’ for 0 both appear in the dataset). For this project the dataset will be restricted to single
digits from adult male and female speakers.

The pure form of the data is in .wav-format, which is a linear pulse code modulation format, sampled
with a sample rate of 20,000 Hz. The first step of pre-processing the data was converting the .wav
format to mel-scale frequency cepstral coefficients (MFCC) containing an energy coefficient, delta
and delta-delta coefficients. Deltas are the trajectories of the MFCC coefficients while delta-deltas are
the derivatives of deltas. In this report this format may be denoted as MFCC_0_D_A. See Practical
Cryptography’s blog post [7] for more information on MFCC. Since the MFCCs were computed using
12 cepstral coefficients and one energy coefficient together with the first and second order derivatives
of the coefficients, this results in a total of 39 coefficients. The pre-processing was performed with
the Hidden Markov Model Toolkit (HTK)[8].

2.2 Neural Network Model

Google’s machine intelligence library Tensorflow (version 1.0 for Python 2.7) was utilized for the
neural network RNN-LSTM model. The model used was a multi RNN cell with three basic LSTM
cells with the following network-related Tensorflow methods:

• tensorflow.contrib.rnn.DropoutWrapper(...)

• tensorflow.contrib.rnn.BasicLSTMCell(...)

• tensorflow.contrib.rnn.MultiRNNCell(...)

• tensorflow.nn.dynamic_rnn(...)

The network was created following a Tensorflow LSTM example GitHub repository by user aymeric-
damien[9]

2.3 Hyperparameter Optimization

According to Klaus Greff et al’s aptly named paper LSTM - A Search Space Odyssey [10], learning
rate and the hidden layer size are the most influential hyperparameters of an LSTM network, so this
project focuses on evaluating the effects of altering the two of them. All networks have been trained
using a drop-out rate of 0.75, which means that for every iteration 25% of the weights are ignored.
Drop-out is a powerful tool for regularization and will avoid over-fitting by ignoring local patterns in
the data. Furthermore, the network is trained for 400,000 iterations where one iteration constitutes
one sample being fed through the network one time. The dynamic hyperparameters, on which a grid
search was performed, can be found in Table 1.

Table 1: Training paramters for grid search

Learning rate 1e-1 1e-2 1e-3 1e-4 1e-5
Hidden layers 100 150 200 250 300

After running the grid search the best step size was chosen for further evaluation of number of hidden
states. Networks were then trained and evaluated for the following number of hidden states:

Table 2: Hidden states evaluated using 1e-3 stepsize

Hidden states 10 50 500

2.4 Confusion Matrix

To create the confusion matrices each of the digits in the test set were fed to a trained LSTM
classifier sequentially and for each instance of a digit classification an entry in an 11x11 (0,0,1,2...,9
x 0,0,1,2,...,9) matrix was incremented. For example, if the network was fed data where a person

3



pronounces the number ’1’ and classifies it as number ’3’, the entry [3,5] (if the matrix is indexed
from 0) is incremented by 1. This procedure is repeated for the whole dataset.

Well-trained LSTMs perform too well and generate confusion matrices that are nearly impossible
to draw any conclusions from. So in order to evaluate whether there were any digits that were
more difficult to classify than others, all the matrices generated for step size 1e-3 and 1e-4 were
super positioned. To improve the visualization of the matrix, the natural logarithm of the plots were
observed.

3 Results

3.1 Hyperparameter Tuning

The networks mentioned in section 2.3 performed with the following accuracies:

Table 3: Hyperparameters

Learning rate Hidden states Accuracy
1e-3 100 98.23%

150 97.05%
200 96.01%
250 98.47%
300 98.63%

a) Ċost and Accuracy with 100 hidden states b) Ċost and Accuracy with 150 hidden states

c) Ċost and Accuracy with 200 hidden states d) Ċost and Accuracy with 250 hidden states

4



e) Ċost and Accuracy with 300 hidden states

Table 4: Hyperparameters

Learning rate Hidden states Accuracy
1e-4 100 95.89%

150 96.74%
200 96.82%
250 97.06%
300 96.78%

a) Ċost and Accuracy with 100 hidden states b) Ċost and Accuracy with 150 hidden states

c) Ċost and Accuracy with 200 hidden states d) Ċost and Accuracy with 250 hidden states

5



e) Ċost and Accuracy with 300 hidden states

Table 5: Hyperparametrs

Learning rate Hidden states Accuracy
1e-5 100 89.17%
1e-6 100 23.69

a) Ċost and Accuracy with step size = 1e-5 b) Ċost and Accuracy with step size = 1e-6

Table 6: Hyperparameters and Accuracy

Learning rate Hidden states Accuracy
1e-1 100 9.09%
1e-2 100 96.86%

6



a) Ċost and Accuracy with step size = 1e-1 b) Ċost and Accuracy with step size = 1e-2

a) Ċombined natural logarithmic confusion matrix of all networks with step size 1e-3 and 1e-4 presented in section 2.3

a) Ċost and accuracy over batch iterations b) Ṅatural logarithmic confusion matrix

Figure: The best performing network uses a step size of 1e-3 with 300 hidden states and has an
accuracy of 98.63% on the test set

7



4 Discussion and Conclusions

4.1 Dataset

Since we only used the single digit sequences in the dataset we limited our dataset greatly. A future
investigation that would be interesting is to pre-process the data in a more general way which would
allow for sequence training. In theory, training a complex network with sparse amount of data will
make it prone to overfitting. As mentioned below this influenced our choice of heavy regularization.

4.2 Grid Search

For the grid search it was clear that for this case a learning rate of 1e-5 to 1e-4 all performed
acceptably well. We sadly did not have enough time with a GPU to run more iterations on a few of
the step sizes which is why some of the worse performing step sizes were not included in the full
grid search. for example, 1e-1 (3.1) did not even perform better than random and 1e-6 (3.1 never
converged.

For better results we would also have wished to perform a random search but did not feel we had
enough time to run enough search pairings to gamble on a random search. In our minds there was a
scenario where we would draw bad pairings and reach no conclusion or a false one. At least with
our approach we could do the search in smaller steps and narrow down the search fields manually.
Another thing we would have liked to try is an adaptive step size but we leave that to future attempts.

We would also have used a lower number of iterations because the models converged fast enough and
it would have saved us time. We also propose using a validation error to cancel the training when the
network has converged.

4.3 Confusion Matrix

In the confusion matrix 3.1 we can see that although the models perform very well (>96%) it is
most prone to confuse the digits two and nine and in general performs the worst on classifying the
digit nine. Since the dataset is sparse this can be a result of the dataset containing very significant
differences in the way the speakers are pronouncing nine. Therefore, the network is not able to
generalize and learn the pattern. Another approach we would like to have tried is training a few
networks over fewer iterations in order to generate networks that perform worse than our networks.
Super positioned confusion matrices from these attempts could give insight as to which digits are
more difficult for the networks to learn.

4.4 Learning Influence of Hyperparameters

As the background research suggested the hyperparameters that will have the biggest influence on the
performance of the network are the amount of hidden states and the step size. The best results were
achieved using hidden states in the magnitude of 102 and step size 10−3, the final parameter setup
displayed in 3.1 ensured a fast convergence rate with a test set accuracy of 98.63%. While learning
performance measured in time and computations is vital apart from accuracy, it is of course essential
not to overfit the network. Different dropout rates were tried and with a probability of 1 to consider
all weights in the forward pass the network was overfit within 200,000 iterations. For lower drop-out
rates; 0.25 and 0.5, the network performed worse and thus 0.75 was used for all experiments. Not
using any regularization at all when training an LSTM is not recommended.

The amount of hidden states for each LSTM layer is as mentioned one of the most vital features
together with the learning rate. An experiment was made, increasing the size from 10 to 500 with
steps at 10, 50, 100, 150, 200, 250, 300 and 500. When analyzing the edge cases one can see that
using very few hidden states will make the model too simple and it will not be able to capture even
very general patterns. Increasing the size to 500 will instead make to model too complex, and even
when dropping 25% of all weights the network is overfit and the network performance worse than
with e.g. 300 hidden states.

8



References
[1] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent

is difficult,” Trans. Neur. Netw., vol. 5, no. 2, pp. 157–166, Mar. 1994. [Online]. Available:
http://dx.doi.org/10.1109/72.279181

[2] Olah. Understanding lstm networks. Accessed: May 2017. [Online]. Available: http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

[3] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory based recurrent neural
network architectures for large vocabulary speech recognition,” CoRR, vol. abs/1402.1128,
2014. [Online]. Available: http://arxiv.org/abs/1402.1128

[4] A. Graves, D. Eck, N. Beringer, and J. Schmidhuber, Biologically Plausible Speech Recognition
with LSTM Neural Nets. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 127–136.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-27835-1_10

[5] X. Wang, S. Takaki, and J. Yamagishi, A Comparative Study of the Performance of HMM, DNN,
and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora,
9 2016.

[6] G. D. R. Gary Leonard, “Tidigits ldc93s10,” 1993. [Online]. Available: https:
//catalog.ldc.upenn.edu/ldc93s10

[7] P. Cryptography. Mel frequency cepstral coefficient (mfcc) tutorial. Accessed: May
2017. [Online]. Available: http://practicalcryptography.com/miscellaneous/machine-learning/
guide-mel-frequency-cepstral-coefficients-mfccs/#what-is-the-mel-scale

[8] HTK. Hidden markov model toolkit. Accessed: May 2017. [Online]. Available:
http://htk.eng.cam.ac.uk/

[9] aymericdamien, “recurrent_network.py,” GitHub repository, 2017.

[10] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A search space odyssey,” CoRR, vol. abs/1503.04069, 2015. [Online]. Available:
http://arxiv.org/abs/1503.04069

9

http://dx.doi.org/10.1109/72.279181
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1402.1128
http://dx.doi.org/10.1007/978-3-540-27835-1_10
https://catalog.ldc.upenn.edu/ldc93s10
https://catalog.ldc.upenn.edu/ldc93s10
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/#what-is-the-mel-scale
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/#what-is-the-mel-scale
http://htk.eng.cam.ac.uk/
http://arxiv.org/abs/1503.04069

	Introduction
	Neural Networks and Sequential Data
	Long Short Term Memory - LSTM
	Why LSTM?
	Previous Work
	Project Aim

	Method
	Pre-Processing of the Data
	Neural Network Model
	Hyperparameter Optimization
	Confusion Matrix

	Results
	Hyperparameter Tuning

	Discussion and Conclusions
	Dataset
	Grid Search
	Confusion Matrix
	Learning Influence of Hyperparameters


