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Abstract

We compared a couple of n-gram smoothing methods: Katz smoothing, Witten-Bell1

smoothing (interpolation and backoff) and modified Kneser-Ney smoothing (inter-2

polation and backoff). These methods were compared intrinsically and extrinsically3

with cross-entropy and word error rate respectively. The smoothing methods were4

compared with regards to different data sizes and found that it had can have a sig-5

nificant impact on the relative performance of the different methods. In general the6

difference in cross-entropy decreased with increased data size while the difference7

in word error can shift rapidly. Additionally, we showed that modified Kneser-Ney8

smoothing is better consistently better then other smoothing methods and that the9

backoff version of the Kneser-Ney smoothing might be better than the interpolated10

version for speech recognition. Finally, results showed smoothing methods have a11

significant impact on word error rate, improving it with up to 2%.12

1 Introduction13

An n-gram language model tries to estimate the probability of a each word given the previous n− 114

words. This is denoted as the conditional probability P (wi|wi−1
i−n+1) and the maximum likelihood15

estimate is16

PMLE(wi|wi−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

(1)

where c(wk
j ) is the frequency of the word sequence in the training data.17

Equation 1 is not used in practice due to the out-of-vocabulary (OOV) problem. The OOV problem is18

that equation 1 assigns zero probability to unseen n-grams and because our training data is fraction19

of all data, we will have many OOV n-grams. To avoid the OOV problem, we distribute some of20

the probability mass from seen n-grams to unseen n-grams, this technique is called smoothing or21

discounting.22

This redistribution is called smoothing or discounting. We compared five different smoothing models23

based on Katz smoothing, Kneser-Ney discounting or Witten-Bell discounting. For all methods we24

tested backoff models and in addition to that we tested interpolated models for Kneser-Ney and25

Witten-Bell discounting.26

Backoff and interpolation is essential for good n-gram language models [5]. Backoff is a smoothing27

technique where you use lower order n-grams if the data of higher order n-grams are not good enough.28

This is usually determined with a cutoff value k where n-grams with counts lower than k are backed29

off. Interpolation is a smoothing technique where you interpolate higher order n-gram with lower30

order n-grams.31
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1.1 Katz smoothing32

The Good-Turing frequency estimates [2] states that an n-gram seen r times should be treated as33

being seen r∗ times where34

r∗ = (r + 1)
nr+1

nr
(2)

where nr is the number of n-grams seen exactly r times.35

Katz smoothing [3] is based on the Good-Turing frequency estimate. Katz smoothing discounts the36

MLE with the Good-Turing frequency estimate for all n-grams where r is less than a cutoff value.37

The left over probability is then distributed to lower order n-grams using backoff.38

Katz smoothing was one of the most widely used smoothing techniques and has been shown to be39

competitive [5].40

1.2 Witten-Bell discounting41

The intuition behind Witten-Bell discounting is that the probability of encountering unseen n-grams42

is approximately the probability of encountering an n-gram for the first time in the training set. To43

calculate that probability we want the number of unique n-grams with a specific history wi−1
i−n+1, let44

that be45

N1+(w
i−1
i−n+1) = |{wi : c(w

i
i−n+1) > 0}| (3)

We then let the Witten-Bull discounting be:46

pWB(wi|wi−1
i−n+1) =

c(wi
i−n+1) +N1+(w

i−1
i−n+1)pWB(wi|wi−1

i−n+2)∑
w′ c(w

i−1
i−n+1, w

′) +N1+(w
i−1
i−n+1)

(4)

Previous studies has shown that Witten-Bell does not perform very well, being worse than Kneser-Ney47

discounting and Katz smoothing [5].48

1.3 Kneser-Ney discounting49

Kneser-Ney discounting [4] is based on absolute discounting. In absolute discounting, we subtract a50

fixed discount D from each non-zero count, the left over probability is then distributed with lower51

order n-grams as follow:52

pabs(wi|wi−1
i−n+1) =

max(c(wi
i−n+1)−D, 0)∑

wi
c(wi

i−n+1)
+ (1− λwi−1

i−n+1
)pabs(wi|wi−1

i−n+2) (5)

where53

1− λwi−1
i−n+1

=
D∑

wi
c(wi

i−n+1)
N1+(w

i−1
i−n+1) (6)

The difference between absolute discounting and Kneser-Ney discounting lies in the distribution of54

the left over probability. Kneser-Ney discounting replaces the unigram probability distribution with55

the probability of wi being a continuation of an n-gram. This is done by counting the number of56

n-grams that ends with wi in the training set.57

pKN(wi) =
|{wi−1 : c(wi

i−1) > 0}|
|{wi

i−n+1 : c(wi
i−1) > 0}|

(7)

The equation for Kneser-Ney discounting is thus:58

pKN(wi|wi−1
i−n+1) =

max(c(wi
i−n+1)−D, 0)∑

wi
c(wi−1

i−n+1, w
′)

+ (1− λwi−1
i−n+1

)pKN(wi|wi−1
i−n+2) (8)

Kneser-Ney discounting has been shown to be one of the best smoothing methods, consistently59

outperforming other methods [5].60
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2 Experimental methodology61

2.1 Smoothing implementation62

We used the SRI Language Model (SRILM) toolkit version 1.5.6 to build the language models. All63

the n-gram language models we built and tested were of order three.64

The left over probability of unigram distribution were distributed to unseen words from our dictionary.65

2.1.1 Absolute discount66

We implemented absolute discount as a baseline model. We implemented absolute discount with a67

discount coefficient D = 0.5 and backoff. The backoff was done when there was no history for the68

n-gram, i.e. when c(wi
i−n+1) = 0.69

2.1.2 Katz smoothing70

We implemented Katz smoothing with the maximum cutoff k = 7 or lower depending on the discount71

coefficients. The cutoff value k was set to 7 unless there was a discount coefficient dr where r ≤ k72

violating the condition 0 < dr < 1, if the condition was violated k was lowered until no dr violates73

the condition.74

2.1.3 Kneser-Ney smoothing75

We built both a backoff and an interpolated version of Kneser-Ney smoothing with modified discount76

coefficients. In the modified Kneser-Ney smoothing [5], the discount depends on the frequency of the77

n-gram as follows:78

Dr =


1− 2Y n2

n1
r = 1

2− 3Y n3

n2
r = 2

3− 4Y n4

n3
r ≥ 3

(9)

where79

Y =
n1

n1 + 2n2
(10)

and nr is the number of n-grams seen r times.80

2.1.4 Witten-Bell smoothing81

We built both a backoff and an interpolated version of the trigram Witten-Bell smoothing.82

2.2 Data83

We used data from Google’s 1 Billion Word Language Model Benchmark corpus and Voxforge84

dataset. The Google corpus consists of 0.8 billion words of English text from WMT11 website [1].85

From the Google corpus, we used 10 million sentences as training data and 3 million sentences for86

intrinsic evaluation. The Voxforge dataset consists of 12 thousand audio recordings and prompts[6].87

From the Voxforge dataset we used a thousand audio recordings and prompts as a test set for extrinsic88

evaluation. In addition to the audio recordings and prompts, we used the Voxforge acoustic model for89

our ASR and Voxforge dictionary of 124,313 words as our dictionary. All of our datasets were built90

so that all words appears in the dictionary.91

2.3 Intrinsic Evaluation92

For measuring intrinsic performance we used cross-entropy. For a test set T composed of sentences93

(t1, t2, . . . , tN ) we calculate the probability of the test set as:94

P (T ) =

N∏
i=1

p(ti) (11)
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The cross-entropy of the test set H(T ) is then defined as:95

H(T ) = − 1

WT
log2 p(T ) (12)

where WT is the number of words in the test set. Due to that the cross-entropy decreases with higher96

test set probability, lower cross-entropy is better.97

2.4 Extrinsic Evaluation98

An improvement in intrinsic performance does not guaranteed an improvement in the performance99

of a speech recognition system. Extrinsic evaluations is therefore necessary to compare language100

models in speech recognition.101

The metrics used for extrinsic evaluation was the word error rate (WER). WER is based on the102

Levenshtein distance in a word level and is calculated with,103

WER =
S + I +D

N
(13)

where104

• S is the number of substitutions,105

• I is the number of insertions,106

• D is the number of deletions, and107

• N is the number of words in the reference.108

The ASR we used was CMU Sphinx, an open source speech recognizer.109

3 Results110

Figure 1: Intrinsic performance of various methods.
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Figure 2: Intrinsic performance of various methods relative to the baseline.

[H]111

Figure 3: Intrinsic performance of various methods relative to the baseline, range 105 to 107 sentences.
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Figure 4: Extrinsic performance of various methods.

Figure 5: Extrinsic performance of various methods relative to the baseline.

4 Discussion and Conclusions112

Previous work done by Chen and Goodman [5] is conflicting with our results. The work done by113

Chen and Goodman are very inspired us to do this study. They tested several n-gram smoothing114

techniques with several corpora and with many different parameters for the smoothing methods. They115

introduced the modified Kneser-Ney discount technique and showed that it outperformed all the other116

methods and we confirmed this result. However, their results for Witten-Bell smoothing and Katz117

smoothing is conflicting with our results.118

Figures 1 to 3 shows that Katz-smoothing is better than Witten-Bell when the training data is large,119

this conflicts with the Chen and Goodman study. The Chen and Goodman study showed that Katz120

smoothing is always better than Witten-Bell smoothing and that Witten-Bell smoothing approaches121

the performance of Katz smoothing with larger training set. This is conflicting with figure 3 which122

shows that Katz smoothing is initially worse that Witten-Bell smoothing but is better when the size of123

the training set increases.124

Figures 1 to 3 shows that Witten-Bell should be used with backoff and Kneser-Ney should be interpo-125

lated. Figure 2 shows that interpolation should be used with Kneser-Ney because the interpolated126

version is strictly better than the backoff version. The same figure shows that Witten-Bell is always127

better with backoff but in figure 3 we can see that the interpolated version is almost as good with128
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larger training sets. With more training data, the interpolated version might actually outperform the129

backoff version of Witten-Bell smoothing. These results suggest that backoff and interpolation should130

be chosen with regards to the underlying smoothing method and perhaps also the size of the training131

data.132

Figure 4 to 5 shows that the cross-entropy reflects WER in general but not always. For lower training133

set sizes the cross-entropy reflects the WER but not for larger training sets. Backoff Kneser-Ney have134

better WER than the interpolated version, that is the opposite of the cross-entropy score. The Witten-135

Bell versions performs differently as well, backoff version being much better than the interpolated in136

WER while in cross-entropy they have similar performance. This might be due to the small test set of137

just 1000 prompts or that the prompts does not come from the same dataset as the training set.138

Our experiments showed that the correlation between cross-entropy and WER is quite strong and139

that the interpolated Kneser-Ney smoothing is the best method in general but that the backoff version140

of Kneser-Ney might be better for speech recognition. To determine which is actually better for141

speech recognition, tests should be performed with a relevant dataset with the appropriate size. Our142

experiments showed that the performance of Katz smoothing might depend heavily on the datasets143

because it had the worst performance in our study but was among the better methods in the study144

made by Chen and Goodman.145
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