
Neural Probabilistic Language Models for Speech
Recognition

DT2119 Project Report

Dmytro Kalpakchi
dmytroka@kth.se

Abstract

Language model is an important component of any speech recognizer, as it navi-
gates the search among alternative word hypotheses. A traditional approach relies
on n-grams that use previous n− 1 words to get a probability distribution for an nth

word using maximum likelihood estimate. N-grams are still very popular because
they’re computationally cheap and lead to successful results. However, as the order
of n-grams increases, the problem of data sparsity becomes critical. In order to
generalize to unseen cases different kinds of smoothing, back-off and interpolation
methods are used. In this paper a different approach to addressing these unseen
cases is considered, based on neural probabilistic language models.

1 Introduction

If a person says

Could you, please, close the ...

you would probably expect to hear door as the next word more than floor. However it’s harder to
differentiate such cases for speech recognizer given that a-priori probabilities for all words are equal.
Therefore, language model (LM) that assign meaningful prior probabilities to each possible next
word, given a text, is of major interest. The class of LMs that deals with sequences of words in
a probabilistic way is called stochastic language models. The most popular model in this class is
n-gram LM which estimates the probability of the next word given n− 1 previous using maximum
likelihood estimate (MLE):

P (wi|wi−1
i−n+1) =

count(wi
i−n+1)

count(wi−1
i−n+1)

(1)

Researchers usually get state-of-the-art results by setting n = 3, i.e. using trigrams. However, pure
3-grams (and n-grams in general) can’t deal with new combinations of words, unseen in training data,
as an MLE of their probability is zero. This is the effect of data sparsity, as the number of these unseen
(or out-of-vocabulary, OOV) cases grows with the order of n-grams. Smoothing is a traditional way
to deal with this problem. Smoothing techniques are smart tricks aiming to redistribute probability
mass from seen to unseen words.

It is argued in [7] that there are at least two properties of such approach that "beg to be improved
upon":

1. wider contexts should be used (2 words are definitely not enough);

2. semantical and/or grammatical similarity between words should be taken into account.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

The idea of the last point is that from "Mom is going to cafe" we should be able to generalize to
"Mom was going to restaurant", as "cafe" and "restaurant" are semantically similar, "is" and "was"
have similar grammatical roles.

The idea of exploring semantical and grammatical similarities of words is very popular in modern
research. Semantical and grammatical structure of the language is explored by embedding each
word in a high-dimensional space where each dimension is responsible for several semantical and/or
grammatical aspects. Two very famous models are word2vec introduced in [10] and GloVe introduced
in [11]. One of the papers that laid foundation for this "word vector revolution" is a paper [7], used as
a base for this project.

Briefly, in [7] it is proposed to learn both word vectors (in high-dimensional space) and probabilities
for all words in the same time. The model is supposed to generalize by assigning high probability
to an unseen sequence if it consists of similar words. The models for achieving two described
goals are called neural probabilistic language models (NPLM). NPLMs were expected to perform
well for speech recognition [7], and later in [12] and [8] they were used for speech recognition and
outperformed n-grams.

In this project we explored NPLM as a language model for speech recognition and compared it to
trigram language model smoothed using Chen and Goodman’s modified Kneser-Ney discounting [9].
Both LMs were evaluated outside of speech recognition domain using perplexity metric (intrinsic
evaluation) and in the context of speech recognition using word error rate (extrinsic evaluation).

2 Neural Probabilistic Language Model

Formally, NPLM is defined in [7] as follows. Let V be the vocabulary of all wordswi ∈ V in the train-
ing set w1, . . . , wN . We want to learn a statistical language model that computes the probability of
the next word given n−1 previous and produces high likelihood for OOV cases. Considering Markov
assumption, the model can be formally written f(wi, w

i−1
i−n+1) = P (wi|wi−1

i−n+1) = P (wi|wi−1
1).

The model f has only two constraints for any wi−1
1 :

|V |∑
j=1

f(wi = j, wi−1
i−n+1) = 1 (2)

f(·, wi−1
i−n+1) > 0 (3)

Let’s decompose the function f(wi, w
i−1
i−n+1) into two parts:

1. a mapping LT from any word wi ∈ V to a distributed feature vector LT (wi) ∈ Rm;

2. the probability function g that maps a sequence of distributed feature vectors for words in
context (LT (wi−n+1), . . . , LT (wi−1) to a conditional probability distribution for the next
word wi over all possible words in V , i.e.:

f(wi = j, wi−1
i−n+1) = g(wi = j, LT (wi−1

i−n+1)) (4)

This composition of two functions g and LT can be represented with a neural network with the
architecture shown on the figure 1.

Each of the layers has parameters Θ associated with it. Parameters of the embedding layer, corre-
sponding to the mapping LT , are feature vectors for the word in context, usually represented by a
|V | ×m matrix T where row Ti represents a feature vector LT (wi). Interestingly a function g can
be a neural network itself with feed-forward or recurrent topology and generic parameters ξ. The
network is trained by maximizing the regularized log-likelihood L w.r.t. Θ:

L =
1

N

∑
i

log f(wi, w
i−1
i−n+1; Θ) +R(Θ), (5)

where Θ = {T, ξ} and R(Θ) is a regularization term.

2

wi−n+1

. . .

wi−2 wi−1

LT (wi−n+1)

. . .

LT (wi−2) LT (wi−1)

hidden layer(s)

softmax

g

Figure 1: Architecture of neural network g(wi = j, LT (wi−1
i−n+1))

The number of hidden layers in feed-forward architecture may vary. Another possibility is to
implement function g as a recurrent neural network. For the purpose of this project, it was chosen to
use the architecture with two hidden layers. The decision was inspired by its successful application
in machine translation [13] (outperformed a baseline 5-gram model) and speech recognition [12]
(performed better than 3-grams, but worse than 4-grams). It leads to a thought that two hidden layer
networks might capture grammatical and semantical similarities better leading to more meaningful
probabilities of final language model.

3 Experiments

It was decided to focus only on training NPLMs based on trigrams, i.e. feeding two words as input
and trying to predict the third one. In all experiments neural network for NPLM training had 2 hidden
layers, both with tanh activation function. Input words were embedded into 30-dimensional space,
the first hidden layer contained 100 neurons, the second - 30 neurons. NPLMs were trained for 15
epochs on datasets train2580 and train25800 and only for 8 epochs on dataset train258000, because
of computational reasons (took 20 hours to train 8 epochs on PDC).

All trained NPLMs were compared with baseline trigram back-off language model that used modified
Kneser-Ney discounting [9] as a smoothing technique.

3.1 Data

For language models training and testing, subsets of Google’s 1 Billion Word Language Model
benchmark dataset [1] were used. Subsets of larger size include the sentences from the subsets of
all smaller sizes. The characteristics of all training subsets are described in table 1. In order to give
a language model a chance to learn some probability of unseen words, the vocabulary of k most
frequent words was chosen for training subsets where k is the closest divisible by 500 number to the
number of unique words in training set, but no more than 60000 words.

3

Table 1: 1 Billion Word Language Model benchmark dataset training subsets’ characteristics
ID Number of sentences Number of unique words Vocabulary size

train2580 2580 9684 9500
train25800 25800 34266 34000
train258000 258000 102843 60000
test 287562 107980 -

The same vocabulary is then used to train a trigram model with only difference that 3 technical words
are added for NPLM:

• <s> to denote the start of a sentence;
• </s> to denote the end of a sentence;
• <unk> to denote OOV cases.

For the extrinsic evaluation of language models (in the context of speech recognition) the VoxForge
open source dataset [2] was chosen. Language model was evaluated on the test set of 8kHz wav audio
files using acoustic models (version 0.1.3) for CMU Sphinx trained by VoxForge. The train/test split
defined by VoxForge was used to maintain the validity of performed evaluation.

Table 2: VoxForge dataset characteristics
Number of training audio files 42142
Number of test audio files 4682

3.2 Intrinsic Evaluation

Perplexity (PP), used for an intrinsic evaluation of the LM, is defined as,

PP (wN
1) = P (wN

1)−1/N =

N∏
i1

P (wi|wi−1
1)−1/N (6)

where N is the number of words in the test data for calculating perplexity.

Due to the inverse in eq. 6, higher likelihood of a word sequence implies lower the perplexity.
Therefore, maximizing the likelihood, which is a part of NPLM’s objective function (5), leads to
minimizing a perplexity of LM.

3.3 Extrinsic Evaluation

However, improvement of perplexity doesn’t imply a proportional improvement of speech recognition
accuracy. Therefore, evaluation in context of speech recognizer is needed. Word error rate (WER) is
usually used for such evaluation and is defined as follows.

WER =
S + I +D

N
(7)

where

• S is the number of substitutions,
• I is the number of insertions,
• D is the number of deletions, and
• N is the total number of words.

However, it’s impossible to evaluate WER of only trigrams using CMU Sphinx, that’s why, in order
to evaluate NPLMs extrinsically, a rescoring procedure was used. Rescoring for evaluating NPLMs in
speech recognition was described in detail in [8]. The output of NPLM was limited to k most frequent

4

unique words in the training set, called a shortlist. For all the words in a shortlist the probabilities
PNPLM(wt|ht) were calculated by NPLM for the case of |ht| = 2, i.e. trigrams. To get a rescored
model, a baseline trigram model was used with probabilities PB(wt|ht) for each uni-, bi- and trigram.
Uni- and bigrams were transferred to a rescored model as-is. For trigrams the probability mass of all
words in a shortlist was redistributed according to the equation below.

P̂ (wt|ht) =

{
PNPLM (wt|ht) · PS(ht), if wt is in shortlist
PB(wt|ht), otherwise

(8)

where PS(ht) =
∑

w∈shortlist(ht)

PB(w|ht) and |ht| = 2, as we’re focused on trigrams. As all the

probabilites in ARPA language model format are calculated in log-domain, the (8) changes to:

log P̂ (wt|ht) =

{
logPNPLM (wt|ht) + logPS(ht), if wt is in shortlist
logPB(wt|ht), otherwise

(9)

where logPS(ht) = log(
∑

w∈shortlist(ht)

PB(w|ht))

3.4 Technologies used

NPLM toolkit [4] was used for training NPLMs. Trigram back-off models with Kneser-Ney smoothing
and perplexity of all LMs were evaluated using SRILM toolkit [6]. WER was evaluated using
pocketsphinx, part of CMUSphinx, open source speech recognition toolkit [5]. All language models
were stored in ARPA format [3].

4 Results

Results of intrinsic and extrinsic evaluation of NPLMs vs baseline model are presented in table 3.

Table 3: Perplexity and word error rate of NPLMs trained on datasets of different sizes.
Model Dataset Test set PP (pure) Test set PP (rescored) WER

3-gram back-off
(baseline model)

train2580 515.097 - 55.89%
train25800 532.7537 - 46.10%
train258000 349.3361 - 40.94%

NPLM
train2580 667.282 636.4265 57.08%
train25000 1041.97 958.7714 49.01%
train250000 1083.59 1122.079 46.10%

Evidently, models, re-scored with NPLMs perform worse than the baseline model. NPLMs have
higher perplexity on the test set and higher WERs on VoxForge test dataset. However, test perplexity
of rescored models does not give a meaningful proxy to a word error rate (the same anomaly is
reported in [12]). The reason for this is that the number of trigrams is quite small compared to uni-
and bigrams which means that WER should not be influenced that much, while perplexity, being
probabilistic metric, may suffer after re-scoring. In order of investigate if bad performance can be
explained by insufficient amount of training epochs, the log-perplexity over training epochs was
plotted in figure 2.

5

0 2 4 6 8 10 12 14
Training epoch

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Lo
g-

pe
rp

le
xi

ty

train2580
train25800
train258000

Figure 2: Perplexity (in log-domain) on training set over training epochs for NPLM. Dashed lines
represent the corresponding baseline model perplexity

As one can see, perplexity does not fluctuate during training and has a clear diminishing trend which
means that more training is probably needed to reach a perplexity (and WER) of a baseline model. As
quite small amount of training data was used (because of long computational time), compared to usual
amount of data used for training language models, validation set was not used to track overfitting.
Thereafter, in order to check if model overfitted or not, its performance was evaluated on test set
for the last three epochs. If the trend is diminishing, the model did not overfit. The results of this
evaluation are presented in table 4.

Table 4: Evaluation on test set of NPLM models trained in last three epochs
Dataset Epoch Test set PP (pure)

train2580
13 689.764
14 677.427
15 667.282

train25800
13 1053.45
14 1047.3
15 1041.97

train258000
6 1092.34
7 1087.32
8 1083.59

The models did not overfit, which means that increasing the number of training epoch would be a
reasonable step in order to increase the performance.

5 Discussion and Conclusions

It was shown in [12] and [8] that NPLMs trained using a neural network with one hidden layer can
improve model perplexity and speech recognition performance if they trained on large enough text
corpora and sufficient amount of time. The smallest corpus, used in both papers, contained 7 million
words, compared to near 100000 words of the largest corpus used in this project.

For the corpora tested in this project, the speech recognizer performance became slightly worse after
applying re-scoring trigram back-off model with NPLM. The main reason for this is using small

6

amount of data due to computational complexity of chosen NPLMs, that resulted in insufficient
amount of training epochs. It turned out to be too demanding to train NPLMs using a neural network
with two hidden layers (took 20 hours to train a neural network on train258000 dataset for 8 epochs
only on PDC!). The performance didn’t increase, but the diminishing perplexity trend is clear. It
means that such models have potential to outperform n-grams given sufficient amount of training
data and computational resources. However, the facts that NPLMs require significantly more time to
be trained while the performance gains are not that big (if any), might prevent them for being widely
adopted for speech recognition.

Nonetheless, as we live in the era of Deep learning, it might be sufficient to try a two layer fully
connected network with, for instance, ReLU activation function instead of tanh. Using optimizers,
different from mini-batch gradient descent, for instance Adam, might also lead to faster training of
NPLMs in terms of epochs number. Another possible improvement, which was actually suggested by
Bengio in [7], is using RNNs instead of feedforward networks, however training time might still be a
problem.

Another disadvantage of NPLMs, in addition to training time, is the absence of isolated evaluation
method. As NPLMs can’t generate 1-gram models, it’s hard to evaluate only NPLMs in real speech
recognizer without using re-scoring procedure.

References
[1] 1 billion word language model benchmark. URL http://www.statmt.org/

lm-benchmark/.

[2] Free speech... recognition (linux, windows and mac) - voxforge.org. http://www.voxforge.
org/. accessed 06/25/2014.

[3] Arpa-mit lm format specification. URL http://www1.icsi.berkeley.edu/Speech/docs/
HTKBook3.2/node213_mn.html.

[4] Neural probabilistic language model toolkit. URL https://nlg.isi.edu/software/
nplm/.

[5] Cmusphinx open source speech recognition toolkit. URL https://cmusphinx.github.io/.

[6] The sri language modeling toolkit. URL http://www.speech.sri.com/projects/srilm/.

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. J.
Mach. Learn. Res., 3:1137–1155, Mar. 2003. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=944919.944966.

[8] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain. Neural Probabilistic
Language Models, pages 137–186. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN
978-3-540-33486-6. doi: 10.1007/3-540-33486-6_6. URL http://dx.doi.org/10.1007/
3-540-33486-6_6.

[9] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language modeling.
In Proceedings of the 34th annual meeting on Association for Computational Linguistics, pages
310–318. Association for Computational Linguistics, 1996.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781, 2013. URL http://arxiv.org/abs/1301.3781.

[11] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In EMNLP, volume 14, pages 1532–1543, 2014.

[12] H. Schwenk and J.-L. Gauvain. Neural network language models for conversational speech
recognition. In INTERSPEECH, 2004.

[13] A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang. Decoding with large-scale neural language
models improves translation. In EMNLP, pages 1387–1392. Citeseer, 2013.

7

http://www.statmt.org/lm-benchmark/
http://www.statmt.org/lm-benchmark/
http://www.voxforge.org/
http://www.voxforge.org/
http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node213_mn.html
http://www1.icsi.berkeley.edu/Speech/docs/HTKBook3.2/node213_mn.html
https://nlg.isi.edu/software/nplm/
https://nlg.isi.edu/software/nplm/
https://cmusphinx.github.io/
http://www.speech.sri.com/projects/srilm/
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://dx.doi.org/10.1007/3-540-33486-6_6
http://dx.doi.org/10.1007/3-540-33486-6_6
http://arxiv.org/abs/1301.3781

	Introduction
	Neural Probabilistic Language Model
	Experiments
	Data
	Intrinsic Evaluation
	Extrinsic Evaluation
	Technologies used

	Results
	Discussion and Conclusions

