Phoneme Classification Using Transfer Learning
from Image Classification

Axel Joigneau Sylvain Potuaud
SCR Student SCR Student
KTH KTH
joigneau@kth.se potuaud@kth.se
Abstract

With the development of the Deep Learning applied to the Automatic Speech
Recognition, many methods and techniques are explored in order to get the best
performance possible. Since the sound is characterized by its frequencies, what
about analyzing the speech as an image, using its spectrum representation ? In
this project we try to classify different phonemes using Transfer Learning. A
relatively high performance is achieved since our classifier reaches 82% accuracy
with different phonemes.

Andrew Ng who is chief scientist at Baidu and professor at Stanford, said during
his NIPS 2016 tutorial that transfer learning will be the next driver of ML commer-
cial success[1]. This made us curious to know how far transfer learning could work.

1 Introduction

Our first project idea was to use Speech Recognition as a learner for foreign languages. Here is
the paper that interested us first [2]. The goal was to create a kind of game whose target are young
non-native speakers that will learn with a network trained from adult native speakers speeches. For
this idea we wanted to focus on phonemes pronunciation, but the topic was already well covered by
other projects, so we decided to try something new.

Numerous research projects have been carried out on Deep Learning, for both Speech and Image
Recognitions. But what about mixing these two ? Since we can represent speeches as spectral
images, it seems possible to do image recognition on the spectral representation in order to classify
sounds. In this paper [3] Daniel Nouri worked for the Kaggle Whale Detection Challenge, which
asked competitors to classify two-second audio recordings, some of which had a certain call of a
specific whale on them, and others didn’t. His work is actually similar to ours since he decided to
frame the problem of finding the whale sound patterns as an image recognition problem, by turning
each two-second sound clips into spectrograms. A similar method has also been used for Emotion
Prediction in this paper [4]. They also use a network based on convolutional layers and trained with
spectrum pictures, and they reached 93% accuracy for anger, which shows that using FFT spectrums
can be efficient. Their dataset and goal are different though : since they want to classify emotions,
they might pay more attention to speech tones than to speech pronunciations.

2 Method

Transfer learning is a technique that takes a deep fully-trained model, and retrains it for new classes.
This network, based the Inception-v3 model[6], contains mainly convolutional layers, but also pooling
layers and a fully-connected one at the end.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

We have used TensorFlow because it’s the most adapted and documented library to work with the
Inception model.

2.1 The Network

It was revealed that a lot of applications make use of convolutional networks, especially for visual
recognition [5]. Actually, when dealing with high-dimensional inputs such as images, it is impractical
to connect neurons to all neurons of the previous layer. The high number of parameters would be
synonymous with overfitting. Instead, it is better to connect each neuron to only a local region of the
input volume, which is the general difference between a convolutional layer and a fully connected
layer. A convolutional layer operates on a part of the data, instead of all of it, and generally uses
multiple filters, which are matrix operator used to calculate the output of a convolutional node. The
filter moves across the image and multiplies the input values by the filter’s value to produce the output.
The mechanism is similar to a Sobel operator in an edge detection process. Typical sizes of the filter
is 3x3 or 5x5.

Generally, a convolutional layer consists of many filters, which means that every filter operation is
done multiple times at each position in the image, using filters of the same size, but with different
values. This means that the output of each filter will differ, depending on the input features, which
enables a convolutional layer to store specific information about image features in each filter. In
theory this enables a filter to "learn” specific features that later layers can use do determine the image
class.

In addition to a convolutional layer, a pooling layer is used in order to affect the output of a
convolutional layer. The pooling layer is a layer that reduces the size of the convolutional layer, by
using an area max search, which is a fixed size area moving across the input, outputting the largest
value in that area to the output. If the area has size 2x2, and moves with a stride of 2 over the input
data, the output data will be divided in height and width by 2.

L])

Convolution
AvgPool
MaxPool
Concat

@ Dropout

@ Fully connected

@ Softmax

Figure 1: Schematic diagram of Inception-v3

2.2 Training the last layer

In this paper we will focus on a very limited retraining consisting in retraining only the last layer from
scratch. This corresponds to use the values of the last layer of the deep network as features to train a
simple one layer network. This has been proven to be efficient, especially in image classification.
Features obtained thanks to this process perform better than hand-engineered features on image
classification[4].

Of course the results of this method cannot be better than the results of a fully trained on the specific
task deep neural network, because there are much less parameters that we can adjust. But it is much
faster and requires fewer labeled data, which makes it still interesting.

Trying to use a network trained to recognize images of object in order to recognize images of speech
is very challenging. That is why our goal is not to outperform current state-of-the-art phoneme
recognition methods, but rather to see if this method is usable or totally ridiculous.

As previously said, the Inception-v3 model is used in this paper as a starting point for the transfer
learning. This model is one of the best models in image classification, it matches or exceeds human
performance in some domains. It has a 21.2% top-1 and 5.6% top-5 error rate[6]. It has been trained
over 1000 classes using data from ImageNet[7].

For the transfer learning we take the 2048 features just before the final softmax layer of Inception-v3.
We use them as input to train one layer to classify 21 new classes (21 phonemes).

SoftMax
Output of Inception

Fully connected
Last layer of inception

Fully connected
Our classifier

~0h8
w2

1x 2048

Our modification

Pool
Inception

Figure 2: Last layer added to Inception-v3 for the transfer learning to 21 new classes

Another important aspect of this project was to generate images from the speech. On this aspect there
are many possibilities. Our goal was to test several ones to see which ones are the most efficient.
The idea is to use the same process used to create the usual hand-engineered features of speech
recognition, the MFCC, but to stop earlier. In fact the interest of having a very deep network is that it
doesn’t need such features.

Even when what should be represented as a picture is fixed, there still need to choose some parameters
such as the size of the picture and how to use the colors.

MFCCs Calculation
e —f pre-emph | windowing |—] FFTI_)W

spectrum of /a7

80 H ﬁ:i :: : : N
. /\’\,‘,\ log() Mel Filterbank
40
0 10 15
filterbank channels
l . cepstrum of fa
Cosine 20 .
Transform — 0

] cz2 c3 c4

Figure 3: MFCC Steps[8]

3 Experiments

For the experiments we have used the TIDIGITS database [9] because we are familiar with it and
it is adapted to our needs. This database contains speech that was collected by Texas Instruments.
There are 111 men speakers and 114 women speaker each pronouncing 77 digit sequences. They are
divided approximately half and half into test and training subsets.

When doing digit recognition we have used 22 speech files for each speaker : 2 repetitions

of 11 isolated digits ("oh", "zero", "one", "two", "three", "four", "five", "six", "seven", "eight" and
n . n
nine").

For the purpose of phoneme recognition, we need a division of these speech files into phonemes.
For that we have used the time aligned transcriptions of the phonemes create in lab 3 using a
GMM-HMM model trained with the same database.

Some phoneme are a lot more present in this database than some other. We have tried to
get around 500-600 pictures for each phonemes to train our model. This reduction is done by fixing
a proportion of each phoneme that should be processed, the phonemes we have used are equally
distributed among the dataset to keep its diversity. The phoneme ’ey’ is only present 210 times in the
training data so we cannot use more images.

Table 1: Training phonemes files

Phoneme 93119 7a07 ,ay’ ’eh? ’ey? ’f’ 7hh9 ’ih’ ’iy9 7k’ ’n’
Proportion used | 3 12] /4 1 I/ 4 13 Y6 Yo o Y
Number 521 553 740 631 210 505 524 638 614 602 595
Phoneme ow T s’ sil 't 't Cuw’ VO w7
Proportion used | 12 Yio Yo 1 Yo 1 1 17 Ya I3
Number 753 536 534 630 577 772 892 559 513 563
4 Results
4.1 Digits

The first results we got were on digits recognition and not on phoneme classification. We started with
that because it was easier and faster to have a first result to see if the idea of transfer learning from
image to speech can work.

We try with two different kind of pictures, the output of the MelFilterBank or directly the FFT.

(a) FBANK

(b) FFT

Figure 4: Different image representation of one digit.

As it can be seen on Table[2]the results are better directly with FFT, that is why we have decided to
use FFT in our other tests.
This is not very surprising since a very deep network tends to prefer working with data closer to the

Table 2: Results on digits recognition

Input Image Success Rate
MelFilterBank 77%
FFT 87%

‘raw’ data. But this result is interesting because it’s different than the one observed with networks of
a few layer like in Lab 3.

4.2 Phonemes

Then we apply the same method to phonemes, we also have a lot of parameters to choose to generate
the images. We have try several ones : the FFT, the logarithm of the FFT, and both the FFT and the
logarithm of the FFT on the same image using colors.

(c) RGB with red values = FFT,
green values = log(FFT) and blue
values = constant

(a) FFT (b) log(FFT)

Figure 5: Different image representation of one phoneme.

Table 3: Results on phoneme recognition

Input Image Success Rate
FFT 82%
log(FFT) 79%
FFT and log(FFT) 74%

The images of the FFT are the ones performing the best. We can try to explain that by the fact that the
logarithm emphasizes the noise and reduces the contrast of the strong components of the FFT. The
color picture having the FFT on its red canal and the log(FFT) on its green canal is not performing
well either. This surprised us at the beginning because this image contains all the informations of the
FFT. But the fact is that the first layers of the network dealing with the 3 color canals are not retrained
during our training, so they know how to interpret relation between colors in objects pictures but not
in our speech images.

4.3 Final Results

Here are more detailed result of our best model using the FFT of the phonemes.

4.3.1 Learning

We have trained during 10 000 epochs, we can see on the curve on Figure [6] that adding more epochs
will not significantly improve the results.

The difference between the training error and the validation error is not too big, that shows that we
don’t have too much overfitting.

The learning takes about 1h20 on a classical laptop running on CPU (Intel i5) with 12.500 images
and 10.000 epochs. It takes about 1h to compute the images features using Inception-v3 and 20min

Accuracy

0.900 |
0.850 -
0.800 |
0.750 |
0.700 -

0.650 |

0.000 1.000k 2.000k 3.000k 4.000k 5.000k 6.000k T.000k &.000k 9.000k 10.00k EpOCh

Figure 6: Accuracy depending on the epoch, orange : training, blue : validation

to train the one layer classifier. This time can of course been highly reduced by using the GPU. The
speed is an interesting aspect of our model when we compare it with the Lab3 model.

432 Test
output class
a total |success rate

true class ah 497 0.72
a0 585 0.87
ay 704 078
eh 616 0.91
ey 254| 0.62
f 512 0.82
hh a1 0.79
ih 673 0.79
iy 599 0.69
K 608| 0.95
n 605 0.7
ow 743 0.56
r 531 0.70
5 524 0.92
sil 656 0.90
t 9 0.81
th 743 0.89
uw 966 0.82
v 582 0.79
W a1 0.79
z 537] 0.86

10074
12658 0.80

Figure 7: Confusion matrix.

Of course the confusion matrix is almost diagonal. But sometimes we have relatively bad results
for some special phonemes. As an example, the phoneme "ow" has only 58% accuracy while the
phoneme k reaches 95%. This can be explained because the phoneme "ow" is sometimes confused
with the phoneme "r" (in the word "four" for example), which is in accordance with the similar FFTs
we get for the phonemes "ow" and "r", in the Figure [§]

(a) FFT of the phoneme "ow" (b) FFT of the phoneme "r" (c) FFT of the phoneme "k")

Figure 8

5 Discussion and Conclusions

Our results are weak compared to state-of-the-art phoneme recognition techniques, but our method
seems at least quite fast and does not require a lot of data. Our method might then be adapted to some
particular situations, and can surely be improved. Actually, as we previously said, it seems to work
better on emotion recognition [4], which can possibly be explained by the FFT that contains mainly
information about amplitudes, which is adapted for tones recognition.

One of the limits of our current method is that it is classifying the entire phoneme. This supposes that
we know the limit of each phoneme which is usually not the case. Using a fixed length for generating
the images can be a solution. Another limit comes from the dataset, due to the limited number of
words the phonemes are present in a very limited number of contexts. Using a more various dataset
will be better.

Our method can be improved by finding a way to discriminate the phonemes on which we have bad
results. Many changes on the images are possible, color can be used to convey additional information
even if we have seen that it does not alway improve the results.

References

[1] Sebastian Ruder (2016), Why Transfer Learning Now? : http://sebastianruder.com/transfer-
learning/index.html#whytransferlearningnow

[2] Adapting Automatic Speech Recognition for Foreign Language Learners in a Serious Game :
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/download/9080/9037

[3] Using deep learning to listen for whales : http://danielnouri.org/notes/2014/01/10/using-deep-learning-to-
listen-for-whales/

[4] Speech Emotion Recognition from Spectrograms with Deep Convolutional Neural Network, Abdul Malik
Badshah, Jamil Ahmad, Nasir Rahim, Sung Wook Baik, 2017 International Conference on Platform Technology
and Service (PlatCon) : http://ieeexplore.ieee.org/document/7883728/

[5] Convolutional Neural Network for Visual Recognition http://cs23 1n.github.io/convolutional-networks/

[6] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, Zbigniew Wojna (2015) Rethinking
the Inception Architecture for Computer Vision

[7] ImageNet : http://image-net.org/
[8] Giampiero Salvi (2017) DT2119 Speech and Speaker Recognition, KTH Course
[9] TIDIGITS, Linguistic Data Consortium : https://catalog.ldc.upenn.edu/LDC93S10

	Introduction
	Method
	The Network
	Training the last layer

	Experiments
	Results
	Digits
	Phonemes
	Final Results
	Learning
	Test

	Discussion and Conclusions

