Lecture 4: Outline

- Chapter 4: Hermitian and symmetric matrices, Congruence

Magnus Jansson/Mats Bengtsson

Lecture 4: Hermitian matrices

Def: A matrix $A=\left[a_{i j}\right] \in M_{n}$ is Hermitian if $A=A^{*}$.
A is skew-Hermitian if $A=-A^{*}$.
Simple observations:

1. If A is Hermitian, then A^{k} and A^{-1} are Hermitian.
2. $A+A^{*}$ and $A A^{*}$ are Hermitian and $A-A^{*}$ is
skew-Hermitian for all $A \in M_{n}$.
3. Any $A \in M_{n}$ can be decomposed uniquely as $A=B+i C=B+D$ where B, C are Hermitian and D skew-Hermitian. In fact

$$
B=\frac{1}{2}\left(A+A^{*}\right) \quad D=i C=\frac{1}{2}\left(A-A^{*}\right)
$$

4. A Hermitian matrix in M_{n} is completely described by n^{2} real valued parameters.

Hermitian matrices cont'd

A is Hermitian iff

- $x^{*} A x$ is real for all $x \in \mathbf{C}^{n}$
- A is normal with real eigenvalues
- $S^{*} A S$ is Hermitian for all $S \in M_{n}$

All eigenvalues of a Hermitian matrix are real and it has a complete set of orthonormal eigenvectors (the last fact follows as a special case of the spectral theorem for normal matrices).

Thm (spectral): $A \in M_{n}$ is Hermitian iff it is unitarily diagonalizable to a real diagonal matrix. A matrix A is real symmetric iff it can be diagonalized by a real orthogonal matrix to a real diagonal matrix.

Commutation of Hermitian matrices

Let \mathcal{F} be a family of Hermitian matrices. Then all $A \in \mathcal{F}$ are simultaneously unitarily diagonalizable iff $A B=B A$ for all $A, B \in \mathcal{F}$.

Positive definiteness

A Hermitian matrix $A \in M_{n}$ is
Positive definite if $x^{*} A x>0$ for all $x \in \mathbb{C}^{n}, x \neq 0$.
Positive semidefinite if $x^{*} A x \geq 0$ for all $x \in \mathbb{C}^{n}, x \neq 0$.
Negative definite if $x^{*} A x<0$ for all $x \in \mathbb{C}^{n}, x \neq 0$.
Negative semidefinite if $x^{*} A x \leq 0$ for all $x \in \mathbb{C}^{n}, x \neq 0$.
Indefinite if there are $y, z \in \mathbb{C}^{n}$ with $y^{*} A y<0<z^{*} A z$.
Much more on positive (semi)definiteness in Chapter 7

$5 / 21$

Quadratic forms

Bilinear form in two variables $Q(x, y)=y^{\top} A x$
Sesquilinear form in two variables $Q(x, y)=y^{*} A x$
Quadratic form Both $Q(x)=x^{T} A x$ and $Q(x)=x^{*} A x$ are commonly called quadratic forms. See homework on the need to require A to be symmetric/hermitian.
Non-homogeneous quadratic form $x^{T} A x+b^{T} x+c$ or $x^{*} A x+\operatorname{Re}\left\{b^{*} x\right\}+c$.
Homogenization Extend the vector with a scalar constant,

$$
x^{*} A x+\operatorname{Re}\left\{b^{*} x\right\}+c=\tilde{x}^{*} \underbrace{\left[\begin{array}{cc}
A & \frac{b}{2} \\
\frac{b^{T}}{2} & c
\end{array}\right]}_{\tilde{A}} \tilde{x} \text {, where } \tilde{x}=\left[\begin{array}{c}
x \\
1
\end{array}\right]
$$

Variational characterization of eigenvalues

Let $A \in M_{n}$ be Hermitian with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Thm (Rayleigh-Ritz):

$$
\begin{aligned}
& \lambda_{1}=\min _{x \neq 0} \frac{x^{*} A x}{x^{*} x}=\min _{x^{*} x=1} x^{*} A x \\
& \lambda_{n}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}=\max _{x^{*} x=1} x^{*} A x
\end{aligned}
$$

Thm (Courant-Fischer): Let S denote a subspace of C^{n}. Then,

$$
\begin{aligned}
\lambda_{k} & =\min _{\{S: \operatorname{dim}[S]=k\}} \max _{\substack{x \in S \\
x \neq 0}} \frac{x^{*} A x}{x^{*} x} \\
\lambda_{k} & =\max _{\{S: \operatorname{dim}[S]=n-k+1\}} \min _{\substack{x \in S \\
x \neq 0}} \frac{x^{*} A x}{x^{*} x}
\end{aligned}
$$

Applications of C-F thm

Thm: If $A, B \in M_{n}$ are Hermitian, then if $j+k \geq n+1$

$$
\lambda_{j+k-n}(A+B) \leq \lambda_{j}(A)+\lambda_{k}(B)
$$

and if $j+k \leq n+1$

$$
\lambda_{j}(A)+\lambda_{k}(B) \leq \lambda_{j+k-1}(A+B)
$$

Applications cont'd

Thm: If $A, B \in M_{n}$ are Hermitian, then

$$
\lambda_{k}(A)+\lambda_{1}(B) \leq \lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

Interlacing theorem: Let $z \in \mathrm{C}^{n}$ and $A \in M_{n}$ be Hermitian.
Then, for $k=1,2, \ldots, n-1$:

$$
\begin{gathered}
\lambda_{k}\left(A+z z^{*}\right) \leq \lambda_{k+1}(A) \leq \lambda_{k+1}\left(A+z z^{*}\right) \\
\lambda_{k}(A) \leq \lambda_{k}\left(A+z z^{*}\right) \leq \lambda_{k+1}(A) \\
\lambda_{k}\left(A-z z^{*}\right) \leq \lambda_{k}(A) \leq \lambda_{k+1}\left(A-z z^{*}\right) \\
\lambda_{k}(A) \leq \lambda_{k+1}\left(A-z z^{*}\right) \leq \lambda_{k+1}(A)
\end{gathered}
$$

The Poincare separation theorem

Let $A \in M_{n}$ be Hermitian, let $U \in M_{n, r}$ be a matrix with $r \leq n$ orthonormal columns and define $B_{r}=U^{*} A U$. Then

$$
\lambda_{k}(A) \leq \lambda_{k}\left(B_{r}\right) \leq \lambda_{k+n-r}(A) ; \quad k=1,2, \ldots, r
$$

Application:

$$
\begin{array}{r}
\min _{U, U^{*} U=I_{r}} \operatorname{Tr}\left(U^{*} A U\right)=\sum_{k=1}^{r} \lambda_{k}(A) \\
\max _{U,} \operatorname{Ua} \operatorname{Un}^{*}\left(U^{*} A U\right)=\sum_{k=1}^{r} \lambda_{k+n-r}(A)
\end{array}
$$

Note that equality is obtained by choosing the columns of U as suitable eigenvectors of A.

Applications cont'd

Interlacing theorem for bordered matrices:
Let $A \in M_{n}$ be Hermitian, $y \in \mathbf{C}^{n}, a \in \mathrm{R}$ and define

$$
\hat{A}=\left[\begin{array}{cc}
A & y \\
y^{*} & a
\end{array}\right]
$$

Then with $\lambda_{i} \in \sigma(A)$ and $\hat{\lambda}_{i} \in \sigma(\hat{A})$

$$
\hat{\lambda}_{1} \leq \lambda_{1} \leq \hat{\lambda}_{2} \leq \cdots \leq \hat{\lambda}_{n} \leq \lambda_{n} \leq \hat{\lambda}_{n+1}
$$

Generalized Rayleigh Quotients

Let $A \in M_{n}$ be Hermitian and $B \in M_{n}$ be Hermitian positive definite. Consider the following generalized eigenvalue problem

$$
A x=\lambda B x
$$

with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\begin{aligned}
& \lambda_{1}=\min _{x \neq 0} \frac{x^{*} A x}{x^{*} B x}=\min _{x^{*} B x \geq 1} x^{*} A x \\
& \lambda_{n}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} B x}=\max _{x^{*} B x \leq 1} x^{*} A x
\end{aligned}
$$

Solve the generalized eigenvalue problem in Matlab using
[E, Lambda] $=\operatorname{eig}(A, B)$;
Note: Elements of Lambda not sorted.

Majorization

Def: Let $\alpha=\left[\alpha_{i}\right] \in \mathbf{R}^{n}$ and $\beta=\left[\beta_{i}\right] \in \mathbf{R}^{n}$ with sorted
versions, $\alpha_{j_{1}} \leq \alpha_{j_{2}} \leq \cdots \leq \alpha_{j_{n}}$ and $\beta_{m_{1}} \leq \beta_{m_{2}} \leq \cdots \leq \beta_{m_{n}}$. If

$$
\sum_{1}^{n} \alpha_{i}=\sum_{1}^{n} \beta_{i}
$$

and

$$
\sum_{i=1}^{k} \beta_{m_{i}} \leq \sum_{i=1}^{k} \alpha_{j_{i}} \quad \text { for all } k=1,2, \ldots, n
$$

then the vector β majorizes the vector α.
Note: The notation is not standardized, some texts (including 1st edition of Horn\&Johnson) use the opposite definition.

Majorization cont'd

Thm: Let $A \in M_{n}$ be Hermitian. The vector of eigenvalues majorizes the vector of diagonal elements.

Converse thm: If the vector $\lambda \in \mathbf{R}^{n}$ majorizes the vector $a \in \mathbf{R}^{n}$ then there exists a real symmetric matrix $A \in M_{n}(\mathbf{R})$ with a_{i} as diagonal elements and λ_{i} as eigenvalues.

Thm: Let $A, B \in M_{n}$ be Hermitian and let $\lambda(A)$ be the vector of eigenvalues of A etc. The vector $\lambda(A)+\lambda(B)$ majorizes the vector $\lambda(A+B)$.

Illustration of the definition, β majorizes α

More to read on majorization

圊 Albert W. Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Majorization and Its Applications. Springer, New York, 2nd edition, 2011.

E- Eduard Jorswieck and Holger Boche.
Majorization and matrix-monotone functions in wireless communications.
Foundations and Trends $®$ in Communications and Information Theory, 3(6):553-701, 2007.
(Daniel P. Palomar and Yi Jiang. MIMO transceiver design via majorization theory.
Foundations and Trends $®$ in Communications and Information Theory, 3(4-5):331-551, 2007.

Complex symmetric matrices

Autonne-Takagi factorization: If $A \in M_{n}$ is symmetric, then $A=U \Sigma U^{T}$. Here, $U \in M_{n}$ and unitary, $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is real and nonnegative. The columns of U can be taken as an orthonormal set of eigenvectors to $A \bar{A}$ and σ_{i} is the square root of an eigenvalue of $A \bar{A}$.

Thm: Every matrix $A \in M_{n}$ is similar to a symmetric matrix.
Thm: Let $A \in M_{n}$. There exist a nonsingular matrix S and a unitary matrix U such that $(U S) A(\bar{U} S)^{-1}$ is a diagonal matrix with nonnegative elements.

Inertia

Def: Let $A \in M_{n}$ be Hermitian. The inertia of A is the ordered triple

$$
i(A)=\left(i_{+}(A), i_{-}(A), i_{0}(A)\right)
$$

where the entries correspond to the number of positive,
negative and zero eigenvalues of A, respectively.
Note that the rank of A equals $i_{+}(A)+i_{-}(A)$.
The signature of A is $i_{+}(A)-i_{-}(A)$.

Congruence

Def: Let $A, B \in M_{n}$ and S a nonsingular matrix.
If $B=S A S^{*}$, then B is *-congruent to A.
If $B=S A S^{T}$, then B is ${ }^{T}$-congruent to A.
Both congruence relations induce equivalence classes:

1. A is congruent to A
2. If A is congruent to B, then B is congruent to A.
3. If A is congruent to B and B is congruent to C, then A is congruent to C.

Canonical form/Sylvester's law of inertia

If $A \in M_{n}$ is Hermitian, then we can decompose it as

$$
A=S I(A) S^{*}
$$

where S is nonsingular and $I(A)$ is the inertia matrix

$$
I(A)=\operatorname{diag}(1 \ldots 1-1 \ldots-10 \ldots 0)
$$

Thm (Syl): Let $A, B \in M_{n}$ be Hermitian. Then $A=S B S^{*}$ for a nonsingular matrix $S \in M_{n}$ iff A and B have the same inertia.

Quantitative Inertia Result / ${ }^{T}$-congruence

Thm: (Ostrowski) Let $A, S \in M_{n}$ where A is Hermitian. Let the eigenvalues be arranged in nondecreasing order. For each $k=1, \ldots, n$ there exists a real number θ_{k} such that
$\lambda_{1}\left(S S^{*}\right) \leq \theta_{k} \leq \lambda_{n}\left(S S^{*}\right)$ and

$$
\lambda_{k}\left(S A S^{*}\right)=\theta_{k} \lambda_{k}(A)
$$

Thm: Let $A, B \in M_{n}$ be symmetric matrices (real or complex). There is a nonsingular matrix $S \in M_{n}$ such that $A=S B S^{T}$ iff A and B have the same rank.

More about diagonalization by congruence: Thm 4.5.17 (4.5.15 in old ed.)

