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Unitary matrices

> A set of vectors {x;} € C" are called
» orthogonal if x*x; =0, Vi # j and
» orthonormal if they are orthogonal and x/x; = 1, Vi.

v

A matrix U € M,, is unitary if U*U = I.

v

A matrix U € M,(R) is real orthogonal if UTU = I.

v

(A matrix U € M, is orthogonal if UUT = 1.)

v

If U,V are unitary then UV is unitary.
» Unitary matrices form a group under multiplication.

2/26




Unitary matrices cont'd

The following are equiv.

1. U is unitary

2. U is nonsingular and U~! = U*

3. Uur =1

4. U* is unitary

5. the columns of U are orthonormal

6. the rows of U are orthonormal

7. for all x € C", the Euclidean length of y = Ux equals

that of x.
Def: A linear transformation T : C" — C™ is a Euclidean
isometry if x*x = (Tx)*(Tx) for all x € C"
Unitary U is an Euclidean isometry.
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Euclidean isometry and Parseval’s Theorem

1. Let Fy be the FFT (Fast Fourier Transform matrix) of
dimension N x N, i. e,

1 —2r(m-1)n-1)
FN(m7 n) = We 2 Nl 1

2. Fp is a unitary matrix.

3. Let y = Fyx i.e, y is the N point FFT of x.
3.1 Length of x = Length of y

3.2 ZJNZI Ix())I? = ZJN=1 ly(j)|? : This is energy conservation
or Parseval’s Theorem in DSP.




Unitary equivalence

Def: A matrix B € M, is unitarily equivalent (or similar) to
Ae M, if B= U*AU for some unitary matrix U.

Compare:
(i) A— S7LAS : similarity (Ch 1,3)
(i) A— S*AS : *congruence (Ch 4)
(iii) A— S*AS with S unitary : unitary similarity (Ch 2)

Theorem: If A and B are unitarily equivalent then

IAIE £ lag? = b = (1B
ij ij
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Unitary matrices and Plane Rotations : 2-D case

» Consider rotating the 2 — D Euclidean plane
counter-clockwise by an angle 6.
» Resulting coordinates,

x' = xcosf — ysinf [x’] [cos& —sin 0] [x]
. i ; / - .

y' = xsinf + y cosf y sinf  cosf | |y

cosf) —sinf

» Note that U = [sin& cos 0

} is unitary.
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Plane Rotations : General Case

1 0 0 0

0 cos(f) 0O —sin(f
u,2,4) = 0 0( ) 1 0( )

0 sin(f) 0 cos()

U(6,2,4) rotates the second and fourth axes in R*
counter clock-wise by 6.

v

v

The other axes are not changed.

v

Left multiplication by U(6,2,4) affects only rows 2 and 4.

v

Note that U(0,2,4) is unitary.

v

Such U(6, m, n) are called Givens rotations.




Product of Givens rotations

» U= U(61,1,3)U(02,2,4) rotates
» second and fourth axes in R* counter clock-wise by 6.
» first and third axes in R* counter clock-wise by 6.

» U is unitary = product of Givens rotations is unitary.

» Such matrices are used in Least-Squares and eigenvalue
computations.




Special Unitary matrices: Householder matrices

Let w € C" be a normalized (w*w = 1) vector and define
Uy =1 - 2ww*

Properties:
1. U, is unitary and Hermitian.

2. Upyx=x,V x L w.

3. Uyw = —w

4. There is a Householder matrix such that
y = Uyx

for any given real vectors x and y of the same length.
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QR-factorization

Thm: If A€ M, then

v

A= QR
Q@ € M, is unitary, R € M, ,, is upper triangular with
nonnegative diagonal elements.
If Ais real, Q and R can be taken real.

Can be described as Gram Schmidt orthogonalization
combined with book keeping.

Better algorithm: Series of Householder transformations.

Useful in Least squares solutions, eigenvalue
computations etc.




Alternatives for Tall Matrix, QR =A€ M, m, n > m

* ok % K| [+ % * ok
” . ” * * * * 0 * k *
Full size” QR: =
* x x x| [0 0 * %
x % x x| [0 O * %
—_———  — —  —
Q R A
5pt]
* % * ok
Y . * k| (% x * %
Economy size” QR: [ ]:
* x| |0 * * %
x x| T~ * %
~—— K ~—
(:) A

Note: @ has orthonormal columns: Q*Q = I,




Schur’s unitary triangularization thm

Theorem:

Given A € M, with eigenvalues A1,..., \,, there is a unitary
matrix U € M,, such that
U'AU = T = [t;]

is upper triangular with t; = \; (i =1,...,n) in any
prescribed order. If A € M,(R) and all \; are real, U may be
chosen real and orthogonal.
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Shur, cont.

Unitary similarity: Any matrix in M, is unitarily similar to an
upper (or lower) triangular matrix. Note that A = UTU*.

Uniqueness:

1. Neither U nor T is unique.

2. Eigenvalues can appear in any order

3. Two triangular matrices can be unitarily similar
Implications:
CtrA =370 0(A)
. det A=1[; \i(A)
. Cayley-Hamilton theorem.
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Schur: The general real case

Given A € M,(R), there is a real orthogonal matrix
Q € M,(R) such that

Al * e *
0 A
QTAQ=| . ) .| € Ma(R)
0 ... 0 A
where A; (i =1,..., k) are real scalars or 2 by 2 blocks with a

non-real pair of complex conjugate eigenvalues.




Cayley-Hamilton theorem

Let pa(t) = det(tl — A) be the characteristic polynomial of
A€ M,. Then

PA(A) =0

Consequences:
» A"k = g, (A) (k > 0) for some polynomials gy(t)
of degrees < n— 1.
» If Ais nonsingular: A~! = g(A) for some polynomial
q(t) of degree < n—1.
Important: Note pa(C) is a matrix valued function.
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Normal matrices
Def: A matrix A € M, is normal if A*A = AA*.

Examples:
All unitary matrices are normal.
All Hermitian matrices are normal.

Def: A € M, is unitarily diagonalizable if A is unitarily
equivalent to a diagonal matrix.




Facts for normal matrices
The following are equivalent:
1. Ais normal
2. Ais unitarily diagonalizable
2 2 2 _\n 2
3. Al = ZiJ‘aU| =izl
4. there is an orthonormal set of n eigenvectors of A

The equivalence of 1 and 2 is called “the Spectral Theorem for
Normal matrices.”




Important special case: Hermitian (sym) matrices

Spectral theorem for Hermitian matrices:
If A€ M, is Hermitian, then,

» all eigenvalues are real

» A is unitarily diagonalizable.

> A= Acexef = ENE”
k=1
If A€ M,(R) is symmetric, then A is real orthogonally
diagonalizable.




SVD: Singular Value Decomposition

Theorem: Any A € M,, , can be decomposed as
A=VIWw*
» V € M,,: Unitary with columns being eigenvectors of
AA*.
» W € M,: Unitary with columns being eigenvectors of
A*A.
> ZZ[O','J‘]GM,mn haSU,'J'ZO, VI#_[

Suppose rank(A) = k and g = min{m, n}, then

> 0112 2 Ok > Opqlhtl = " = Ogq =0
» 0 = 0; square roots of non-zero eigenvalues of AA*
(or A*A)

» Unique : g;, Non-unique : V, W




Canonical forms

» An equivalence relation partitions the domain.

» Simple to study equivalence if two objects in an
equivalence class can be related to one representative
object.

» Requirements of the representatives

» Belong to the equivalence class.
» One per class.

» Set of such representatives is a Canonical form

» We are interested in a canonical form for equivalence
relation defined by similarity.




Canonical forms: Jordan form

Every equivalence class under similarity contains essentially
only one, so called, Jordan matrix:

In (A1) 0
0 In(Ak)
where each block Jx(A) € My has the structure
(A 1 0 ... 0]
0 A 1
J(A) =
0 Al
—0 A—




The Jordan form theorem
Note that the orders n; or A; are generally not distinct.

Theorem: For a given matrix A € M, there is a nonsingular
matrix S € M,, such that A= SJS~1 and >.;ni=n.The
Jordan matrix is unique up to permutations of the Jordan
blocks.

The Jordan form may be numerically unstable to compute but
it is of major theoretical interest.




Jordan form cont’d

» The number k of Jordan blocks is the number of linearly
independent eigenvectors. (Each block is associated with
an eigenvector from the standard basis.)

» J is diagonalizable iff k = n.

» The number of blocks corresponding to the same
eigenvalue is the geometric multiplicity of that eigenvalue.

» The sum of the orders (dimensions) of all blocks
corresponding to the same eigenvalue equals the algebraic
multiplicity of that eigenvalue.
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Applications of the Jordan form

» Linear systems: x(t) = Ax(t); x(0) = xo The solution
may be “easily” obtained by changing state variables to
the Jordan form.

» Convergent matrices: If all elements of A™ tend to zero
as m — oo, then A is a convergent matrix.

Fact: A is convergent iff p(A) < 1 (that is, iff
[Ai| <1, Vi). This may be proved, e.g., by using the
Jordan canonical form.

» Excellent (counter)examples in theoretical derivations.

> ..
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Triangular factorizations

Linear systems of equations are easy to solve if we can
factorize the system matrix as A = LU where L (U) is lower
(upper) triangular.

Theorem: If A € M,, then there exist permutation matrices
P, Q € M, such that
A= PLUR

(in some cases we can take @ =/ and/or P = [). Can be
obtained using Gauss elimination with row and/or column
pivoting.
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When to use what?

Theoretical | Practical
derivations | implem.

&)
©
©O)
©
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Schur triangularization
QR factorization
Spectral dec.

SVvD
Jordan form
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