Suggested solutions for sample exam 2

Version Preparatory course in mathematics

SF0003 Introductory Course in Mathematics
 August 2017

1. Simplify $\frac{\frac{1}{3}-\frac{2}{7}}{\frac{9}{4}-\frac{1}{3}}$ by writing over a common denominator. The result should be reduced as far as possible.

Suggested solution: We have

$$
\begin{aligned}
\frac{1 / 3-2 / 7}{9 / 4-1 / 3} & =\frac{21}{21} \cdot \frac{1 / 3-2 / 7}{9 / 4-1 / 3}=\frac{7-6}{21(9 / 4-1 / 3)} \\
& =\frac{12}{12} \cdot \frac{1}{21(9 / 4-1 / 3)}=\frac{12}{21(27-4)}=\frac{12}{21 \cdot 23}=\frac{4}{7 \cdot 23} .
\end{aligned}
$$

2. Simplify $\frac{3}{x}-\frac{7}{x+1}+\frac{4 x-1}{x^{2}+x}$ by writing over a common denominator. The result should be reduced as far as possible.

Suggested solution: We have $x^{2}+x=x(x+1)$, so

$$
\begin{aligned}
\frac{3}{x}-\frac{7}{x+1}+\frac{4 x-1}{x^{2}+x} & =\frac{3(x+1)}{x(x+1)}-\frac{7 x}{x(x+1)}+\frac{4 x-1}{x(x+1)} \\
& =\frac{3(x+1)-7 x+(4 x-1)}{x(x+1)} \\
& =\frac{2}{x(x+1)} .
\end{aligned}
$$

3. Complete the square to determine the smallest value obtained by the polynomial $x^{2}+3 x+4$.

Suggested solution: We complete the square in the polynomial and get

$$
\begin{aligned}
x^{2}+3 x+4 & =x^{2}+2 \cdot \frac{3}{2} x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+4 \\
& =\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+4 \\
& =\left(x+\frac{3}{2}\right)^{2}+\frac{7}{4}
\end{aligned}
$$

Since the first term here is always greater than or equal to zero we find that the smallest value is obtained when it is equal to zero (and $x=-3 / 2$). The smallest value obtained by this polynomial is thus $7 / 4$.
4. Simplify $\ln 81-\ln 9-\ln 3$.

Suggested solution: We have

$$
\ln 81-\ln 9-\ln 3=\ln \frac{81}{9 \cdot 3}=\ln 3 .
$$

5. Determine the equation for the circle which has centre $(-1,2)$ and contains the point $(2,6)$.

Suggested solution: The radius r of the circle is equal to the distance from its centre to given point on the circle. We thus have

$$
r^{2}=(2-(-1))^{2}+(6-2)^{2}=3^{2}+4^{2}=25,
$$

or $r=5$. The equation of the circle is

$$
(x-(-1))^{2}+(y-2)^{2}=5^{2},
$$

or

$$
(x+1)^{2}+(y-2)^{2}=25 .
$$

6. Suppose that $-\frac{\pi}{2} \leq v \leq \frac{\pi}{2}$ and that $\sin v=a$. Express $\sin \left(\frac{\pi}{2}-v\right)$ in terms of a.

Suggested solution: The addition formula for sin tells us that

$$
\sin \left(\frac{\pi}{2}-v\right)=\sin \left(\frac{\pi}{2}\right) \cos (-v)+\cos \left(\frac{\pi}{2}\right) \sin (-v)=\sin \left(\frac{\pi}{2}\right) \cos (v)-\cos \left(\frac{\pi}{2}\right) \sin (v) .
$$

Since $\cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$ this gives us

$$
\sin \left(\frac{\pi}{2}-v\right)=\cos (v)
$$

The pythagorean identity then gives

$$
\cos ^{2}(v)=1-\sin ^{2}(v)=1-a^{2},
$$

and

$$
\cos (v)= \pm \sqrt{1-a^{2}} .
$$

Since $-\frac{\pi}{2} \leq v \leq \frac{\pi}{2}$ we have $\cos (v) \geq 0$, and we conclude that

$$
\sin \left(\frac{\pi}{2}-v\right)=\cos (v)=\sqrt{1-a^{2}}
$$

