

Suggested solutions for sample exam 1

Version Preparatory course in mathematics

SF0003 Introductory Course in Mathematics August 2017

1. Write $\frac{1}{6} - \frac{3}{10} + \frac{13}{15}$ over a common denominator. The answer should be reduced as far as possible.

Suggested solution: The smallest common denominator is $2 \cdot 3 \cdot 5 = 30$, so we have

$$\frac{1}{6} - \frac{3}{10} + \frac{13}{15} = \frac{5}{30} - \frac{9}{30} + \frac{26}{30} = \frac{22}{30} = \frac{11}{15}.$$

2. Determine the coefficients in front of x and x^2 when the expression $(x+3)(x^2+2x-1)(19x^3-x^2+1)$ is completely expanded.

Suggested solution: Instead of expanding the whole expression and identifying the coefficients of x and x^2 , respectively, it is enough to find the combinations of one term from the first, second and third parenthesis that gives an x and x^2 term, respectively, when multiplied together.

To obtain an *x* term there are two combinations,

$$(x+3)(x^{2}+2x-1)(19x^{3}-x^{2}+1) = \dots + x \cdot (-1) \cdot 1 + \dots,$$

$$(x+3)(x^{2}+2x-1)(19x^{3}-x^{2}+1) = \dots + 3 \cdot 2x \cdot 1 + \dots,$$

and the *x* term will therefore be -x + 6x = 5x, i.e. the coefficient of *x* is 5. There are three combinations that result in x^2 terms,

$$(x+3)(x^{2}+2x-1)(19x^{3}-x^{2}+1) = \dots + x \cdot 2x \cdot 1 + \dots,$$

$$(x+3)(x^{2}+2x-1)(19x^{3}-x^{2}+1) = \dots + 3 \cdot x^{2} \cdot 1 + \dots,$$

$$(x+3)(x^{2}+2x-1)(19x^{3}-x^{2}+1) = \dots + 3 \cdot (-1) \cdot (-x^{2}) + \dots$$

and in total the x^2 term is $2x^2 + 3x^2 + 3x^2 = 8x^2$, i.e. the coefficient of x^2 is 8.

3. Determine the intersection point between the line x + 2y - 4 = 0 and the line x = 10.

Suggested solution: Since the intersection point is on the line x = 10 it has the x-coordinate 10. The y-coordinate of the intersection point satisfies x + 2y - 4 = 10 + 2y - 4 = 0, or 6 + 2y = 0, which gives y = -3. The intersection point is thus (10, -3).

4. Solve the equation $3\sqrt{3-x} = 5-x$.

Suggested solution: If $3\sqrt{3-x} = 5 - x$ it follows that

$$(3\sqrt{3-x})^2 = 9(3-x) = (5-x)^2 = x^2 - 10x + 25$$

or

$$0 = x^{2} - 10x + 25 + 9x - 27 = x^{2} - x - 2$$

which is satisfied for x = -1 and x = 2. Since we have taken the square of the equation we cannot be sure that these are solutions also to the original equation.

For x = -1 we have

$$3\sqrt{3-(-1)} = 3\sqrt{4} = 6 = 5-(-1)$$

so this is a solution.

For x = 2 we have

$$3\sqrt{3-2} = 3\sqrt{1} = 3 = 5 - 3,$$

so this is also a solution.

The solutions to the equations are thus x = -1 and x = 2.

5. Determine the centre and the radius of the circle given by the equation $x^2 - 2x + y^2 + 2y = 1$. Suggested solution: We complete the square and find

$$1 = x^{2} - 2x + y^{2} + 2y$$

= $x^{2} - 2x + 1 - 1 + y^{2} + 2y + 1 - 1$
= $(x - 1)^{2} - 1 + (y + 1)^{2} - 1$,

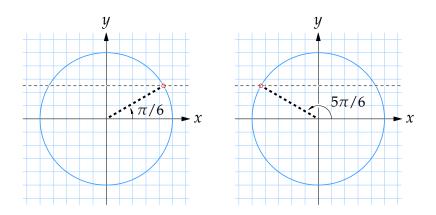
or

$$3 = (x - 1)^2 + (y + 1)^2.$$

This is the equation for a circle with centre (x, y) = (1, -1) and radius $r = \sqrt{3}$.

6. Solve the equation $\sin 5x = \frac{1}{2}$.

Suggested solution: We begin by determining the solutions to the equation when $0 \le 5x \le 2\pi$. According to the unit circle there are two such solutions: $5x = \pi/6$ and $5x = \pi - \pi/6 = 5\pi/6$.



We obtain the remaining solutions by adding integer multiples of 2π to the two solutions above,

$$5x = \frac{\pi}{6} + 2n\pi$$
 and $5x = \frac{5\pi}{6} + 2n\pi$,

where n is an arbitrary integer, or after dividing by 5,

$$x = \frac{\pi}{30} + \frac{2n\pi}{5}$$
 and $x = \frac{\pi}{6} + \frac{2n\pi}{5}$,

where n is an arbitrary integer.