
Interactive Theorem Proving (ITP) Course
Part XVI, XVII

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version 260dbc7 of Mon Jun 12 09:47:04 2017

Part XVI

Overview

Overview of HOL 4

in this course we discussed the basics of HOL 4

you were encouraged to learn more on your own in exercises

there is a lot more to learn even after the end of the course
I many more libraries
I proof tools
I existing formalisations
I ...

to really use HOL well, you should continue learning

to help getting started, a short overview is presented here

294 / 319

HOL Bare Source Directories

The following source directories are the very basis of HOL. They are
required to build hol.bare.

src/portableML – common stuff for PolyML and MoscowML

src/prekernel

src/0 – Standard Kernel

src/logging-kernel – Logging Kernel

src/experimental-kernel – Experimental Kernel

src/postkernel

src/opentheory

src/parse

src/bool

src/1

src/proofman

295 / 319



HOL Basic Directories I

On top of hol.bare, there are many basic theories and tools. These are
all required for building the main hol executable.

src/compute – fast ground term rewriting

src/HolSat – SAT solver interfaces

src/taut – propositional proofs using HolSat

src/marker – marking terms

src/q – parsing support

src/combin – combinators

src/lite – some simple lib with various stuff

src/refute – refutation prover, normal forms

src/metis – first order resolution prover

src/meson – first order model elimination prover

296 / 319

HOL Basic Directories II

src/simp – simplifier

src/holyhammer – tool for finding Metis proofs

src/tactictoe – machine learning tool for finding proofs

src/IndDef – (co)inductive relation definitions

src/basicProof – library containing proof tools

src/relation – relations and order theory

src/one – unit type theory

src/pair – tuples

src/sum – sum types

src/tfl – defining terminating functions

src/option – option types

297 / 319

HOL Basic Directories III

src/num – numbers and arithmetic

src/pred set – predicate sets

src/datatype – Datatype package

src/list – list theories

src/monad – monads

src/quantHeuristics – instantiating quantifiers

src/unwind – lib for unwinding structural hardware definitions

src/pattern matches – pattern matches alternative

src/bossLib – main HOL lib loaded at start

bossLib is one central library. It loads all basic theories and libraries and
provides convenient wrappers for the most common tools.

298 / 319

HOL More Theories I

Besides the basic libraries and theories that are required and loaded by
hol, there are many more developements in HOL’s source directory.

src/sort – sorting lists

src/string – strings

src/TeX – exporting LaTeX code

src/res quan – restricted quantifiers

src/quotient – quotient type package

src/finite map – finite map theory

src/bag – bags a. k. a. multisets

src/n-bit – maschine words

299 / 319



HOL More Theories II

src/ring – reasoning about rings

src/integer – integers

src/llists – lazy lists

src/path – finite and infinite paths through a transition system

src/patricia – efficient finite map implementations using trees

src/emit – emitting SML and OCaml code

src/search – traversal of graphs that may contain cycles

300 / 319

HOL More Theories III

src/rational – rational numbers

src/real – real numbers

src/complex – comples numbers

src/HolQbf – quantified boolean formulas

src/HolSmt – support for external SMT solvers

src/float – IEEE floating point numbers

src/floating-point – new version of IEEE floating point numbers

src/probability – some propability theory

src/temporal – shallow embedding of temporal logic

. . .

301 / 319

HOL Selected Examples I

The directory examples hosts many theories and libraries as well. There is
not always a clear distinction between an example and a development in
src. However, in general examples are more specialised and often larger.
They are not required to follow HOL’s coding style as much as
developments in src.

examples/balanced bst – finite maps via balanced trees

examples/unification – (nominal) unification

examples/Crypto – various block ciphers

examples/elliptic – elliptic curve cryptography

examples/formal-languages – regular and context free formal
languages

examples/computability – basic computability theory

302 / 319

HOL Selected Examples II

examples/set-theory – axiomatic formalisation of set theory

examples/lambda – lambda calculus

examples/acl2 – connection to ACL2 prover

examples/theorem-prover – soundness proof of Milawa prover

examples/PSL – formalisation of PSL

examples/HolBdd – Binary Decision Diagrams

examples/HolCheck – basic model checker

examples/temporal deep – deep embedding of temporal logics and
automata

303 / 319



HOL Selected Examples III

examples/pgcl formalisation of pGCL (the Probabilistic Guarded
Command Language)

examples/dev – some hardware compilation

examples/STE – symbolic trajectory evalutation

examples/separationLogic – formalisation of separation logic

examples/ARM – formalisation of ARM architecture

examples/l3-machine-code – l3 language

examples/machine-code – compilers and decompilers to
machine-code

. . .

304 / 319

Concluding Remarks

some useful tools are a bit hidden in the HOL sources

moreover there are developments outside the main HOL 4 sources
I CakeML https://cakeml.org

keep in touch with community to continue learning about HOL 4
I mailing-list hol-info
I GitHub https://github.com/HOL-Theorem-Prover/HOL
I https://hol-theorem-prover.org

if you continue using HOL, please consider sharing your work with the
community

305 / 319

Part XVII

Other Interactive Theorem Provers

Other Interactive Theorem Provers

at the beginning we very briefly discussed other theorem provers

now, with more knowledge about HOL 4 we can discuss other provers
and their differences to HOL 4 in more detail

HOL 4 is a good system

it is very well suited for the tasks required by the PROSPER project

however, as always choose the right tool for your task

you might find a different prover more suitable for your needs

hopefully this course has enabled you to learn to use other provers on
your own without much trouble

307 / 319



HOL 4

based on classical higher order logic

logic is sweet spot between expressivity and automation

+ very trustworthy thanks to LCF approach

+ simple enough to understand easily

+ very easy to write custom prove tools, i. e. own automation

+ reasonably fast and efficient

decent automation

− no user-interface

− no special proof language

− no IDE, very little editor support

308 / 319

HOL Omega

mainly developed by Peter Homeier
http://www.trustworthytools.com/

extension of HOL 4

+ logic extended by kinds
+ allows type operator variables
+ allows quantification over type variables

+ sometimes handy to e. g. model category theory

− not very actively developed

− HOL 4 usually sufficient and better supported

309 / 319

HOL Light

mainly developed by John Harrison

https://github.com/jrh13/hol-light

cleanup and reimplementation of HOL in OCaml

little legacy code

however, still very similar to HOL 4

+ much better automation for real analysis

− OCaml introduces some minor issues with trustworthiness

− some other libs and tools of HOL 4 are missing

− HOL 4 has bigger community

310 / 319

Isabelle

Isabelle is also a descendant of LCF

originally developed by Larry Paulson in Cambridge
https://www.cl.cam.ac.uk/research/hvg/Isabelle/

meanwhile also developed at TU Munich by Tobias Nipkow
http://www21.in.tum.de

huge contributions by Markarius Wenzel
http://sketis.net

Isabelle is a generic theorem prover

most used instantiation is Isabelle/HOL

other important one is Isabelle/ZF

311 / 319



Isabelle / HOL - Logic

logic of Isabelle / HOL very similar to HOL’s logic
I meta logic leads to meta level quantification and object level

quantification
+ type classes
+ powerful module system
+ existential variables
I . . .

Isabelle is implemented using the LCF approach

it uses SML (Poly/ML)

many original tools (e. g. simplifier) very similar to HOL

focused as HOL on equational reasoning

many tools are exchanged between HOL 4 and Isabelle / HOL
I Metis
I Sledgehammer
I . . .

312 / 319

Isabelle / HOL - Engineering

+ a lot of engineering went into Isabelle/HOL

+ it has a very nice GUI
I IDE based on JEdit
I special language for proofs (Isar)
I good error messages
I . . .

+ very good automation

+ efficient implementations

+ many libraries (Archive of Formal Proof)

+ excellent code extraction

+ good documentation

+ easy for new users

313 / 319

Isabelle / HOL - Isar

special proof language Isar used

this allows to write declarative proofs
I very high level
I easy to read by humans
I very robust
I very good tool support
I . . .

− however, tactical proofs are not easily accessible any more
I many intermediate goals need to be stated (declared) explicitly
I this can be very tedious
I tools like verification condition generators are hard to use

314 / 319

Isabelle / HOL - Drawbacks

+ Isabelle/HOL provides excellent out of the box automation

+ it provides a very nice user interface

+ it is very nice for new users

− however, this comes at a price
I multiple layers added between kernel and user
I hard to understand all these layers
I a lot of knowledge is needed to write your own automation

− Isabelle/HOL due to focus on declarative proofs not well suited for
e. g. PROSPER

315 / 319



Coq

Coq is a proof assistant using the Calculus of Inductive Constructions

inspired by HOL 88

backward proofs as in HOL 4 used

however, very big differences
I much more powerful logic
I dependent types
I constructive logic
I not exactly following LCF approach

+ good user interface

+ very good community support

316 / 319

Coq - Logic

+ Coq’s logic is very powerful

+ it is very natural for mathematicians

+ very natural for language theory

+ allows reasoning about proofs

allows to add axioms as needed

as a result, Coq is used often to
I formalise mathematics
I formalise programming language semantics
I reason about proof theory

317 / 319

Coq - Drawbacks

Coq’s power comes at a price

− there is not much automation

− proofs tend to be very long
I they are very simple though

+ comparably easy to maintain

− Coq’s proof checking can be very slow

− when verifying programs or hardware you notice that HOL was
designed for this purpose

I need for obvious termination is tedious
I missing automation
I very slow

318 / 319

Summary

there are many good theorem provers out there

pick the right tool for your purpose

the HOL theorem prover is a good system for many purposes

for PROSPER it is a good choice

I encourage you to continue learning about HOL and ITP

if you have any questions feel free to contact me (tuerk@kth.se)

319 / 319


