Interactive Theorem Proving (ITP) Course
Part XVI, XVII

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version 260dbc7 of Mon Jun 12 09:47:04 2017



Part XVI

Overview

by

2y,
FKTHY

VETENSKAP
28 OCH KONST 2%

) [

TR




Overview of HOL 4

in this course we discussed the basics of HOL 4

you were encouraged to learn more on your own in exercises
there is a lot more to learn even after the end of the course

» many more libraries

» proof tools

> existing formalisations
>

to really use HOL well, you should continue learning

to help getting started, a short overview is presented here

294 /319



HOL Bare Source Directories

The following source directories are the very basis of HOL. They are
required to build hol.bare.

src/portableML — common stuff for PolyML and MoscowML
src/prekernel

src/0 — Standard Kerne

src/logging-kernel — Logging Kernel
src/experimental-kernel — Experimental Kernel
src/postkernel

src/opentheory

src/parse

src/bool

src/1

src/proofman

295 /319



HOL Basic Directories |

On top of hol.bare, there are many basic theories and tools. These are
all required for building the main hol executable.

src/compute — fast ground term rewriting
src/HolSat — SAT solver interfaces
src/taut — propositional proofs using HolSat
src/marker — marking terms

src/q — parsing support

src/combin — combinators

src/lite — some simple lib with various stuff
src/refute — refutation prover, normal forms
src/metis — first order resolution prover

src/meson — first order model elimination prover

296 /319



HOL Basic Directories Il

src/simp — simplifier

src/holyhammer — tool for finding Metis proofs
src/tactictoe — machine learning tool for finding proofs
src/IndDef — (co)inductive relation definitions
src/basicProof — library containing proof tools
src/relation — relations and order theory

src/one — unit type theory

src/pair — tuples

src/sum — sum types

src/tfl — defining terminating functions

src/option — option types

297 /319



HOL Basic Directories Il

src/num — numbers and arithmetic
src/pred_set — predicate sets
src/datatype — Datatype package

src/list — list theories
src/quantHeuristics — instantiating quantifiers

src/unwind — lib for unwinding structural hardware definitions

°
°

°

°

@ src/monad — monads
°

°

@ src/pattern matches — pattern matches alternative
°

src/bossLib — main HOL lib loaded at start

bossLib is one central library. It loads all basic theories and libraries and
provides convenient wrappers for the most common tools.

208 /319



HOL More Theories |

Besides the basic libraries and theories that are required and loaded by

hol,

there are many more developements in HOL's source directory.

src/sort — sorting lists

src/string — strings

src/TeX — exporting LaTeX code
src/res_quan — restricted quantifiers
src/quotient — quotient type package
src/finite map — finite map theory
src/bag — bags a. k. a. multisets

src/n-bit — maschine words

299 /319



HOL More Theories Il

src/ring — reasoning about rings

src/integer — integers

src/llists — lazy lists

src/path — finite and infinite paths through a transition system
src/patricia — efficient finite map implementations using trees
src/emit — emitting SML and OCaml code

src/search — traversal of graphs that may contain cycles

300/319



HOL More Theories Il

src/rational — rational numbers

src/real — real numbers

src/complex — comples numbers

src/HolQbf — quantified boolean formulas

src/HolSmt — support for external SMT solvers

src/float — |IEEE floating point numbers

src/floating-point — new version of |IEEE floating point numbers
src/probability — some propability theory

src/temporal — shallow embedding of temporal logic

301 /319



HOL Selected Examples |

et

The directory examples hosts many theories and libraries as well. There is
not always a clear distinction between an example and a development in
src. However, in general examples are more specialised and often larger.
They are not required to follow HOL's coding style as much as
developments in src.

examples/balanced bst — finite maps via balanced trees
examples/unification — (nominal) unification
examples/Crypto — various block ciphers
examples/elliptic — elliptic curve cryptography

examples/formal-languages — regular and context free formal
languages

examples/computability — basic computability theory

302 /319



HOL Selected Examples |l

examples/set-theory — axiomatic formalisation of set theory
examples/lambda — lambda calculus

examples/acl2 — connection to ACL2 prover
examples/theorem-prover — soundness proof of Milawa prover
examples/PSL — formalisation of PSL

examples/HolBdd — Binary Decision Diagrams
examples/HolCheck — basic model checker

examples/temporal deep — deep embedding of temporal logics and
automata

303 /319



HOL Selected Examples Il

examples/pgcl formalisation of pGCL (the Probabilistic Guarded
Command Language)

examples/dev — some hardware compilation

examples/STE — symbolic trajectory evalutation
examples/separationLogic — formalisation of separation logic
examples/ARM — formalisation of ARM architecture
examples/13-machine-code — I3 language

examples/machine-code — compilers and decompilers to
machine-code

304 /319



Concluding Remarks

@ some useful tools are a bit hidden in the HOL sources

@ moreover there are developments outside the main HOL 4 sources
» CakeML https://cakeml.org

@ keep in touch with community to continue learning about HOL 4
» mailing-list hol-info
» GitHub https://github.com/HOL-Theorem-Prover/HOL
» https://hol-theorem-prover.org

@ if you continue using HOL, please consider sharing your work with the
community

305 /319


https://cakeml.org
https://github.com/HOL-Theorem-Prover/HOL
https://hol-theorem-prover.org

Part XVII

Other Interactive Theorem Provers

by

N k)
£KTHY

VETENSKAP
28 OCH KONST 2%

) 9

& %‘X‘% 1




Other Interactive Theorem Provers

at the beginning we very briefly discussed other theorem provers

now, with more knowledge about HOL 4 we can discuss other provers
and their differences to HOL 4 in more detail

HOL 4 is a good system

it is very well suited for the tasks required by the PROSPER project
however, as always choose the right tool for your task

you might find a different prover more suitable for your needs

hopefully this course has enabled you to learn to use other provers on
your own without much trouble

307 /319



HOL 4

e + + + + o o

based on classical higher order logic

logic is sweet spot between expressivity and automation
very trustworthy thanks to LCF approach

simple enough to understand easily

very easy to write custom prove tools, i.e. own automation
reasonably fast and efficient

decent automation

no user-interface

no special proof language

no IDE, very little editor support

308 /319



HOL Omega

@ mainly developed by Peter Homeier
http://www.trustworthytools.com/

@ extension of HOL 4

+ logic extended by kinds
+ allows type operator variables
+ allows quantification over type variables

+ sometimes handy to e.g. model category theory
— not very actively developed

— HOL 4 usually sufficient and better supported

309 /319


http://www.trustworthytools.com/

HOL Light

+ o © © © ©

mainly developed by John Harrison
https://github.com/jrh13/hol-1light

cleanup and reimplementation of HOL in OCaml

little legacy code

however, still very similar to HOL 4

much better automation for real analysis

OCaml introduces some minor issues with trustworthiness
some other libs and tools of HOL 4 are missing

HOL 4 has bigger community

310 /319


https://github.com/jrh13/hol-light

Isabelle

@ Isabelle is also a descendant of LCF

@ originally developed by Larry Paulson in Cambridge
https://www.cl.cam.ac.uk/research/hvg/Isabelle/

@ meanwhile also developed at TU Munich by Tobias Nipkow
http://www2l.in.tum.de

@ huge contributions by Markarius Wenzel
http://sketis.net

@ Isabelle is a generic theorem prover
@ most used instantiation is Isabelle/HOL

@ other important one is Isabelle/ZF

311 /319


https://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www21.in.tum.de
http://sketis.net

Isabelle / HOL - Logic

e logic of Isabelle / HOL very similar to HOL's logic

» meta logic leads to meta level quantification and object level
quantification

+ type classes

+ powerful module system

+ existential variables

>

Isabelle is implemented using the LCF approach

it uses SML (Poly/ML)

many original tools (e. g. simplifier) very similar to HOL
focused as HOL on equational reasoning

many tools are exchanged between HOL 4 and Isabelle / HOL

> Metis
> Sledgehammer
>

312 /319



Isabelle / HOL - Engineering

+ o+ + + o+

a lot of engineering went into Isabelle/HOL
it has a very nice GUI

IDE based on JEdit

» special language for proofs (lsar)
» good error messages
>

v

very good automation

efficient implementations

many libraries (Archive of Formal Proof)
excellent code extraction

good documentation

easy for new users

313 /319



Isabelle / HOL - Isar

@ special proof language Isar used
@ this allows to write declarative proofs
» very high level
> easy to read by humans
> very robust
» very good tool support
>

— however, tactical proofs are not easily accessible any more

» many intermediate goals need to be stated (declared) explicitly
> this can be very tedious
> tools like verification condition generators are hard to use

314 /319



Isabelle / HOL - Drawbacks

+ o+ o+

Isabelle/HOL provides excellent out of the box automation
it provides a very nice user interface

it is very nice for new users

however, this comes at a price

» multiple layers added between kernel and user
> hard to understand all these layers
> a lot of knowledge is needed to write your own automation

Isabelle/HOL due to focus on declarative proofs not well suited for
e.g. PROSPER

315 /319



Cogq

@ Coq is a proof assistant using the Calculus of Inductive Constructions
@ inspired by HOL 88
@ backward proofs as in HOL 4 used

@ however, very big differences

» much more powerful logic

» dependent types

» constructive logic

» not exactly following LCF approach

+ good user interface

+ very good community support

316 /319



Coq - Logic

Coq'’s logic is very powerful

it is very natural for mathematicians
very natural for language theory
allows reasoning about proofs

allows to add axioms as needed

e ¢ + + + +

as a result, Coq is used often to
» formalise mathematics
» formalise programming language semantics
» reason about proof theory

317 /319



Coq - Drawbacks

@ Coq's power comes at a price
— there is not much automation
— proofs tend to be very long
> they are very simple though
-+ comparably easy to maintain
— Coq's proof checking can be very slow

— when verifying programs or hardware you notice that HOL was
designed for this purpose
» need for obvious termination is tedious
> missing automation
> very slow

318 /319



Summary

there are many good theorem provers out there

pick the right tool for your purpose

the HOL theorem prover is a good system for many purposes
for PROSPER it is a good choice

| encourage you to continue learning about HOL and ITP

if you have any questions feel free to contact me (tuerk@kth.se)

319/319



	Overview
	Other Interactive Theorem Provers
	HOL 4
	HOL Omega
	HOL Light
	Isabelle
	Coq
	Conclusion


