Interactive Theorem Proving (ITP) Course

Motivation

Part XV

Thomas Tuerk (tuerk@kth.se)

38 OCH KONST &

Yot

Academic Year 2016/17, Period 4

version d88c12b of Wed Jun 7 10:08:28 2017

@,
frry

o proofs are hopefully still used in a few weeks, months or even years

o often the environment changes slightly during the lifetime of a proof

>

>
>
>

your definitions change slightly
your own lemmata change (e.g. become more general)

used libraries change
HOL changed

*
*
*
*

automation became more powerful

rewrite rules in certain simpsets changed

definition packages produce slightly different theorems
autogenerated variable-names change

* ..

o even if HOL and used libraries are stable, proofs often go through
several iterations

o often they are adapted by someone else than the original author

o therefore it is important that proofs are easily maintainable

273 /292

Part XIV

Maintainable Proofs

by

N kY
ZKTH%

VETENSKAP
28 OCH KONST %o

e

Nice Properties of Proofs Py
et
o maintainability is closely linked to other desirable properties of proofs

©

©

©

proofs should be

» easily understandable
» well-structured
» robust

* they should be able to scope with minor changes to environment
* if they fail they should do so at sensible points

» reusable
How can one write proofs with such properties?
as usual, there are no easy answers but plenty of good advice
| recommend following the advice of ProofStyle manual

parts of this advice as well as a few extra points are discussed in the
following

274 /292

Formatting

format your proof such that it easily understandable

©

o make the structure of the proof very clear

o show clearly where subgoals start and stop

o use indentation to mark proofs of subgoals

o use empty lines to separate large proofs of subgoals

o use comments where appropriate

Formatting Example Il

Bad Example Subgoals

prove (111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢¢,
Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals

At least show when a subgoal starts and ends

prove (<111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))‘¢,
Cases >> (

REWRITE_TAC[]
) >>
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)

Formatting Example | gzl;m“:;

Bad Example Term Formatting

prove (€111 12. 11 <> [] ==> LENGTH 12 <
LENGTH (11 ++ 12)°¢¢,
00)

Good Example Term Formatting

prove (€111 12. 11 <> [] ==>
(LENGTH 12 < LENGTH (11 ++ 12))°¢,

.

Formatting Example Il 2

Good Example Subgoals

Make sure REWRITE_TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (‘‘!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°,
Cases >- (

REWRITE_TAC[] >>
)
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)

278 /292

KTH

Formatting Example |l 3 {@‘*}

Alternative Good Example Subgoals
Alternative good formatting using THENL

prove (¢€!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >| [
REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D

Another Bad Example Subgoals
Bad formatting using THENL

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°¢,
Cases >| [REWRITE_TACI[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >> DECIDE_TAC])

279 /292

KISS and Premature Optimisation g«a‘%

o follow standard design principles
» KISS principle
» “premature optimization is the root of all evil’ (Donald Knuth)
o don't try to be overly clever
o simple proofs are preferable
o proof-checking-speed mostly unimportant
o conciseness not a value in itself but desirable if it helps
» readability
» maintainability
o abstraction is often desirable, but also has a price

» don't use too complex, artificial definitions and lemmata

N
»
@
2
S

Some basic advice g@‘}

o use semicoli after each declaration
» if exception is raised during interactive processing (e.g. by a failing
proof), previous successful declarations are kept
» it sometimes leads to better error messages in case of parsing errors

o use plenty of parentheses to make structure very clear
o don't ignore parser warnings
» especially warnings about multiple possible parse trees are likely to lead
to unstable proofs
» understand why such warnings occur and make sure there is no problem
o format your development well

» use indentation

» use linebreaks at sensible points
» don't use overlong lines
>

o don't use open in middle of files

©

personal opinion: avoid unicode in source files

Too much abstraction Pt

Too much abstraction Example

val TOO_ABSTRACT_LEMMA = prove (‘¢

!(size :’a -> num) (P : ’a -> bool) (combine :
(Ix. P x ==> (0 < size x)) /\
('x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>

’a => ’a -> ’a).

('x1 x2. P x1 ==> (size x2 < size (combine x1 x2))) ‘¢,

)

prove (¢€!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°¢,
some proof using ABSTRACT_LEMMA
)

N
@
o
n
IN]

Too clever tactics

o a common mistake is to use too clever tactics

» intended to work on many (sub)goals
» using TRY and other fancy trial and error mechanisms
» intended to replace multiple simple, clear tactics

o typical case: a tactic containing TRY applied to many subgoals

©

it is often hard to see why such tactics work

©

if something goes wrong, they are hard to debug

©

general advice: don't factor with tactics, instead use definitions and
lemmata

Too Clever Tactics Example Il

Bad Example

val oadd_def = Define ‘(oadd (SOME n1) (SOME n2) = (SOME (nl + n2))) /\

(oadd _ _ = NONE) ¢;

val osub_def = Define ‘(osub (SOME nl1) (SOME n2) = (SOME (n1 - n2))) /\
(osub _ _ = NONE) ¢;

val omul_def = Define ‘(omul (SOME n1) (SOME n2) = (SOME (nl * n2))) /\

(omul _ _ = NONE) ¢;
val onum_NONE_TAC =
Cases_on ‘ol¢ >> Cases_on ‘02°¢ >>

SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NULL = prove (

““101 02. (oadd ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)‘°,
onum_NONE_TAC) ;

val osub_NULL = prove (
“¢101 02. (osub ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE)“°¢,
onum_NONE_TAC) ;

val omul_NULL = prove (
““101 02. (omul ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE) ‘¢,

onum_NONE_TAC) ;

Too Clever Tactics Example |

Bad Example Subgoals

prove (‘€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >> (
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC
))

Alternative Good Example Subgoals Il

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°¢,
Cases >> SIMP_TAC list_ss [])
prove (¢€!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D

Too Clever Tactics Example Il

Good Example

(SOME (op nl n2))) /\
NONE) ¢;

val obin_def = Define ‘(obin op (SOME n1) (SOME n2)
(obin _ _ _

‘oadd = obin $+°¢;

‘osub = obin $-°;

‘omul = obin $*°¢;

val oadd_def Define
val osub_def Define
val omul_def = Define

val obin_NULL = prove (
‘“lop ol 02. (obin op ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)‘‘,
Cases_on ‘0l1‘ >> Cases_on ‘02¢ >> SIMP_TAC std_ss [obin_def]);

val oadd_NULL = prove (
““101 02. (oadd ol 02 = NONE) <=> (ol = NONE) \/ (02
REWRITE_TAC[oadd_def, obin_NULL]);
val osub_NULL = prove (
‘101 02. (osub ol 02 = NONE) <=> (ol
REWRITE_TAC[osub_def, obin_NULL]);
val omul_NULL = prove (
‘1ol 02. (omul ol 02 = NONE) <=> (o1l
REWRITE_TAC[omul_def, obin_NULL]);

NONE) “ ¢,

NONE) \/ (o2 = NONE) ‘¢,

NONE) \/ (o2

NONE) “ ¢,

N
&»
&
2
S

Use many subgoals and lemmata

o often it is beneficial to use subgoals

» they structure long proofs well

they help keeping the proof state clean

they mark clearly what one tries to proof

they provide points where proofs can break sensibly

vvYyy

o general subgoals should often become lemmata

» this improves reusability
» proof scripts become shorter
» proofs are disentangled

Subgoal Example Il

o the following proof separates the property of FILTER_BY_BOOLS as a
subgoal

o the main idea becomes clearer

Subgoal Version

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
11, IS_WEAK_SUBLIST_FILTER 1 1°¢¢,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

‘FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1° suffices_by (
METIS_TAC[LENGTH_REPLICATE]

) >>

Induct_on ‘1°¢ >> (
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE]

))

289 /292

Subgoal Example

First Version

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
¢¢11. IS_WEAK_SUBLIST_FILTER 1 1¢°¢,
REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
Induct_on ‘1°¢ >- (
Q.EXISTS_TAC ‘[1¢ >>
SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]
) >>
FULL_SIMP_TAC std_ss [] >>
GEN_TAC >>
Q.EXISTS_TAC ‘T::bl¢ >>
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])

o the example above is taken from exercise 5

o the proof mixes properties of IS_WEAK_SUBLIST_FILTER and
properties of FILTER_BY_BOOLS

o it is hard to see what the main idea is

Subgoal Example I

o the subgoal is general enough to justify a lemma
o the structure becomes even cleaner

o this improves reusability

Lemma Version

val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",
¢¢11. FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1¢¢,
Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°¢¢,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Q.EXISTS_TAC ‘REPLICATE (LENGTH 1) T¢ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])

290 /292

Avoid Autogenerated Names {;@’}

o many HOL-tactics introduce new variable names

» Induct
» Cases
> .

o the new names are often very artificial
o even worse, generated names might change in future

o proof scripts using autogenerated names are therefore
» hard to read
» potentially fragile

o therefore rename variables after they have been introduced
o HOL has multiple tactics supporting renaming

o most useful is renamel ‘pat®, it searches for pattern and renames
vars accordingly

Autogenerated Names Example

Bad Example

prove (‘€!1. 1 < LENGTH 1 ==> (7x1 x2 1°. 1

GEN_TAC >>
Cases_on ‘1¢ >> SIMP_TAC list_ss [] >>
Cases_on ‘t¢ >> SIMP_TAC list_ss [])

x1::x2::1°) ¢,

Good Example

prove (‘¢!1. 1 < LENGTH 1 ==> (7x1 x2 1°. 1

GEN_TAC >>

Cases_on ‘1° >> SIMP_TAC list_ss [] >>
renamel ‘LENGTH 12¢ >>

Cases_on ‘12¢ >> SIMP_TAC list_ss [])

x1::x2::1%) ¢,

Proof State before renamel
1 < SUC (LENGTH t) ==> ?x2 1’. t = x2::1°

Proof State after renamel

1 < SUC (LENGTH 12) ==> 7x2 1’. 12 = x2::1°

