
Interactive Theorem Proving (ITP) Course
Part XV

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version d88c12b of Wed Jun 7 10:08:28 2017

Part XIV

Maintainable Proofs

Motivation

proofs are hopefully still used in a few weeks, months or even years

often the environment changes slightly during the lifetime of a proof
I your definitions change slightly
I your own lemmata change (e. g. become more general)
I used libraries change
I HOL changed

F automation became more powerful
F rewrite rules in certain simpsets changed
F definition packages produce slightly different theorems
F autogenerated variable-names change
F . . .

even if HOL and used libraries are stable, proofs often go through
several iterations

often they are adapted by someone else than the original author

therefore it is important that proofs are easily maintainable

273 / 292

Nice Properties of Proofs

maintainability is closely linked to other desirable properties of proofs

proofs should be
I easily understandable
I well-structured
I robust

F they should be able to scope with minor changes to environment
F if they fail they should do so at sensible points

I reusable

How can one write proofs with such properties?

as usual, there are no easy answers but plenty of good advice

I recommend following the advice of ProofStyle manual

parts of this advice as well as a few extra points are discussed in the
following

274 / 292

Formatting

format your proof such that it easily understandable

make the structure of the proof very clear

show clearly where subgoals start and stop

use indentation to mark proofs of subgoals

use empty lines to separate large proofs of subgoals

use comments where appropriate

275 / 292

Formatting Example I

Bad Example Term Formatting
prove (‘‘!l1 l2. l1 <> [] ==> LENGTH l2 <

LENGTH (l1 ++ l2)‘‘,

...)

Good Example Term Formatting
prove (‘‘!l1 l2. l1 <> [] ==>

(LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

...)

276 / 292

Formatting Example II

Bad Example Subgoals
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals

At least show when a subgoal starts and ends

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> (

REWRITE_TAC[]

) >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

277 / 292

Formatting Example II 2

Good Example Subgoals

Make sure REWRITE TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >- (

REWRITE_TAC[] >>

)

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

278 / 292

Formatting Example II 3

Alternative Good Example Subgoals

Alternative good formatting using THENL

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

])

Another Bad Example Subgoals

Bad formatting using THENL

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >> DECIDE_TAC])

279 / 292

Some basic advice

use semicoli after each declaration
I if exception is raised during interactive processing (e. g. by a failing

proof), previous successful declarations are kept
I it sometimes leads to better error messages in case of parsing errors

use plenty of parentheses to make structure very clear

don’t ignore parser warnings
I especially warnings about multiple possible parse trees are likely to lead

to unstable proofs
I understand why such warnings occur and make sure there is no problem

format your development well
I use indentation
I use linebreaks at sensible points
I don’t use overlong lines
I . . .

don’t use open in middle of files

personal opinion: avoid unicode in source files

280 / 292

KISS and Premature Optimisation

follow standard design principles
I KISS principle
I “premature optimization is the root of all evil” (Donald Knuth)

don’t try to be overly clever

simple proofs are preferable

proof-checking-speed mostly unimportant

conciseness not a value in itself but desirable if it helps
I readability
I maintainability

abstraction is often desirable, but also has a price
I don’t use too complex, artificial definitions and lemmata

281 / 292

Too much abstraction

Too much abstraction Example
val TOO_ABSTRACT_LEMMA = prove (‘‘

!(size :’a -> num) (P : ’a -> bool) (combine : ’a -> ’a -> ’a).

(!x. P x ==> (0 < size x)) /\

(!x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>

(!x1 x2. P x1 ==> (size x2 < size (combine x1 x2)))‘‘,

...)

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

some proof using ABSTRACT_LEMMA

)

282 / 292

Too clever tactics

a common mistake is to use too clever tactics
I intended to work on many (sub)goals
I using TRY and other fancy trial and error mechanisms
I intended to replace multiple simple, clear tactics

typical case: a tactic containing TRY applied to many subgoals

it is often hard to see why such tactics work

if something goes wrong, they are hard to debug

general advice: don’t factor with tactics, instead use definitions and
lemmata

283 / 292

Too Clever Tactics Example I

Bad Example Subgoals
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> (

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

))

Alternative Good Example Subgoals II
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> SIMP_TAC list_ss [])

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

])

284 / 292

Too Clever Tactics Example II

Bad Example
val oadd_def = Define ‘(oadd (SOME n1) (SOME n2) = (SOME (n1 + n2))) /\

(oadd _ _ = NONE)‘;

val osub_def = Define ‘(osub (SOME n1) (SOME n2) = (SOME (n1 - n2))) /\

(osub _ _ = NONE)‘;

val omul_def = Define ‘(omul (SOME n1) (SOME n2) = (SOME (n1 * n2))) /\

(omul _ _ = NONE)‘;

val onum_NONE_TAC =

Cases_on ‘o1‘ >> Cases_on ‘o2‘ >>

SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NULL = prove (

‘‘!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

onum_NONE_TAC);

val osub_NULL = prove (

‘‘!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

onum_NONE_TAC);

val omul_NULL = prove (

‘‘!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

onum_NONE_TAC);

285 / 292

Too Clever Tactics Example II

Good Example
val obin_def = Define ‘(obin op (SOME n1) (SOME n2) = (SOME (op n1 n2))) /\

(obin _ _ _ = NONE)‘;

val oadd_def = Define ‘oadd = obin $+‘;
val osub_def = Define ‘osub = obin $-‘;
val omul_def = Define ‘omul = obin $*‘;

val obin_NULL = prove (

‘‘!op o1 o2. (obin op o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

Cases_on ‘o1‘ >> Cases_on ‘o2‘ >> SIMP_TAC std_ss [obin_def]);

val oadd_NULL = prove (

‘‘!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[oadd_def, obin_NULL]);

val osub_NULL = prove (

‘‘!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[osub_def, obin_NULL]);

val omul_NULL = prove (

‘‘!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[omul_def, obin_NULL]);

286 / 292

Use many subgoals and lemmata

often it is beneficial to use subgoals
I they structure long proofs well
I they help keeping the proof state clean
I they mark clearly what one tries to proof
I they provide points where proofs can break sensibly

general subgoals should often become lemmata
I this improves reusability
I proof scripts become shorter
I proofs are disentangled

287 / 292

Subgoal Example

First Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Induct_on ‘l‘ >- (

Q.EXISTS_TAC ‘[]‘ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]

) >>

FULL_SIMP_TAC std_ss [] >>

GEN_TAC >>

Q.EXISTS_TAC ‘T::bl‘ >>

ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])

the example above is taken from exercise 5

the proof mixes properties of IS WEAK SUBLIST FILTER and
properties of FILTER BY BOOLS

it is hard to see what the main idea is

288 / 292

Subgoal Example II

the following proof separates the property of FILTER BY BOOLS as a
subgoal

the main idea becomes clearer

Subgoal Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

‘FILTER_BY_BOOLS (REPLICATE (LENGTH l) T) l = l‘ suffices_by (

METIS_TAC[LENGTH_REPLICATE]

) >>

Induct_on ‘l‘ >> (

ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE]

))

289 / 292

Subgoal Example II

the subgoal is general enough to justify a lemma

the structure becomes even cleaner

this improves reusability

Lemma Version
val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",

‘‘!l. FILTER_BY_BOOLS (REPLICATE (LENGTH l) T) l = l‘‘,

Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Q.EXISTS_TAC ‘REPLICATE (LENGTH l) T‘ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])

290 / 292

Avoid Autogenerated Names

many HOL-tactics introduce new variable names
I Induct
I Cases
I . . .

the new names are often very artificial

even worse, generated names might change in future

proof scripts using autogenerated names are therefore
I hard to read
I potentially fragile

therefore rename variables after they have been introduced

HOL has multiple tactics supporting renaming

most useful is rename1 ‘pat‘, it searches for pattern and renames
vars accordingly

291 / 292

Autogenerated Names Example

Bad Example
prove (‘‘!l. 1 < LENGTH l ==> (?x1 x2 l’. l = x1::x2::l’)‘‘,

GEN_TAC >>

Cases_on ‘l‘ >> SIMP_TAC list_ss [] >>

Cases_on ‘t‘ >> SIMP_TAC list_ss [])

Good Example
prove (‘‘!l. 1 < LENGTH l ==> (?x1 x2 l’. l = x1::x2::l’)‘‘,

GEN_TAC >>

Cases_on ‘l‘ >> SIMP_TAC list_ss [] >>

rename1 ‘LENGTH l2‘ >>

Cases_on ‘l2‘ >> SIMP_TAC list_ss [])

Proof State before rename1
1 < SUC (LENGTH t) ==> ?x2 l’. t = x2::l’

Proof State after rename1
1 < SUC (LENGTH l2) ==> ?x2 l’. l2 = x2::l’

292 / 292

