Interactive Theorem Proving (ITP) Course Part XIII

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version acf88f7 of Mon May 22 13:40:56 2017

Rewriting in HOL

- o simplification via rewriting was already a strength of Edinburgh LCF
- o it was further improved for Cambridge LCF
- \bullet HOL inherited this powerful rewriter
- \bullet equational reasoning is still the main workhorse
- \bullet there are many different equational reasoning tools in HOL
	- \blacktriangleright Rewrite library inherited from Cambridge LCF you have seen it in the form of REWRITE TAC
	- \triangleright computeLib fast evaluation build for speed, optimised for ground terms seen in the form of EVAL
	- \triangleright simplib Simplification sophisticated rewrite engine, HOL's main workhorse not discussed in this lecture, yet

Part XIII

Rewriting

we have seen primitive inference rules for equality before

Semantic Foundations

$$
\Gamma \vdash s = t
$$
\n
$$
\Delta \vdash u = v
$$
\n
$$
\tau \vdash s = t
$$
\n
$$
\tau \cup \Delta \vdash s(u) = t(v)
$$
\nCOMB

\n
$$
\tau \vdash \lambda x. s = \lambda x. t
$$
\n
$$
\Gamma \vdash s = t
$$
\n
$$
\Delta \vdash t = u
$$
\n
$$
\tau \vdash u \qquad \qquad \vdash t = t
$$
\n
$$
\Gamma \cup \Delta \vdash s = u
$$
\n
$$
\Gamma \vdash a \qquad \qquad \vdash t = t
$$
\n
$$
\Gamma \vdash t = t
$$
\nREFL

• these rules allow us to replace any subterm with an equal one \bullet this is the core of rewriting

 \blacktriangleright ...

KTH

KТH["]

Conversions

200 / 240

KTH

- in HOL, equality reasoning is implemented by conversions
- a conversion is a SML function of type term \rightarrow thm
- given a term t, a conversion
	- rian produces a theorem of the form $I t = t'$
	- **F** raises an UNCHANGED exception or
	- \triangleright fails, i. e. raises an HOL_ERR exception

Example

```
> BETA_CONV ''(\x. SUC x) v''
val it = |-(\x. \text{SUC } x) y = \text{SUC } y
```
> BETA_CONV 'SUC v'' Exception-HOL_ERR ... raised

> REPEATC BETA_CONV ''SUC v'' Exception- UNCHANGED raised

- similar to tactics and tacticals there are conversionals for conversions
- conversionals allow building conversions from simpler ones
- there are many of them
	- \blacktriangleright THENC

Conversionals

- \triangleright ORELSEC
- \blacktriangleright REPEATC
- \blacktriangleright TRY_CONV
- \blacktriangleright RAND_CONV
- \triangleright RATOR_CONV
- \blacktriangleright ABS_CONV
- \blacktriangleright

Depth Conversionals

- for rewriting depth-conversionals are important
- a depth-conversional applies a conversion to all subterms
- there are many different ones
	- \triangleright ONCE DEPTH CONV c top down, applies c once at highest possible positions in distinct subterms
	- \triangleright TOP_SWEEP_CONV c top down, like ONCE_DEPTH_CONV, but continues processing rewritten terms
	- \triangleright TOP DEPTH CONV \circ \rightarrow top down, like TOP SWEEP CONV, but try top-level again after change
	- \triangleright DEPTH_CONV c bottom up, recurse over subterms, then apply c repeatedly at top-level
	- \triangleright REDEPTH_CONV c bottom up, like DEPTH_CONV, but revisits subterms

REWR CONV

- it remains to rewrite terms at top-level
- o this is achieved by REWR_CONV
- given a term t and a theorem $|-$ t1 = t2, REWR_CONV t thm
	- \triangleright searches an instantiation of term and type variables such that t1 becomes α -equivalent to t
	- \blacktriangleright fails, if no instantiation is found
	- otherwise, instantiate the theorem and get $|-$ t1' = t2'
	- return theorem $|-$ t = t2'

Example

term LENGTH $[1:2:3]$, theorem $-$ LENGTH $((x; ?a):xs) = SUC$ (LENGTH xs) found type instantiation: $[``: 'a' '']$ -> '':num''] found term instantiation: $\int_1^x x \cdot \lim_{x \to 1} f(x) dx = \int_1^x x \cdot \lim_{x \to 1} f(x) dx$ returned theorem: $|-$ LENGTH $[1;2;3]$ = SUC (LENGTH $[2;3]$)

- the tricky part is finding the instantiation
- this problem is called the (term) matching problem

Term Matching

204 / 240

o given term t_org and a term t_goal try to find

- \blacktriangleright type substitution ty_s
- \blacktriangleright term substitution tm_s
- such that subst tm_s (inst ty_s t_org) $\stackrel{\alpha}{\equiv}$ t_goal
- this can be easily implemented by a recursive search

Examples Term Matching

- it is often very annoying that the last match fails
- it prevents us for example rewriting !y. $(2 = y) / \sqrt{q}$ y to $(y. (2=y)) / \sqrt{(y. Q y)}$
- Can we do better? Yes, with higher order (term) matching.

205 / 240

Higher Order Term Matching

- KTH \bullet term matching searches for substitutions such that t org becomes α -equivalent to t_goal
- higher order term matching searches for substitutions such that t org becomes t subst such that the $\beta\eta$ -normalform of t subst is α -equivalent equivalent to $\beta\eta$ -normalform of t_goal, i.e.

higher order term matching is aware of the semantics of λ

 β -reduction $(\lambda x. f)$ $y = f[y/x]$ *η*-conversion $(\lambda x. f x) = f$ where x is not free in f

- \bullet the HOL implementation expects t_{long} to be a **higher-order** pattern
	- \blacktriangleright t_org is β -reduced
	- \triangleright if X is a variable that should be instantiated, then all arguments should be distinct variables
- for other forms of t_org, HOL's implementation might fail
- higher order matching is used by HO_REWR_CONV

Examples Higher Order Term Matching

Don't worry, it might look complicated, but in practice it is easy to get a feeling for higher order matching.

Rewrite Library

208 / 240

- the rewrite library combines REWR_CONV with depth conversions
- there are many different conversions, rules and tactics
- at they core, they all work very similarly
	- \triangleright given a list of theorems, a set of rewrite theorems is derived
		- \star split conjunctions
		- \star remove outermost universal quantification
		- \star introduce equations by adding = T (or = F) if needed
	- \triangleright REWR_CONV is applied to all the resulting rewrite theorems
	- \blacktriangleright a depth-conversion is used with resulting conversion
- for performance reasons an efficient indexing structure is used
- by default implicit rewrites are added
- o REWRITE_CONV
- REWRITE RULE
- REWRITE TAC
- \circ ASM_REWRITE_TAC
- ONCE REWRITE TAC
- PURE REWRITE TAC
- PURE ONCE REWRITE TAC
- 0.11 .

Ho Rewrite Library

- \circ internally uses HO_REWR_CONV
- similar conversions, rules and tactics as Rewrite lib
	- ▶ Ho_Rewrite.REWRITE_CONV
	- \blacktriangleright Ho_Rewrite.REWRITE_RULE
	- \blacktriangleright Ho_Rewrite.REWRITE_TAC
	- \blacktriangleright Ho_Rewrite.ASM_REWRITE_TAC
	- \blacktriangleright Ho_Rewrite.ONCE_REWRITE_TAC
	- \blacktriangleright Ho_Rewrite.PURE_REWRITE_TAC
	- \blacktriangleright Ho_Rewrite.PURE_ONCE_REWRITE_TAC
	- \blacktriangleright ...

- > REWRITE CONV [LENGTH] ''LENGTH [1;2]'' val it = $|-$ LENGTH $[1; 2]$ = SUC (SUC 0)
- > ONCE_REWRITE_CONV [LENGTH] ''LENGTH [1:2]'' val it = $|-$ LENGTH $[1; 2]$ = SUC (LENGTH $[2]$)
- > REWRITE_CONV $[] 'A / \ A / \ A / \ A'$ Exception- UNCHANGED raised
- > PURE_REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A'' val it = $|-$ A $/$ \ A $/$ \ ~A <=> A $/$ \ F
- > REWRITE_CONV [NOT_AND] $``A / A / A / A$ val it = $|- A / A / A / \sim A \iff F$
- > REWRITE_CONV [FORALL_AND_THM] $'':x. P x / Q x / R x'$ Exception- UNCHANGED raised
- > Ho_Rewrite.REWRITE CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x'' val it = $|-!x. P x \wedge Q x \wedge R x \Longleftrightarrow (!x. P x) \wedge (!x. Q x) \wedge (!x. R x)$

Summary Rewrite and Ho Rewrite Library

Term Rewriting Systems

213 / 240

KТH["]

- o the Rewrite and Ho Rewrite library provide powerful infrastructure for term rewriting
- thanks to clever implementations they are reasonably efficient
- basics are easily explained
- however, efficient usage needs some experience
- to use rewriting efficiently, one needs to understand about term rewriting systems
- \bullet this is a large topic
- o one can easily give whole course just about term rewriting systems
- however, in practise you quickly get a feeling
- important points in practise
	- \blacktriangleright ensure termination of your rewrites
	- \blacktriangleright make sure they work nicely together

Term Rewriting Systems — Termination

212 / 240

Termination — Subterm examples

• a proper subterm is always simpler

- \blacktriangleright !l. APPEND \lceil 1 = 1
- \blacktriangleright !n. n + 0 = n
- \blacktriangleright !l. REVERSE (REVERSE 1) = 1
- \blacktriangleright !t1 t2. if T then t1 else t2 <=> t1
- \blacktriangleright !n. n * 0 = 0
- the right hand side should not use extra vars, throwing parts away is usually simpler
	- \triangleright !x xs. (SNOC x xs = []) = F
	- \triangleright !x xs. LENGTH $(x::xs) = SUC$ (LENGTH xs)
	- \triangleright !n x xs. DROP (SUC n) (x::xs) = DROP n xs

Theory

- o choose well-founded order \prec
- o for each rewrite theorem $|-$ t1 = t2 ensure t2 \prec t1

Practice

- informally define for yourself what simpler means
- o ensure each rewrite makes terms simpler

o good heuristics

- \triangleright subterms are simpler than whole term
- use an order on functions

Termination — use simpler terms

- it is useful to consider some functions simple and other complicated
- replace complicated ones with simple ones
- o never do it in the opposite direction
- clear examples
	- \blacktriangleright |- !m n. MEM m (COUNT_LIST n) <=> (m < n)
	- \blacktriangleright |- !ls n. (DROP n ls = []) <=> (n >= LENGTH ls)
- unclear example
	- \blacktriangleright |- !L. REVERSE L = REV L \lceil]
- some equations can be used in both directions
- one should decide on one direction
- this implicitly defined a normalform one wants terms to be in examples
	- \blacktriangleright |- !f l. MAP f (REVERSE 1) = REVERSE (MAP f 1)
	- \blacktriangleright |- !11 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

216 / 240

KTH

Termination — Problematic rewrite rules

- some equations immediately lead to non-termination, e. g.
	- \blacktriangleright |- !m n. m + n = n + m
	- \blacktriangleright 1- !m. m = m + 0

• slightly more subtle are rules like

- \blacktriangleright |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)
- o often combination of multiple rules leads to non-termination this is especially problematic when adding to predefined set of rewrites
	- \triangleright |- !m n p. m + $(n + p) = (m + n) + p$ and $|- |m n p. (m + n) + p = m + (n + p)$

Rewrites working together

- rewrite rules should not complete with each other
- o if a term ta can be rewritten to ta1 and ta2 applying different rewrite rules, then the ta1 and ta2 should be further rewritten to a common th
- this can often be achieved by adding extra rewrite rules

Example

```
Assume we have the rewrite rules l - DOUBLE n = n + n and
|- F.VEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
  T or
  \circ EVEN (2 + 2).
To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.
```


Rewrites working together II

221 / 240

KТH["]

- to design rewrite systems that work well, normalforms are vital
- a term is in **normalform**, if it cannot be rewritten any further
- one should have a clear idea what the normalform of common terms looks like
- all rules should work together to establish this normalform
- the right-hand-side of each rule should be in normalform
- the left-hand-side should not be simplifiable by any other rule
- o the order in which rules are applied should not influence the final result
- computeLib is the library behind EVAL
- it is a rewriting library designed for evaluating ground terms (i.e. terms without variables) efficiently
- it uses a call-by-value strategy similar to SML's
- \bullet it uses first order term matching
- \bullet it performs β reduction in addition to rewrites

- computeLib uses compsets to store its rewrites
- a compset stores
	- \blacktriangleright rewrite rules
	- \blacktriangleright extra conversions
- the extra conversions are guarded by a term pattern for efficiency
- users can define their own compsets
- however, computeLib maintains one special compset called the compset
- o the compset is used by EVAL

- EVAL uses the compset
- tools like the Datatype of TFL automatically extend the compset
- this way, EVAL knows about (nearly) all types and functions
- one can extended the compset manually as well
- rewrites exported by Define are good for ground terms but may lead to non-termination for non-ground terms
- zDefine prevents TFL from automatically extending the compset

simpLib

- o simpLib is a sophisticated rewrite engine
- it is HOL's main workhorse
- o it provides
	- \blacktriangleright higher order rewriting
	- \blacktriangleright usage of context information
	- \triangleright conditional rewriting
	- \blacktriangleright arbitrary conversions
	- \blacktriangleright support for decision procedures
	- \blacktriangleright simple heuristics to avoid non-termination
	- \blacktriangleright fancier preprocessing of rewrite theorems
	- \blacktriangleright ...
- \bullet it is very powerful, but compared to Rewrite lib sometimes slow
- simpLib uses simpsets
- simpsets are special datatypes storing
	- \blacktriangleright rewrite rules
	- \triangleright conversions
	- \blacktriangleright decision procedures
	- \blacktriangleright congruence rules
	- \blacktriangleright
- in addition there are simpset-fragments
- simpset-fragments contain similar information as simpsets
- fragments can be added to and removed from simpsets
- o most important simpset is std_ss

224 / 240

Basic Usage II

Basic Simplifier Examples

225 / 240

- a call to the simplifier takes as arguments
	- \blacktriangleright a simpset
	- \blacktriangleright a list of rewrite theorems
- common high-level entry points are
	- \triangleright SIMP CONV ss thmL conversion
	- \triangleright SIMP_RULE ss thmL rule
	- \triangleright SIMP TAC ss thmL tactic without considering assumptions
	- \triangleright ASM_SIMP_TAC ss thmL tactic using assumptions to simplify goal
	- \triangleright FULL SIMP TAC ss thmL $-$ tactic simplifying assumptions with each other and goal with assumptions
	- \triangleright REV FULL SIMP TAC ss thmL $-$ similar to FULL SIMP TAC but with reversed order of assumptions

 \bullet there are many derived tools not discussed here

- > SIMP_CONV bool_ss [LENGTH] ''LENGTH [1;2]'' val it = $I -$ LENGTH $[1: 2] =$ SUC (SUC 0)
- > SIMP_CONV std_ss [LENGTH] ''LENGTH [1;2]'' val it = $|-$ LENGTH $[1; 2] = 2$
- > SIMP_CONV list_ss [] ''LENGTH [1;2]'' val it = $|-$ LENGTH $[1; 2] = 2$

Common simpsets

Common simpset-fragments

- \circ pure ss empty simpset
- \bullet bool_ss basic simpset
- \circ std_ss $-$ standard simpset
- \bullet arith ss arithmetic simpset
- \bullet list_ss list simpset
- \circ real_ss real simpset
- many theories and libraries provide their own simpset-fragments
- \circ PRED SET ss simplify sets
- \circ STRING_ss simplify strings
- \circ QI ss $-$ extra quantifier instantiations
- o gen beta ss $-\beta$ reduction for pairs
- \bullet ETA_ss η conversion
- EQUIV EXTRACT ss extract common part of equivalence
- CONJ ss use conjunctions for context
- 0.111

228 / 240

Build-In Conversions and Decision Procedures


```
• in contrast to Rewrite lib the simplifier can run arbitrary conversions
\bullet most useful is probably \beta reduction
o std_ss has support for basic arithmetic and numerals
• it also has simple, syntactic conversions for instantiating quantifiers
     \triangleright !x. ... \bigwedge (x = c) \bigwedge ... ==> ...
     \triangleright !x. ... \setminus / ~(x = c) \setminus ...
     \triangleright ?x. ... /\ (x = c) /\ ...
besides very useful conversions, there are decision procedures as well
• the most frequently used one is probably the arithmetic decision
  procedure you already know from DECIDE
                                                                                    > SIMP_CONV std_ss [] ''(\x. x + 2) 5''
                                                                                    val it = |-(\x, x + 2) 5 = 7> SIMP_CONV std_ss [] ''!x. Q x /\ (x = 7) ==> P x''
                                                                                    val it = |-(!x. 0 x) \wedge (x = 7) ==> P x) <=> (0.7 ==> P 7)''
                                                                                    > SIMP_CONV std_ss [] ''?x. Q x /\ (x = 7) /\ P x''
                                                                                    val it = |-(?x. Q x) \times (x = 7) / P x <=> (Q 7 / P 7)''
                                                                                    > SIMP_CONV std_ss [] ''x > 7 ==> x > 5''
                                                                                    Exception- UNCHANGED raised
                                                                                    > SIMP CONV arith ss [] 'x > 7 == > x > 5' 'val it = |-(x > 7 == > x > 5) <=> T
```


Higher Order Rewriting

- the simplifier supports higher order rewriting
- \bullet this is often very handy
- for example it allows moving quantifiers around easily

Examples

```
> SIMP_CONV std_ss [FORALL_AND_THM] ''!x. P x /\ Q /\ R x''
val it = \vert - \vert (!x. P x \wedge Q \wedge R x) <=>
              (!x. P x) \wedge Q \wedge (!x. R x)
```

```
> SIMP_CONV std_ss [GSYM_RIGHT_EXISTS_AND_THM, GSYM_LEFT_FORALL_IMP_THM]
   ''!y. (P y /\ (?x. y = SUC x)) ==> Q \, v'val it = |-(y. P y) \wedge (?x. y = SUC x) ==> Q y) <=>!x. P (SUC x) ==> 0 (SUC x)
```
- a great feature of the simplifier is that it can use context information
- by default simple context information is used like
	- \blacktriangleright the precondition of an implication
	- \blacktriangleright the condition of if-then-else
- one can configure which context to use via congruence rules
	- \triangleright by using CONJ ss one can easily use context of conjunctions
	- \triangleright warning: using CONJ \simeq can be slow
	- \triangleright using other contexts is outside the scope of this lecture
- using context often simplifies proofs drastically
	- \triangleright using Rewrite lib, often a goal needs to be split and a precondition moved to the assumptions
	- \triangleright then ASM_REWRITE_TAC can be used
	- \triangleright with SIMP TAC there is no need to split the goal

'KTH

232 / 240

Context Examples

- > SIMP_CONV std_ss [] $'((1 = []) == p 1) / Q 1'$ val it = $|-(1 - 1) == p 1)$ / 0 1 <=> $((1 = []) \implies P []) / Q 1$
- > SIMP_CONV arith_ss [] ''if (c /\ x < 5) then (P c /\ x < 6) else Q c'' val it = $| -$ (if c $/ \sqrt{x}$ < 5 then P c $/ \sqrt{x}$ < 6 else Q c) <= > if $c \wedge x < 5$ then P T else Q c:
- > SIMP_CONV std_ss [] ''P x /\ (Q x /\ P x ==> Z x)'' Exception- UNCHANGED raised
- > SIMP_CONV (std_ss++boolSimps.CONJ_ss) [] ''P x /\ (Q x /\ P x ==> Z x)'' val it = $|-$ P x $/$ (Q x $/$ P x = > Z x) < > P x $/$ (Q x = > Z x)
- Conditional Rewriting I
	- perhaps the most powerful feature of the simplifier is that it supports conditional rewriting
	- **this means it allows conditional rewrite theorem of the form**
		- $| \text{cond} == \rangle$ (t1 = t2)
	- if the simplifier finds a term $t1'$ it can rewrite via $t1 = t2$ to $t2'$, it tries to discharge the assumption cond'
	- o for this, it calls itself recursively on cond'
		- \blacktriangleright all the decision procedures and all context information is used
		- \triangleright conditional rewriting can be used
		- \triangleright to prevent divergence, there is a limit on recursion depth
	- \bullet if cond' = T can be shown, t1' is rewritten to t2'
	- otherwise t1' is not modified

Conditional Rewriting II

236 / 240

KTH

Conditional Rewriting Example

- conditional rewriting is a very powerful technique
- decision procedures and sophisticated rewrites can be used to discharge preconditions without cluttering proof state
- it provides a powerful search for theorems that apply
- however, if used naively, it can be slow
- moreover, to work well, rewrite theorems need to of a special form
- consider the conditional rewrite theorem !1 n. LENGTH $1 \le n == > (DROP n 1 = \lceil 1 \rceil)$
- o let's assume we want to prove

 $(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]$

- we can without conditional rewriting
	- \triangleright show $|-$ LENGTH $[1;2;3;4]$ ≤ 7
	- \triangleright use this to discharge the precondition of the rewrite theorem
	- \triangleright use the resulting theorem to rewrite the goal
- with conditional rewriting, this is all automated
- > SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG] $'$ (DROP 7 [1:2:3:4]) ++ [5:6:7]' val it = $|-$ DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]
- conditional rewriting often shortens proofs considerably

237 / 240

Conditional Rewriting Pitfalls I

- if the pattern is too general, the simplifier becomes very slow
- consider the following, trivial but hopefully useful example

Looping example

```
> val my_thm = prove ('T = > (P = F)'', PROVE_TAC[])
> time (SIMP_CONV std_ss [my_thm]) ''P1 /\ P2 /\ P3 /\ ... /\ P10''
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised
```
> time (SIMP_CONV std_ss []) ''P1 /\ P2 /\ P3 /\ ... /\ P10'' runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s. Exception- UNCHANGED raised

- \rightarrow notice that the rewrite is applied at plenty of places (quadratic in number of conjuncts)
- \triangleright notice that each backchaining triggers many more backchainings
- \triangleright each has to be aborted to prevent diverging
- \triangleright as a result, the simplifier becomes very slow
- \triangleright incidentally, the conditional rewrite is useless

Conditional Rewriting Pitfalls II

- good conditional rewrites $|- c ==>(1 = r)$ should mention only variables in c that appear in l
- \bullet if c contains extra variables $x1$... xn, the conditional rewrite engine has to search instantiations for them
- o this mean that conditional rewriting is trying discharge the precondition ?x1 ... xn. c
- o the simplifier is usually not able to find such instances

Transitivity

```
> val P_def = Define 'P x y = x < y';
> val my_thm = prove (''!x y z. P x y ==> P y z ==> P x z'', ...)> SIMP_CONV arith_ss [my_thm] ''P 2 3 /\ P 3 4 ==> P 2 4''
Exception- UNCHANGED raised
```

```
(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ''P 2 3 /\ P 3 4 ==> P 2 4''
val it = |- P 2 3 / P 3 4 = = > P 2 4 < = > T:
```
Conditional vs. Unconditional Rewrite Rules

- conditional rewrite rules are often much more powerful
- however, Rewrite lib does not support them
- o for this reason there are often two versions of rewrite theorems

drop example

- DROP LENGTH NIL is a useful rewrite rule:
	- $|- |1.$ DROP (LENGTH 1) $1 = []$
- in proofs, one needs to be careful though to preserve exactly this form
	- \triangleright one should not (partly) evaluate LENGTH 1 or modify 1 somehow
- with the conditional rewrite rule DROP LENGTH TOO LONG one does not need to be as careful
	- $| |1$ n. LENGTH $1 \leq n == > (DROP n 1 = [])$
		- \blacktriangleright the simplifier can use simplify the precondition using information about LENGTH and even arithmetic decision procedures