Interactive Theorem Proving (ITP) Course Parts XIII, XIV

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version e129362 of Mon May 22 09:50:13 2017

<ロト <四ト <注入 <注下 <注下 <

Part XIII

Rewriting

<ロ> (四) (四) (三) (三)

2

Rewriting in HOL

- simplification via rewriting was already a strength of Edinburgh LCF
- it was further improved for Cambridge LCF
- HOL inherited this powerful rewriter
- equational reasoning is still the main workhorse
- there are many different equational reasoning tools in HOL
 - Rewrite library inherited from Cambridge LCF you have seen it in the form of REWRITE_TAC
 - computeLib fast evaluation build for speed, optimised for ground terms seen in the form of EVAL
 - simpLib Simplification sophisticated rewrite engine, HOL's main workhorse not discussed in this lecture, yet
 - ...

Semantic Foundations

• we have seen primitive inference rules for equality before

$$\begin{array}{l} \Gamma \vdash s = t \\ \Delta \vdash u = v \\ \hline types \ fit \\ \overline{\Gamma \cup \Delta \vdash s(u) = t(v)} \end{array} \quad COMB \\ \hline \begin{array}{l} \Gamma \vdash s = t \\ \overline{\Gamma \vdash \lambda x. \ s = \lambda x. \ t} \end{array} ABS \\ \hline \begin{array}{l} \Gamma \vdash s = t \\ \hline \Delta \vdash t = u \\ \hline \overline{\Gamma \sqcup \Delta \vdash s = u} \end{array} \\ TRANS \\ \hline \end{array} \quad \overline{\Gamma \vdash t = t} \end{array} REFL$$

- these rules allow us to replace any subterm with an equal one
- this is the core of rewriting

Conversions

- in HOL, equality reasoning is implemented by conversions
- a conversion is a SML function of type term -> thm
- given a term t, a conversion
 - produce a theorem of the form |- t = t'
 - raise an UNCHANGED exception
 - ► fail, i.e. raise an HOL_ERR exception

Example

```
> BETA_CONV ``(\x. SUC x) y``
val it = |- (\x. SUC x) y = SUC y
> BETA_CONV ``SUC y``
Exception-HOL_ERR ... raised
> REPEATC BETA_CONV ``SUC y``
```

Exception- UNCHANGED raised

Conversionals

- similar to tactics and tacticals there are conversionals for conversions
- conversionals allow building conversions from simpler ones
- there are many of them
 - ► THENC
 - ► ORELSEC
 - REPEATC
 - TRY_CONV
 - RAND_CONV
 - RATOR_CONV
 - ABS_CONV
 - ▶ ...

Depth Conversionals

- for rewriting depth-conversionals are important
- a depth-conversional applies a conversion to all subterms
- there are many different ones
 - ONCE_DEPTH_CONV c top down, applies c once at highest possible positions in distinct subterms
 - TOP_SWEEP_CONV c top down, like ONCE_DEPTH_CONV, but continues processing rewritten terms
 - TOP_DEPTH_CONV c top down, like TOP_SWEEP_CONV, but try top-level again after change
 - DEPTH_CONV c bottom up, recurse over subterms, then apply c repeatedly at top-level
 - ▶ REDEPTH_CONV c bottom up, like DEPTH_CONV, but revisits subterms

REWR_CONV

- it remains to rewrite terms at top-level
- this is achieved by REWR_CONV
- given a theorem and a term t and a theorem |-t1 = t2, REWR_CONV t thm
 - searches an instantiation of term and type variables such that t1 becomes α-equivalent to t
 - fails, if no instantiation is found
 - otherwise, instantiate the theorem and get |- t1' = t2'
 - return theorem |- t = t2'

Example

```
term LENGTH [1;2;3], theorem |- LENGTH ((x:'a)::xs) = SUC (LENGTH xs) found type instantiation: [':'a'' |-> '':num''] found term instantiation: [''x:num'' |-> ''1''; ''xs'' |-> ''[2;3]''] returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])
```

- the tricky part is finding the instantiation
- this problem is called the (term) matching problem

Term Matching

- \bullet given term t_org and a term t_goal try to find
 - type substitution ty_s
 - term substitution tm_s
- such that subst tm_s (inst ty_s t_org) $\stackrel{\alpha}{\equiv}$ t_goal
- this can be easily implemented by a recursive search

t_org	t_goal	action
t1_org t2_org	t1_goal t2_goal	recurse
t1_org t2_org	otherwise	fail
$x. t_org x$	\y. t_goal y	match types of x, y and recurse
\x. t_org x	otherwise	fail
const	same const	match types
const	otherwise	fail
var	anything	try to bind var,
		take care of existing bindings

Examples Term Matching

t_org	t_goal	substs
LENGTH ((x:'a)::xs)	LENGTH [1;2;3]	'a $ ightarrow$ num, x $ ightarrow$ 1, xs $ ightarrow$ [2;3]
[]:'a list	[]:'b list	'a $ ightarrow$ 'b
0	0	empty substitution
b /∖ Т	(P (x:'a) ==> Q) /\ T	b \rightarrow P x ==> Q
b /\ b	P x /\ P x	$b \rightarrow P x$
Ъ /\ Ъ	Рх /\ Ру	fail
!x:num. P x /\ Q x	!y:num. P'y /\ Q'y	P $ ightarrow$ P', Q $ ightarrow$ Q'
!x:num. P x /\ Q x	!y. (2 = y) /\ Q' y	P $ ightarrow$ (\$= 2), Q $ ightarrow$ Q'
!x:num. P x /\ Q x	!y. (y = 2) /\ Q' y	fail

- it is often very annoying that the last match fails
- it prevents us for example rewriting !y. (2 = y) /\ Q y to (!y. (2=y)) /\ (!y. Q y)
- Can we do better? Yes, with higher order (term) matching.

Higher Order Term Matching

- term matching searches for substitutions such that t_org becomes
 α-equivalent to t_goal
- higher order term matching searches for substitutions such that t_org becomes t_subst such that the $\beta\eta$ -normalform of t_subst is α -equivalent equivalent to $\beta\eta$ -normalform of t_goal, i.e. higher order term matching is aware of the semantics of λ

$$\begin{array}{ll} \beta \text{-reduction} & (\lambda x. \ f) \ y = f[y/x] \\ \eta \text{-conversion} & (\lambda x. \ f \ x) = f \ \text{where} \ x \ \text{is not free in} \ f \end{array}$$

- the HOL implementation expects t_org to be a higher-order pattern
 - t_org is β -reduced
 - if X is a variable that should be instantiated, then all arguments should be distinct variables
- for other forms of t_org, HOL's implementation might fail
- higher order matching is used by HO_REWR_CONV

Examples Higher Order Term Matching

t_org	t_goal	substs
!x:num. P x /\ Q x	!y. (y = 2) /\ Q' y	P \rightarrow (\y. y = 2), Q \rightarrow Q'
!x. P x /\ Q x	!x. P x /\ Q x /\ Z x	Q \rightarrow \x. Q x /\ Z x
!x. P x /\ Q	!x. P x /\ Q x	fails
!x. P (x, x)	!x. Q x	fails
!x. P (x, x)	!x. FST (x,x) = SND (x,x)	P \rightarrow \xx. FST xx = SND xx

Don't worry, it might look complicated, but in practice it is easy to get a feeling for higher order matching.

Rewrite Library

- the rewrite library combines REWR_CONV with depth conversions
- there are many different conversions, rules and tactics
- at they core, they all work very similarly
 - ▶ given a list of theorems, a set of rewrite theorems is derived
 - ★ split conjunctions
 - ★ remove outermost universal quantification
 - * introduce equations by adding = T (or = F) if needed
 - REWR_CONV is applied to all the resulting rewrite theorems
 - a depth-conversion is used with resulting conversion
- for performance reasons an efficient indexing structure is used
- by default implicit rewrites are added

Rewrite Library II

- REWRITE_CONV
- REWRITE_RULE
- REWRITE_TAC
- ASM_REWRITE_TAC
- ONCE_REWRITE_TAC
- PURE_REWRITE_TAC
- PURE_ONCE_REWRITE_TAC
- . . .

Ho_Rewrite Library

- similar to Rewrite lib, but uses higher order matching
- internally uses HO_REWR_CONV
- similar conversions, rules and tactics as Rewrite lib
 - Ho_Rewrite.REWRITE_CONV
 - Ho_Rewrite.REWRITE_RULE
 - Ho_Rewrite.REWRITE_TAC
 - Ho_Rewrite.ASM_REWRITE_TAC
 - Ho_Rewrite.ONCE_REWRITE_TAC
 - Ho_Rewrite.PURE_REWRITE_TAC
 - Ho_Rewrite.PURE_ONCE_REWRITE_TAC
 - ▶ ...

Examples Rewrite and Ho_Rewrite Library

```
> REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)
```

```
> ONCE_REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])
```

```
> ONCE_REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])
```

```
> REWRITE_CONV [] ''A /\ A /\ ~A''
Exception- UNCHANGED raised
```

```
> PURE_REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A''
val it = |- A /\ A /\ ~A <=> A /\ F
```

```
> REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A'' val it = |-A / A / A / ~A <=> F
```

```
> REWRITE_CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x''
Exception- UNCHANGED raised
```

```
> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x''
val it = |- !x. P x /\ Q x /\ R x <=> (!x. P x) /\ (!x. Q x) /\ (!x. R x)
```


イロト イポト イヨト イヨト

- the Rewrite and Ho_Rewrite library provide powerful infrastructure for term rewriting
- thanks to clever implementations they are reasonably efficient
- basics are easily explained
- however, efficient usage needs some experience

Term Rewriting Systems

イロト 不同下 イヨト イヨト

- to use rewriting efficiently, one needs to understand about term rewriting systems
- this is a large topic
- one can easily give whole course just about term rewriting systems
- however, in practise you quickly get a feeling
- important points in practise
 - ensure termination of your rewrites
 - make sure they work nicely together

Term Rewriting Systems — Termination

Theory

- $\bullet\,$ choose well-founded order $\prec\,$
- for each rewrite theorem |- t1 = t2 ensure t2 \prec t1

Practice

- informally define for yourself what simpler means
- ensure each rewrite makes terms simpler
- good heuristics
 - subterms are simpler than whole term
 - use an order on functions

Termination — Subterm examples

a proper subterm is always simpler

- ▶ !1. APPEND [] 1 = 1
- ▶ !n. n + 0 = n
- ▶ !1. REVERSE (REVERSE 1) = 1
- It1 t2. if T then t1 else t2 <=> t1
- ▶ !n. n * 0 = 0
- the right hand side should not use extra vars, throwing parts away is usually simpler

イロト 不同下 イヨト イヨト

- ▶ !x xs. (SNOC x xs = []) = T
- !x xs. LENGTH (x::xs) = SUC (LENGTH xs)
- In x xs. DROP (SUC n) (x::xs) = DROP n xs

Termination — use simpler terms

- it is useful to consider some functions simple and other complicated
- replace complicated ones with simple ones
- never do it in the opposite direction
- clear examples
 - ▶ |- !m n. MEM m (COUNT_LIST n) $\langle = \rangle$ (m \langle n)
 - ▶ |- !ls n. (DROP n ls = []) <=> (n >= LENGTH ls)
- unclear examples
 - ▶ |-!L. REVERSE L = REV L []

- some equations can be used in both directions
- one should decide on one direction
- this implicitly defined a normalform one wants terms to be in
- examples
 - ► |- !f 1. MAP f (REVERSE 1) = REVERSE (MAP f 1)
 - ▶ |- !11 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

Termination — Problematic rewrite rules

• some equations immediately lead to non-termination, e.g.

- ▶ |- !m n. m + n = n + m
 ▶ |- !m. m = m + 0
- slightly more subtle are rules like
 - ▶ |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)
- often combination of multiple rules leads to non-termination this is especially problematic when adding to predefined set of rewrites

Rewrites working together

- rewrite rules should not complete with each other
- if a term ta can be rewritten to ta1 and ta2 applying different rewrite rules, then the ta1 and ta2 should be further rewritten to a common tb
- this can often be achieved by adding extra rewrite rules

Example

```
Assume we have the rewrite rules |-DOUBLE n = n + n and
|-EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
```

- T or
- EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T. Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

Rewrites working together II

- to design rewrite systems that work well, normalforms are vital
- a term is in normalform, if it cannot be rewritten any further
- one should have a clear idea what the normalform of common terms looks like
- all rules should work together to establish this normalform
- the right-hand-side of each rule should be in normalform
- the left-hand-side should not be simplifiable by any other rule
- the order in which rules are applied should not influence the final result

- computeLib is the library behind EVAL
- it is a rewriting library designed for evaluating ground terms (i.e. terms without variables) efficiently
- it uses a call-by-value strategy similar to SML's
- it uses first order term matching
- it performs β reduction in addition to rewrites

- computeLib uses compsets to store its rewrites
- a compset stores
 - rewrite rules
 - extra conversions
- the extra conversions are guarded by a term pattern for efficiency
- users can define their own compsets
- however, computeLib maintains one special compset called the_compset
- the_compset is used by EVAL

- EVAL uses the_compset
- tools like the Datatype of TFL automatically extend the_compset
- this way, EVAL knows about (nearly) all types and functions
- one can extended the_compset manually as well
- rewrites exported by Define are good for ground terms but may lead to non-termination for non-ground terms
- zDefine prevents TFL from automatically extending the_compset

simpLib

- simpLib is a sophisticated rewrite engine
- it is HOL's main workhorse
- it provides
 - higher order rewriting
 - usage of context information
 - conditional rewriting
 - arbitrary conversions
 - support for decision procedures
 - simple heuristics to avoid non-termination
 - fancier preprocessing of rewrite theorems
 - ▶
- it is very powerful, but compared to Rewrite lib sometimes slow

Basic Usage I

• simpLib uses simpsets

simpsets are special datatypes storing

- rewrite rules
- conversions
- decision procedures
- congruence rules
- ► ...
- in addition there are simpset-fragments
- simpset-fragments contain similar information as simpsets
- fragments can be added to and removed from simpsets
- most important simpset is std_ss

Basic Usage II

- a call to the simplifier takes as arguments
 - a simpset
 - a list of rewrite theorems
- common high-level entry points are
 - SIMP_CONV ss thmL conversion
 - SIMP_RULE ss thmL rule
 - SIMP_TAC ss thmL tactic without considering assumptions
 - ► ASM_SIMP_TAC ss thmL tactic using assumptions to simplify goal
 - FULL_SIMP_TAC ss thmL tactic simplifying assumptions with each other and goal with assumptions
 - REV_FULL_SIMP_TAC ss thmL similar to FULL_SIMP_TAC but with reversed order of assumptions
- there are many derived tools not discussed here

Basic Simplifier Examples


```
> SIMP_CONV bool_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)
```

```
> SIMP_CONV std_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = 2
```

```
> SIMP_CONV list_ss [] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = 2
```

Common simpsets

- pure_ss empty simpset
- bool_ss basic simpset
- std_ss standard simpset
- arith_ss arithmetic simpset
- list_ss list simpset
- real_ss real simpset

Common simpset-fragments

229 / 250

イロト 不得 とくき とくきとう き

- many theories and libraries provide their own simpset-fragments
- PRED_SET_ss simplify sets
- STRING_ss simplify strings
- QI_ss extra quantifier instantiations
- gen_beta_ss β reduction for pairs
- ETA_ss η conversion
- EQUIV_EXTRACT_ss extract common part of equivalence
- CONJ_ss use conjunctions for context

• . . .

Build-In Conversions and Decision Procedures

- in contrast to Rewrite lib the simplifier can run arbitrary conversions
- most useful is probably β reduction
- std_ss has support for basic arithmetic and numerals
- it also has simple, syntactic conversions for instantiating quantifiers
 - ▶ !x. ... /\ (x = c) /\ ... ==> ...
 - ▶ !x. ... \/ ~(x = c) \/ ...
 - ▶ ?x. ... /\ (x = c) /\ ...
- besides very useful conversions, there are decision procedures as well
- the most frequently used one is probably the arithmetic decision procedure you already know from DECIDE

Examples I

231 / 250

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 頁 - のへで

```
> SIMP_CONV std_ss [] ``(\x. x + 2) 5``
val it = |- (\x. x + 2) 5 = 7
> SIMP_CONV std_ss [] ``!x. Q x /\ (x = 7) ==> P x``
val it = |- (!x. Q x /\ (x = 7) ==> P x) <=> (Q 7 ==> P 7)``
> SIMP_CONV std_ss [] ``?x. Q x /\ (x = 7) /\ P x``
val it = |- (?x. Q x /\ (x = 7) /\ P x) <=> (Q 7 /\ P 7)``
> SIMP_CONV std_ss [] ``x > 7 ==> x > 5``
```

Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] ''x > 7 ==> x > 5''
val it = |- (x > 7 ==> x > 5) <=> T

Higher Order Rewriting

- the simplifier supports higher order rewriting
- this is often very handy
- for example it allows moving quantifiers around easily

Examples

Context

- a great feature of the simplifier is that it can use context information
- by default simple context information is used like
 - the precondition of an implication
 - the condition of if-then-else
- one can configure which context to use via congruence rules
 - ▶ by using CONJ_ss one can easily use context of conjunctions
 - warning: using CONJ_ss can be slow
 - using other contexts is outside the scope of this lecture
- using context often simplifies proofs drastically
 - using Rewrite lib, often a goal needs to be split and a precondition moved to the assumptions
 - then ASM_REWRITE_TAC can be used
 - with SIMP_TAC there is no need to split the goal

Context Examples

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [] ''P x /\ (Q x /\ P x ==> Z x)'' val it = |- P x /\ (Q x /\ P x ==> Z x) <=> P x /\ (Q x ==> Z x)

Conditional Rewriting I

- perhaps the most powerful feature of the simplifier is that it supports conditional rewriting
- if the simplifier finds a term t1' it can rewrite via t1 = t2 to t2', it tries to discharge the assumption cond'
- for this, it calls itself recursively on cond'
 - all the decision procedures and all context information is used
 - conditional rewriting can be used
 - ▶ to prevent divergence, there is a limit on recursion depth
- if cond' = T can be shown, t1' is rewritten to t2'
- otherwise t1' is not modified

- conditional rewriting is a very powerful technique
- decision procedures and sophisticated rewrites can be used to discharge preconditions without cluttering proof state
- it provides a powerful search for theorems that apply
- however, if used naively, it can be slow
- moreover, to work well, rewrite theorems need to of a special form

Conditional Rewriting Example

- consider the conditional rewrite theorem
 !1 n. LENGTH 1 <= n ==> (DROP n 1 = [])
- let's assume we want to prove
 (DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]
- we can without conditional rewriting
 - ▶ show |- LENGTH [1;2;3;4] <= 7
 - use this to discharge the precondition of the rewrite theorem
 - use the resulting theorem to rewrite the goal
- with conditional rewriting, this is all automated

val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]

conditional rewriting often shortens proofs considerably

Conditional Rewriting Pitfalls I

- if the pattern is too general, the simplifier becomes very slow
- consider the following, trivial but hopefully useful example

Looping example

```
> val my_thm = prove ('`~P ==> (P = F)'', PROVE_TAC[])
> time (SIMP_CONV std_ss [my_thm]) ''P1 /\ P2 /\ P3 /\ ... /\ P10''
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised
> time (SIMP_CONV std_ss []) ''P1 /\ P2 /\ P3 /\ ... /\ P10''
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.
```

```
Exception- UNCHANGED raised
```

- notice that the rewrite is applied at plenty of places (quadratic in number of conjuncts)
- notice that each backchaining triggers many more backchainings
- each has to be aborted to prevent diverging
- as a result, the simplifier becomes very slow
- incidentally, the conditional rewrite is useless

Conditional Rewriting Pitfalls II

- good conditional rewrites |- c ==> (1 = r) should mention only variables in c that appear in 1
- if c contains extra variables $x1 \dots xn$, the conditional rewrite engine has to search instantiations for them
- this mean that conditional rewriting is trying discharge the precondition ?x1 ... xn. c
- the simplifier is usually not able to find such instances

Transitivity

```
> val P_def = Define 'P x y = x < y';
> val my_thm = prove (''!x y z. P x y ==> P y z ==> P x z'', ...)
> SIMP_CONV arith_ss [my_thm] ''P 2 3 /\ P 3 4 ==> P 2 4''
Exception- UNCHANGED raised
(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ''P 2 3 /\ P 3 4 ==> P 2 4''
val it = |- P 2 3 /\ P 3 4 ==> P 2 4 <=> T:
```

Conditional vs. Unconditional Rewrite Rules

- conditional rewrite rules are often much more powerful
- however, Rewrite lib does not support them
- for this reason there are often two versions of rewrite theorems

drop example

- DROP_LENGTH_NIL is a useful rewrite rule:
 - |- !1. DROP (LENGTH 1) 1 = []
- in proofs, one needs to be careful though to preserve exactly this form
 - one should not (partly) evaluate LENGTH 1 or modify 1 somehow
- with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does not need to be as careful
 - |- !l n. LENGTH l <= n ==> (DROP n l = [])
 - the simplifier can use simplify the precondition using information about LENGTH and even arithmetic decision procedures

Part XIV

Advanced Definition Principles

(日) (월) (분) (분)

2

Relations

- a relation is a function from some arguments to bool
- the following example types are all types of relations:
 - . 'a -> 'a -> bool
 - . 'a -> 'b -> bool
 - . 'a -> 'b -> 'c -> 'd -> bool
 - . ('a # 'b # 'c) -> bool
 - ▶ : bool
 - ▶ : 'a -> bool
- relations are closely related to sets
 - ▶ R a b c <=> (a, b, c) IN {(a, b, c) | R a b c}
 - ▶ (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c

Relations II

• relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R : 'a \rightarrow 'a \rightarrow bool can be defined as the least relation RTC R that satisfies the following rules:

R x y		RTC R x y	RTC R y z
RTC R x y	RTC R x x	RTC R	хz

- if the rules are monoton, a least and a greatest fix point exists (Knaster-Tarski theorem)
- least fixpoints give rise to inductive relations
- greatest fixpoints give rise to coinductive relations

(Co)inductive Relations in HOL

- (Co)IndDefLib provides infrastructure for defining (co)inductive relations
- given a set of rules Hol_(co)reln defines (co)inductive relations
- 3 theorems are returned and stored in current theory
 - \blacktriangleright a rules theorem it states that the defined constant satisfies the rules
 - ► a cases theorem this is an equational form of the rules showing that the defined relation is indeed a fixpoint
 - a (co)induction theorem
- additionally a strong (co)induction theorem is stored in current theory

Example: Transitive Reflexive Closure


```
> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln '
    (!x y. R x y ==> RTC_REL R x y) /\
    (!x. RTC_REL R x y /\ RTC_REL R x z => RTC_REL R x z) '
```

```
val RTC_REL_rules = |- !R.
(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\
(!x y z. RTC_REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)
val RTC_REL_cases = |- !R a0 a1.
RTC_REL R a0 a1 <=>
```

```
(R a0 a1 \/ (a1 = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R a0 a1)
```

Example: Transitive Reflexive Closure II


```
val RTC_REL_ind = |- !R RTC_REL'.
  ((!x y. R x y ==> RTC_REL' x y) /\ (!x. RTC_REL' x x) /\
  (!x y z. RTC_REL' x y /\ RTC_REL' x z ==> RTC_REL' x z)) ==>
  (!a0 a1. RTC_REL R a0 a1 ==> RTC_REL' a0 a1)
> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
```

```
val RTC_REL_strongind = |- !R RTC_REL'.
(!x y. R x y ==> RTC_REL' x y) /\ (!x. RTC_REL' x x) /\
(!x y z.
RTC_REL R x y /\ RTC_REL' x y /\ RTC_REL R x z /\
RTC_REL' x z ==>
RTC_REL' x z) ==>
( !a0 a1. RTC_REL R a0 a1 ==> RTC_REL' a0 a1)
```

Example: EVEN

- val EVEN_REL_cases = |- !a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n
- val EVEN_REL_rules =
 |- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

```
val EVEN_REL_ind = |- !EVEN_REL'.
  (!a0.
      EVEN_REL' a0 ==>
      (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL' n) ==>
      (!a0. EVEN_REL' a0 ==> EVEN_REL a0)
```

- notice that in this example there is exactly one fixpoint
- therefore for these rule, the induction and coinductive relation coincide

Example: Dummy Relations


```
val DF_ind =
    |- !DF'. (!n. DF' (n + 1) ==> DF' n) ==> !a0. DF a0 ==> DF' a0
```

val DT_cases = |- !a0. DT a0 <=> DT (a0 + 1): val DF_cases = |- !a0. DF a0 <=> DF (a0 + 1):

- notice that for both DT and DF we used essentially a non-derminating recursion
- DT is always true, i.e. |- !n. DT n
- DF is always false, i.e. |- !n. ~(DF n)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 うのので

???

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > 249/250

???

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ 250 / 250