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The course contains 12 sections

1- 4 Introduction

¢Basic Quantum Mechanics concepts

<©Basic nuclear physics concepts: Pairing, single-particle excitations, square well, Magnetic
resonances

5-11 Nuclear shell model

oSingle-particle model and the spin-orbit interaction(5)
ONuclear deformation and the Nilsson model, rotation(6)
oSecond quantization and Hartree-Fock (7-8)
oTwo-particle system, LS and jj coupling(9)

Olsospin and neutron-proton coupling scheme(10)
&0ne-nucleon operators, gamma transition (10)

Obeta decay, 14C-dating p decay(11)

12 Summary and applications (12)



Why Focus on Microscopic Nuclear Theories?

Much of the progress in the past 50 years has been based on
empirical models (most with microscopic degrees of freedom) tuned
to experimental data

« Single-particle model

Nuclear coupling schemes (pairing, np coupling)
* Hartree-Fock, RPA and TDA

The physics of nuclei impacts the programs because nuclei are the
source of the energy and they are important diagnostics

e Fission

 Decay

* Nuclear reactions

» Astrophysics



Why Focus on Microscopic Nuclear Theories?

= Modern theories

« No-core shell model and Ab inito theories for light nuclei
* Large scale shell model for medium nuclei
* Modern energy density functional approaches (Hartree-Fock) for heavy nuclei

Nuclear Landscape

Ab inito
Corfigaration Interaction
PDensity Furctisnal Thecrr

>NN interaction (tensor, three-body...)
>Novel coupling schemes
>Novel decays

gtoble pucled

What we introduced in this course is the basis of all these practices.



Connections to computational science

1Teraflop=101? flops
1peta=10*° flops
lexa=10'8flops

Beskow, PDC
1973 TeraFLOPS

Lindgren, 305 Teraflops

K computer, RIKEN, Japan, 10.51 Petaflops, power
1.27*107"4kW



>Theory of nuclear fission
>Stability of superheavy elements
>Nucleosysthesis (selected topics)



Audi et al., Nucl. Phys. A 729 (2003) 3-128
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In the redivactive decay process
M= D40 (9.1)

where M is the mother nucleus, D the daughicr and C' the emitted cluster, cnergy con
servation implies that the Q-value is

Q — B(1) = B(() — H(M) (9.2)
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Theory of nuclear fission (liquid drop model)

the nucleus in an unstable state vibrates and changes form from spherical to a peanut-like
shape. The Coulomb repulsion between the parts separates them, arriving to two well
differentiated spheres which finally depart from each other, thus fissioning the mother
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Types of Multipole Deformatiions

eroundstate

The monopole mode A=0
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The associated excitation is the so-called breathing mode of the nucleus. A large amount of
energy is needed for the compression of nuclear matter and this mode is far too high in energy.

The dipole mode

Dipole deformations, to lowest order, do not correspond to a deformation of the nucleus but
rather to a shift of the center of mass, i.e. a translation of the nucleus, and should be
disregarded for nuclear excitations since translational shifts are spurious.
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The quadrupole mode 3 =2
The most important nuclear shapes and collective low energy excitations of atomic nuclei.
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asymmetric & symmetric modes
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Exotic mode Mercury-180

180Hg-> 90Zr + 90Zr ? no

FIG. 5 (color online). A schematic representation of the
potential-energy surface for '**Hg in two dimensions (elongation
and asymmetry) resulting from a five-dimensional analysis. The
shapes shown, connected by arrows to their locations, are the
ground state, the saddle point, and the point where the asym-
metric valley disappears.

PRL 105, 252502 (2010)



Related problem: heavy-ion fusion

* nucleus-nucleus potentials
- adiabatic fusion barriers

R=10.72 fm

R=10.35 fm




Island of stability

According to classical physics, elements with Z >104 should not exist due to the large

Coulomb repulsion. The occurrence of superheavy elements with Z>104 is entirely due to
nuclear shell effects.
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Abrupt changes in a-decay systematics as a manifestation of collective nuclear modes

C.Qi"" A.N. Andreyev,”' M. Huyse,” R. J. Liotta,' P. Van Duppen,” and R. A. Wyss'
'KTH, Alha Naova University Center, SE-10691 Stackhnlm, Sweden
“Instinnat voor Kern-en Stralingsfysica, Kataolicke Universiteit Leuven, B-3007 Feuven, Belgium
3Sehnnl of Engineering and Science, University of the West of Scotland, Paisley PAT 2BE, United Kingdom
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Shell closure in superheavy nuclei (an open problem)

Synthesis of a New Element with Atomic Number Z=117, PRL 104, 142502 (2010)

120 —
The nuclei in the chart decay by a
emission (yellow), spontaneous fission
(green), and B+ emission (pink).
Physics 3, 31 (2010)
http://physics.aps.org/articles/v3/31
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However, the nucleus can not be viewed as a rigid body due the short range of strong-
force interactions; typically measured moments of inertia for low-spin states are
30-50% relative to that of a rigid body.

exp. calc.

« B

14+ 14171565 1415 a:E(keV) = 7.45 T(I+1)
B:E(keV)= 745 I(I+1)-3.4x10°1(1+1)°

12+ 1078 1162 1080
10+ 777 820 778
8+ 5187 537 5188
6+ 3076 313 3069
n 1482 149 1476
2+ 447 445
0+ 0



Single-particle energy scheme as a function of deformation parameters.
What are they?

Superheavy nuclei may also be “deformed”.

Deforration ewrgy
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Prolate shapes are coloured red—orange,

S. Cwiok et al., Nature (London) 433, 705 (2005). oblate shapes are blue—green, and
spherical shapes are light yellow.



Nuclear Physics today: Shell evolution in neutron rich drip line nuclei

Intensive recent researches suggest that magic number or shell closure is a local concept.
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Phys. Rev. Lett. 84, 5493-5495 (2000)



Recent application of spin-orbit coupling in other fields

For example,
Spin—orbit qubit in a semiconductor nanowire, S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers & L.P.

Kouwenhoven, Nature 468, 1084 (2010).
http://www.nature.com/nature/journal/v468/n7327/full/nature09682.html

Spin—orbit-coupled Bose—Einstein condensates, Y.-). Lin, K. Jiménez-Garcia, I. B. Spielman, Nature

471, 83 (2011).
http://www.nature.com/nature/journal/v471/n7336/full/nature09887.html



Abundance of the element in the Universe

The 11 Greatest Unanswered Questions of Physics
(National Research Council, NAS, USA, 2002):

1. What is dark matter?
2. What is dark energy?

3. How were the heavy elements from iron to uranium made?
4. Do neutrinos have mass?
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Brief Summary of nucleosynthesis

Sr

Th,U

SN type II
(r-process)

massive stars

Big Bang

(hydrestatic madve
i (,U burni
buring) ) burning
$-process)
o
13C,"O,..
Novae (“rp process™)

Processes that the structure of the nuclei involved may play a big role:

Production of 7Li in BBN
Hoyle state




Stars are formed through the presence of free protons in space which clump together under the
influence of the gravitational field.

In the center of the stars thus formed the protons are concentrated in a high temperature
and high density environment. In this environment the protons interact with each other to
produce heavier isotopes in a process that goes on until the protons are depleted.

emental Composition of the Su
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The pp chain

p+p— d+e*+V. p+te+p— d+e'+V.
Q=1.44MeV | |
9.75% § 025 %
d+p—.3He +v
86 % |
1 114%
"He +3He—'4He+2p *He + He—Be +Y
99.89 % 0.11 %
'Be + €—Li +V, "Be +p—~SB +Y
7Li-rp—o"Bc 8B—o“Bc+c*+vc
*Be —» 2 ‘He "Be —»2 ‘He

At the end of the reactions only alpha particles left.



Besides the pp chain there is another path through which Hydrogen is burned.

CNO Cycle

| CN J ""ON | ""ON\ | Bv
13y cycle| s \cycle] 17g cycle

120 _‘pTwN i 16 0) 180
p, &

22003 Stuart J. Rebbins

The hydrogen burning of the pp chain and the CNO cycle continues until the hydrogen fuel
is nearly consumed.



Astrophysical motivation: Big bang nucleosynthesis

The primordial abundance of 7Li
as predicted by BBN is more than
a factor 2 larger than what has

been observed in metal-poor halo
stars.

http://arxiv.org/pdf/1202.5232v2.pdf

'rQN capture



Helium burning
When a star reaches the stage of a red giant its core consists mainly of helium.

a+a— "Be. (9.11)

T'he ground state of ®Be is unbound with respect to a decay with a (), value of 91.&4keV
and a decay width of 5.57eV. But from here no reasonable reaction was found to proceed
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Hoyle state

a+ ®Be —» 2C*

72747 7642 O+ 7 9666
e s gt_p- o +2Be
¥ 44339 o+

¥ n=0T=0 "'
12
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stellar burning

A

S process

Sn (50)

rp process

Fe (26)

protons ed
H(1)
» Ncutrons

P Supernovae

Cosmic Rays

BMass known

[ Half-life known
[ Jnothing known

r process




Example:
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Resonance contributions are on top of direct capture cross sections
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Core-collapse supernovae (type ll, Ib, IC)‘lo“
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MASSI¥E STARS
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Life Cycle of the Sun

Red Giant

Now Gradual warming Planetary Nebula
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== I=Process

numbeer of protons

Molybdenum 42 . . -

Niebium 9

Zirconium 40 |

LN

Series of neutron
Y capture to saturation
‘Q followed by a series of
N

Yttrium 39 .

N
AN
Strontium 38 . . e \\
Rubidium 37 ! _31\ ‘\

N
\\

beta decay during
supernova explosion.

NN
m'c.,k .3_3 & Q ‘Q%}P»ki Time scale:
Gomenkmiz - &\ s 0.01 to 10 sec

Gallium 31 | i pathwiay

| - —— lecad laaw
48 4% 5S¢ 51 52 53 54 55 56

Number af newtrons, (¥

AATT 7

Krypiton 36 ! \ ® I

Bromine 35

- Stable isotope not macle by r- process

Stable nuclide made by - process

mwmwy
|1 Radioisolope along 1 - process path

| -

- Neutron capture via r- process

k Beta decay during r - process

\ Breta decay after - process stops




S-process (slow neutron capture)

It mainly operates in the red giant phase.

* R-process (rapid neutron capture)

The principal mechanism for building up the heavier nuclei.
Occurs during supernova explosion.

» P-process (proton capture)

Also occurs in supernovae, is responsible for the lightest
isotopes of a given element.

The principal difference between the s-process and r-process is
the rate of capture relative to the decay of unstable isotopes.

In the s-process the neutran capture happens in a time scale (z,,) much
longer than the mean time for -decay (‘[ﬁ), e, 7, >> 1,

In the case of the r-process: 7, <<,

While 7; depends only on the nuclear species, 7, depends strongly on the
environment, specifically on a strong neutron flux.



The s-process is relatively well understood.

The nuclear praperties of the involved species that are easier to measure
in the lab than the ones of the r-pracess (longer rﬂ).

The site is also much better constrained: primarily low- and intermediate-
mass stars (less than 8 solar masses).

The r-pracess element formation is much more uncertain.

The nuclear properties of the participating elements is much more difficult
to measure.

And the sites where the r-process take place are a mistery.

R-process element formation requires large neutron fluxes that are
associated to rather catastrophic events. The two main candidates are
type Il (core-collapse) supernova explosions and neutron star mergers. At
present the astrophysical conditions of these two phenomena are not well
understood (good review: Sneden et al. 2003).
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R-p(ocess during Supernova Explosion
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The Crab Nebula, the remains of a supernova which exploded in 1054 AD. This picture was taken by the Hubble Space Telescope.




