Electromagnetic transitions



Alpha, beta and gamma transitions

A large part of the knowledge of nuclei is obtained from the study of electromagnetic
transitions. It is, for example, the main source of information about the spin assignments
of nuclear states.



The basic one-photon emission process
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Intrinsic spin of the photon

S=1

Name

Photon

Higgs boson

Graviton

Symbol Antiparticle Charge (e) Spin Mass (GeV/c?) Interaction mediated

Y

W~
Y4
g

H0
G

Self

+

W
Self
Self

Self
Self

0
1

0
0
0
0

1
1
1

0
80.4

912
0

116 -130
0

Electromagnetism
Weak interaction

Weak interaction

Strong interaction
Mass

Gravitation

Existence

Confirmed
Confirmed

Confirmed

Confirmed
Unconfirmed

Unconfirmed



—

A = ape cos(k - r — wt),

It is convenient, though, to rewrite the expression of A as
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A(one photon) = ‘/261_ V&'(exp['ll E,t)/h]+exp[—i(p, -r = E, t)/h]).
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where j,(kr) is a Bessel function and Y),,(6¢) is the spherical harmonics eigen-
functions of the angular momentum operator. This solution is called ”electric”
component of the electromagnetic field. The other solution is,

Ay (r) = (r x V)(jr(kr)Ys.(69)) (1.8)

which is called the "magnetic” component. In both cases the photon carries angular



Multipole transitions
Integrating over the current density one obtains the electric component as,
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and the magnetic component becomes,
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After some mathematics
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Selection rules

When a nucleus emits (absorbs) a photon, the initial (final) total nuclear angular
momentum should be equal to the sum of the final (initial) total nuclear angular
momentum and the angular momentum carried by the radiation
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Generally, for electric L-pole radiation the selection rules become (E L)
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Another important selection rule results from the conservation of parity.

The electromagnetic interaction conserves parity and the transitions can be divided

into two classes, the ones which do not change parity and the ones which do change parity
change

mm; = +1for M1,E2,M3,E4..., mo=+1
mins = —1for E1, M2, E3, M4 To = —1
the elements of the operators for 7, = (_1))‘ an be classified according to their

transformation under parity change:
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Transition probability
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The total rate for a specific set of states and a given operator is given by:
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where k is the wave-number for the electromagnetic transition of energy E. given
by:
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Operators and transition rates

The interaction of the electromagnetic field with the nucleons can be expressed in terms of a
sum of electric and magnetic multipole operators with tensor rank A

O =Y [O(EN), + O(MM),].

A

The electric transition operator given by

O(EX) = Y () ey e,

The reduced transition probability is defined by:
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The most probable types of transitions are E1, E2
The E'1 transition

O(El)=r Yu(l)(f) € e = \/i T e, €,
41

The E2 transition operator

O(E2) = r* Y#(Q)('f') e, e,

were YZ‘ are the spherical harmonics. Gamma transitions with A=0 are forbidden
because the photon must carry off at least one unit of angular momentum. The e,
are the electric charges for the proton and neutron in units of e. For the free-nucleon
charge we would take e, = 1 and e, = 0, for the proton and neutron, respectively.



The magnetic transition operator is given by:
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where ppy is the nuclear magneton,
iy = 0,105 efm,
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and where m,, is the mass of the proton. The g-factors gfz and g; are the orbital and
spin g-factors for the proton and neutron, respectively. The free-nucleon values for
the g-factors are gf; =1, gf; =0, g, = 5.586 and g, = —3.826. We may use effective



The M1 transition operator
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Electromagnetic moments

Electromagnetic moments have the general form:
Mem_<\I’JA[—J|Z |\IIJA[_J>

where Tﬁ‘ is a one-body tensor operator of rank A assoc1ated with the interaction of the
nucleus with the multipole components of the electromagnetic field. This is a diagonal
matrix element, and by definition we take M to have its maximum value M = J.
The matrix elements with other M wvalues are related to M,,,, by the Wigner-Eckart
theorem:

< JMANp=0|JM>

I =0 T em

<\IIJM|Z k) | U, J, M >=

For a given J value, the allowed values of the A\ are determined by the triangle
condition, A(J; A\, J). In particular, A,,,, = 2J, and for J = 0 only A = 0 is allowed.



Nuclear matrix elements



Electromagnetic transitions and moments can be expressed as a
sum over one-body transition densities (OBTD) times single-particle matrix elements

< fI|JON)||i >= ) OBTD(fikaks)) < kal|O(N)||ks >,
kakg

The labels 7 and f are a short-hand notation for the initial and final state quantum
numbers (nw;J;) and (nwysJs), respectively. Thus the problem is divided into two
parts, one involving the nuclear structure dependent one-body transition densities
OBTD, and the other involving the reduced single-particle matrix elements (SPME).

The SPME for EX operator
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The SPME for the spin part of the magnetic operator
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The SPME for the orbital part of the magnetic operator
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For the M1 operator
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Thus the M1 operator can connect only a very limited set of orbits, namely those
which have the same n and £ values.



Applications to Closed shell plus one particle
single-particle matrix elements

For a closed shell plus one particle, the only term contributing to the sum (for A >0) comes from
the transition between two specific particle states

< Jp = Jfl|ON)||Ji = Ji >= < ks[|OA)]| ki >.

The reduced nuclear matrix elements can be expressed as a sum over one-body transition
densities times single-particle matrix elements. For a closed shell plus one particle one finds

that OBTD=1.

The reduced transition probability for this cases is:
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Many nucleons in a single shell

For a closed shell plus n particles in a single state k these expressions (for A >0)
reduce to:

< k™ wp, J5||ON)||k™, w;, J; >= OBTD(fikA) < k||O(N)|[k >,
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For n = 2,
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The reduced transition rate becomes:
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transition | (3/2)* (5/2)* (7/2)* (9/2)* (11/2)* (13/2)*

2—0 0.800 0.914 0.952 0.970 0.979 0.985
4 — 2 0.630 0.950 1.114 1.207 1.265
6 — 4 0.433 0.771 0.990 1.132
8 — 6 0.308 0.612 0.841
10 — 8 0.229 0.491

12 — 10 0.177




Electric quadrupole moments

The electric quadrupole operator is defined to be

A 1671'
TSt = Q= (32 — r)ene =\ 7 V(7) e

For one-particle outside of a closed-shell configuration,

M(Ct)em =<1 | T, —0|2> <jm=]|T _0|j,m=j>

the single-particle quadrupole moment in the state 3 = ¢ +% is:
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Thus, the single-particle quadrupole moment in the state j =€ + % simplifies to:

QW) [ 2 2
.= 2+ 3 <T™ > €y,.

The radial integrals can be evaluated with the chosen radial wave functions such as harmonic-
oscillator or Woods-Saxon.



For the closed shell we have Jit = 0+ and the EM moment is zero unless A=0.

For the single-particle configuration | C'i >, the extra nucleon will go into one of
the empty states (n,, £, j, m) above the fermi surface. There are (25 + 1) allowed M
values from —j to j. Thus the total angular momentum is J = j, and the parity is
(—1)*. For the moments we need the M —state with M =m = j.

For the single-hole configuration, | C7~! >, the nucleon will be removed from one
of the filled states (n,, £, j,m") below the fermi surface. The M value of the state is:

M = Z m = —m/.

m#=Em’

There are (25 + 1) values for M from —j to j. Thus the total angular momentum is
J = 7, and the parity parity is (—1)". If we want to have a many-body state with
M = J = j, then the nucleon must be removed from the single-particle state with

m = —].



For the one-hole configuration
M(C"i—l)em =—<1 | T;::O | 1 >=—<j,m=—) | T::O |J* m=—j>

=(-D)MM < jm=| T:=0 | jym=7>.

This is because we have (from the Wigner-Eckart theorem)
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The single-hole quadrupole moment in the state j=2€ + 1/2 is:
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For the general case which includes both j =€+ 1/2 and j = {— 1/2 one obtains
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Figure 2: Experimental quadrupole moments for the ground states of odd-even
nuclei. The dashed lines show the magic numbers 8, 20, 28, 40, 50, 82 and 126.



In the single-particle model we would expect the Q moments for the neutrons to

be zero or at least small compared to protons. But one observes that the Q moments
for odd-proton and odd-neutron nuclei are about the same. These deviations from the
single-particle model are signatures of configuration mixing.

<>Near the magic numbers this can be understood in terms of the interaction between the
valence nucleon and the core nucleons producing a “core-polatization” that can be
modeled in terms of an effective change for protons and neutrons.

<-Away from the closed shell the interaction between valence nucleons results in a
collective (coherent) motion between many nucleons that is qualitatively understood in
the deformed model for nuclei.
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Magnetic moments

The magnetic moment operator is defined to be

where gfz and g; are the orbital and spin g-factors for the proton (t, = —%) and
neutron (t, = %) The free-nucleon values for the g-factors are gg =1, 495 =0,
g, = 5.586 and g; = —3.826. The values of the magnetic moments are conventionally

taken to be in units of the nuclear magneton,

T
Uy = —0.105efm

2mpc

where m,, is the mass of the proton.
for m =45 and j =0+ % we have
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i ) ‘, 1 .
for m = 5 and j = £ — 5 we have
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The expressions can be written in a compact way as
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there the + sign goes with j + % The g-factor is defined as p/(punJ) which for the

single-particle case gives:
8 4
¢ 9, — 9t
— :I: z z
g [gtz 20 + 1 ]




Moments in terms of electromagnetic operators

The operator for electromagnetic moment can be expressed in terms of the electromagnetic
transition operators.

u:,/‘l; <JM=J|OM)|JM=1J>

47 J 1 J
=\/?(_J 0 J)<J||(’)(f\fl)||J>,

Q = 167r<JM_J|O(E2)|J,M_J>
5)
167 J 2 J

=\ ( 70 J)<J||O(E2)||J>.



Single-Particle Transition (Weisskopf Estimate)

Electromagnetic transition rates show a rather strong dependence on the transition
energy. This dependence increases with the multiplicity of the transition. The Weisskopf
estimates give a rough-idea about the expected magnitudes of the radiation widths.
These estimates for radiation of multipolarity 2L are based on a very simple model

with the assumptions

(i) The nucleus consists of an inert core plus one active particle.

(ii) The transition takes place between statesj; =L + 3 and jy =1

(iii) The radial parts of the initial- and final-state wave functions are both given
by u{r) = constant for r < R and u{r) = 0 for r > R, where R denotes the nuclear

radius.

B(E)\; I, — Igs) = (1.42,")_2)‘ ()\ _:?_ 3)2 A3 (fm)

10 o, 3 -
B(MX; I; — Ips) = —(1.2)* 2(A+3)2A(2A /3 2 ()2



For the first few values of A, the Weisskopf estimates are

B(EL;I; — I,,) = 6.446 107% A3 €2(barn)
B(E2;I; — I,,) = 5.940 107° A%3 €%(barn)?
B(E3;I; — I,5) = 5.940 1078 A? €*(barn)®
B(E4;I; — I) = 6.285 1071° A%3 &2 (barn)*

eh )2
2Mec

B(M1;I; — I,s) = 1.790 (

A barn is defined as 10722 m? (100 fm?)

The lowest allowed multipolarity in the decay rate dominates over the next higher one (when
more than one is allowed) by several orders of magnitude. The most common types of
transitions are electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2)



10.7 Deuteron Structure

Other important information on the structure of the deuteron comes from the
values of the magnetic moment g and quadrupole moment Q:

p=0.857T4uy; Q = 0.2857e fm? (6.88)

Since @) # 0, the deuteron cannot be pure I = 0. But generally [ = 0 is energetically
favored for a central potential. Therefore, we write the deuteron wave function as a
linear combination of S- and D- waves

11)("‘ = awiisl(r)+b’(,b3Dl(1')
[@Ro(r) V31, + bRa(r) V5] Yo (6.89)

y(§11 - Yunqu
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The magnetic moment

As mentioned before, the free-nucleon values for the g-factors are gz’, =14 =0,
g, = 5.586 and g, = —3.826. The magnetic moment operator can be rewritten as

H= UN Z(gsszi + gllzi) (766)

where g, = 4.7067; + 0.88, where the first term is isovector, and the second term is
isoscalar. g; = (7; + 1)/2. Since the deuteron is an isoscalar particle with 7" = 0,
only the isoscalar magnetic moment operator contributes to . Then, the above
equation becomes,

1
b= py ;(0.88%- + o)

2
1
= Uy z |:0.88<Sf>M=1 + §<lf)M=1:|

=1

my [0.88(5") + %( Lz>]



Let us now calculate the matrix element of S,

(y(%u Sz y(}n) = 1
())2111 Sz y&n) =
()72111 Sz y2111> - Z | (1 — Ms) 1]\’[S|11>| = —1/2

Mg

Thus, for pure [ = 0 or [ = 2 states we would have the values pu = 0.88uy, 0.31pp.
More generally we obtain the relation

= [a*(0.88) + b*(0.31)] o = (0.88 — 0.57b%) g

up = 0.857ux

b2=0.04



Quadrupole Moment

Q= [T (I(M = DI QulJ(M = )

The quadrupole moment of the deuteron is calculated to be

2
Q=ey/ " [ ¥5pia() [Z et 7o)
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[167 . re_ .
=€ 5 / ¢J=M=1("’)ZY20(T)¢J=M=1("’)d3"a

where we have used the fact that for each nucleon the distance from the center of
mass is only half the distance between them, r; = r/2. Inserting the wave function

Q@ =e\/§{|a2| /rzRO(r)2dr/Y0‘[)Y20Y00dQ+2Re(ab*)/r2R0(r)R2(r)dr

Vi=m=1 (T)ds?”

(7.71)

X Z(l(l — M)2M]|11) /YO}')YzoyzmdQ (7.72)
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RO (r) and R2 (r)

Deuteron wave functibn
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After evaluating the angular integrals and putting in the CG coefficients

NI b2 ‘
Q=e {1—0Re(ab )/7'4R0R2 — |2—1) /7'4}2%

/

~

In case (a)oy -7 =057 = 1, so we have S;5 = 42 for this geometrical arrange-
ment. This is a prolate configuration so we expect ) > 0 for case (a). In case (b)
we have o1 -7 = 037 = 0 so S;o = —1 and the oblate shape relative to the z axis

would imply @) < 0.

Q ~ 80?8& r* Ry Rodr = 0.286e fm?

Attractive ~ Repulsive

Q = 0.2857e fm” " Tensor force






