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Second quantization

* Fermion basis is given by Slater-determinants

W) = 2 STl

 Meaningful: how many particles populate each
state () =the occupation numbers n,

— Fermion?
— Bosons?

* One can define the many-particle state as an
abstract vector in the occupation-number

representation
‘IP> = ‘nlvnza""nA>

Fock space



First & second quantizations

First quantization

Second quantization

Classical particles are
assigned wave amplitudes | | wave fields are “quantized” to

describe the problem in
terms of “quanta” or particles.
N
M



a®b)p = 1 (lay ® by) + |a; ® b))  bosons; symmetric

V2

la®@b)r = 1 (lay ® by) — |ay ® by))  fermions; anti — symmetric

/2

<-Convenient to describe processes in which particles are created and annihilated;
<-Convenient to describe interactions.

First quantizaiton:

Slater determinant Second quantizalton

lij(%’%)=%z/f,-(ql) ¥, (q,)

z y—) |jk)=alalo)

vi(q,) ¥.(q,)

a'|0) one-particle state

States | a;a; O> two-particle state | described |
L. . , by Slater determinants
aa....a, O> N-particle state ] n, first quantization




Annihilation and creation operator

* These operators describe the annihilation and
creation of excitation in a given single particle

state. For boson: [; z]-0, [a.a']-0, [a.a']=1, A=’

aln)=nln-1) ,a*|n) =n+1n+1)
 atand a lower and raise, respectively, the
eigenvalue of n by 1

* For the case of many single-particle (bosons)
the operators are indexed by | to denote
which state they affect|a @]-0. [a"a]-0. [a.4/]=0,. 4=d

A=Yh=Ya"a
n..n ...n_...>="n_
>z v : Particle-number operator

1y, _1,...>
Ny, 1, > — /ni + 1‘n1,n2,. .+ 1, - > for each single-particle
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Second quantization for fermions

* Anti-commutation relations:

{ai ,a]}=0, {ai A }=O, {ai A }=6ij

0.0,-),  a;-)=0

* Vacuum \—> =

+\"u
‘nl,nz,...,ni’...>= aM




Vacuum

(00} =1

a, |0>=0:
<O|a,f =0

There is no particle to annihilation in “vacuum”



The Fock space

The Hilbert space describing a quantum many-body system with N = 0,1,...,0¢c
particles is called the Fock space. It is the direct sum of the appropriately symmetrized
single-particle Hilbert spaces H:

D seH" (4.9)
N=0

where S, is the symmetrization operator used for bosons and S _ is the anti-symmetrization
operator used for fermions.

In Fock space (a linear vector space), a determinant is
represented by an occupation-number (ON) vector |k),

1 ¢p(x) occupied

k) = |k, k2. .. km),  kp ={ 0 ¢p(x) unoccupied

For two general vectors in Fock space:

=2 adk), (=3 dilk), (eld) =3 cid
k k



One-body operators

* Lets translate operators in occupation-number
representation

 What is one-body operator?
— Depends only on the coordinator of one particle.

* Kinetic energy or external potential

* General form: f, which always act on the
coordinate of the particle i:

}‘,f forr = VIV

= Efv’v av av’
vv'



Two-body operators

* Two body interaction: VS Eﬁ("k’r’“)

k=k'
~ 1 o
V = EEVW a;a;aa
ikl
* Note that the operator can change two single-
particle states simultaneously.

 The index order in the operator product has
the last two indices interchanged relative to
the ordering in the matrix elements.



The particle-hole picture

The lowest state — ground state- of a system
of N=A fermions with an energye, = Ye, |y,)=]]a:(0)

Fermi level: the highest occupied state with
energy €,

The expectation value of an operator O in the

ground state < ‘0‘ > 0a, - &15 o a7 |0)
Properties of ground state:

W)=0, i>A
W)=0, i<A

VaN
a;
A+

da.

l




The simplest excited state

* Lift one particle from an occupied state into
an unoccupied one: (one-particle/one-hole
state)

‘qjmi> =

W), m>A, isA




Hamiltonian with two-body interaction
in particle-number representation (2th
quantization)

* A microscopic model that describes the
structure of the nucleus in terms of the
degree of freedom of the nucleons.

Etljal a. +—E Viad; 44,4,
l]kl
* An elgenstate of H:

|‘P> - Ecii Ay 5eeip &:a; 21+

A

0)

1112,...,114



Two-particle outside a closed core (in jj coupled scheme)

H=Hy+V

Ho|pg; IM) = £, + &4|pq; JM)

[ |a> = |pq; -]A”[> } form the orthonormal bases

> la){al =1

> (al(Ho+ V)|B)(BIn) = En(aln)
B

2 [(53 = En)das + <a|V|5>] (Bln) =0

where

18) = |rs; JM), e5=¢, +¢,



The wave function is

) = (BIn)|B), or |n)=> X(pg;n)lpg;J)
B pP<q
where X (pg;n) = (pq; JM|n) and the Hamiltonian equations are
>~ (50 + 20 = En)oprdys + (pg; J|V|rs; )| X (rs;m) = 0
r<Ss

notice that this is M independent.

The two-body interaction

(pg; J|V|rs; J)



Two particles in a single j shell
The J=0 pairing interaction is the dominant component of the nuclear interaction.

i




Configuration mixing

Two nucleons in p1/2 and g9/2 shells

There are two basis states for 0

) = |(P1/2)230+> and [3) = |(99/2)2§ O+>
2¢1 + (a|V|a) — E, (a|V|3)
(B|V]a) 25 + (B|V|B) — En

(2e1 + (@] V]a) — En) (222 + (B|V|B) — En) — (@] V[B)* = 0
calling V.53 = (a|V|3) one gets
E; — En(2e1 4 289 + Vaa + Vi) + (261 + Vaa) (262 + Vig) — Vi =0

Voo — Vi
(61—€2+ 5 '3'3) +VC?3

=0

1/2
Vaa + VB,B

+
2

E,=¢c1+4+¢5+




For the wave functions

X(a;n) = (aln) = (p19; 0F|n);  X(Bin) = (Bln) = (ga/0; 0 |n)

(o — En + Vaa) X(a;n) + Vo X(5;n) =0
VaX(a;n) + (65 — En + V) X(Bin) =0

since we have obtained the energies E,, such that the determinant is 0, it is

(a — En 4 Vaa) X (a;n) = =V,5X(5;n)
X*(a;n) + X*(B;n) =1



Separable Force
An interaction which is often used in nuclear physics is the separable force given by

(pg; J\V|rs; J) = =G f(pg; J) f(rs; J)

Z [(517 + e, — E,)0,:0,s — Gf(pg; J) f(rs; J)] X(rs;n) =0

T<S

X(pg;m) = T PED ™ p05: 1) X (rsim)

&, + €4 — By, =
multiplying by Z f(pgq; J) one gets

pP<q

AV f*(pg; J) .
> flpg; )X (pgin) =G ) ST > frs; )X (rs;n)
P<q Psq r<s

2
o flegsJ) _



f2la;0%)  f2(B; 0*)) 3
G(QEI—En+2€Q—En =1

o (@09 | PG5 0+)) B
-\ 25— FE, 25 —E,



The pairing force in nuclear physics is used for the states 07 as

f(pg;0%) = f(pp; 07) = /2, + 1

For the states in ?°Zr one has

Fla;0%) = f(pi,0:0%) = V2 F(B;0%) = f(gae50%) = V10

—1
2 10
Q- +
(281 - Eoil- 282 — EOT)

and /3
2 V10
X(a,n)-G’QEl_En, X(ﬂ,n)—02€2_En



NN interaction and LST coupling

April 23, 2015



Philosophical issue: What are the relevant degrees of freedom since it is pretty complicated
inside a nucleon?

Answer: It depends on the energy scale!

Nuclear Physics: MeV

The atomic nucleus consists of protons and neutrons (two types of baryons) bound

by the nuclear force (also known as the residual strong force). The baryons are further
composed of subatomic fundamental particles known as quarks. The residual strong force is a
minor residuum of the strong interaction which binds quarks together to form protons and
neutrons. At low energies, the two nucleons “see” each other as structure-less point particles.
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Basic properties of the NN interaction

Properties of nuclear forces :

<*Nuclear forces are finite range forces. For a distance of the order of 1 fm they

are quite strong. Short-range repulsion (“hard core”)

<>These forces show the property of saturation. It means each nucleon interacts

only with its immediate neighbours. Volume and binding energies of nuclei are proportional
to the mass number A.

V()
f
The distance b is found empirically to be \
of order b=1.4fm. V(r) is maximally - b
attractive inside 1 fm while for very short \ 1 2 -
distances the nucleon-nucleon ' r (im)

interaction becomes repulsive.

Fig. 13.1. Schematic illustration of the radial dependence of the nucleon—nucleon
interaction.



A brief history of NN interactions

1935 - Yukawa (meson theory or Meson Hypothesis)
1950’s — Full One-Pion-Exchange potential (OPEP)

--Hamada-Jonston
1960’s — non-relativistic One-Boson-Exchange potential (OBEP) (pions, Many pions, scalar

mesons, 782(w), 770(p), 600(o))

1970’s — fully relativistic OBEPs

-- 2-pion exchange

-- Paris, Bonn potential

1990’s — High-precision Nijmegen, Argonne V18, Reid93, Bonn potentials
1990-2000’s — Chiral or Effective Field Theory potentials (2 and 3 body), Lattice QCD



N-N quantum states

ang. momentum

of N-N pair

ang. momentum

of N-N pair

Spectroscopic notation: use S,PD,... for L=0,1,2,...

N-N state vector: 2)) =|LS:JM,)®|T.T,)




The total spin is either S = 1 (triplet) or S = 0 (singlet), whose wave
functions take the form (problem 13.2)

ot 1)or(2) m=1
I = BIB) ,m=—1
(1/2) [(1B2) + B(1)a(2)] , m =0

=0 = ﬁ [(1)B2) — B(H)2)]

It is evident that the triplet wave function is symmetric in the spin variables
while the singlet wave function is antisymmetric. Thus, for identical particles,
even L must be combined with S = 0 and odd L with § = 1. These wave



Antisymmetric two-particle wave functions

For identical nucleons, i.e. either protons or neutrons, the Pauli exclusion principle requires that
a many-nucleon wave function be antisymmetric in all particle coordinates. thus if the space and

spin variables of any two protons or any two neutrons are interchanged, the wave function
must reverse its sign.

Isospin symmetry requires that the wave function reverse its-sign upon an odd permutation of
all coordinates (i.e. space, spin and isospin) of any two nucleons.

This property is strongly connected with the symmetry ot the two-particle wave
function |1 2). Since nucleons are fermions, they have to be totally antisymmetric.
For example, if we take a product wave function built out of ordinary space, a spin
and an 1sospin part

(rysyty, 1858y | 12) = @(ry, 1) x(sy, 5) (24, 1)

we have four combinations compatible with the Pauli principle

Q X abbreviation {
even singlet es +
even triplet et -
odd singlet 0S =

odd triplet ot 5



Table 13.1. Possible states defined by internal spin S, orbital angular
momentum L, total angular momentum J and parity n applicable to the NP
(neutron—proton) and NN and PP systems, respectively. In the last column,

the corresponding isospin is given. Only those states having L < 3 are

indicated.
S L JF Symmetry Notation Isospin T
(1 0 1+ symmetric 38,
1 2 1% 2+ 3¢+ in Di2s
NP only ¢ 0
0 1 1- spin + position P,
.0 3 3= 1R,
NN 1 1 0,17,2" antisymmetric Po12
PP 1 3 2°,3°,4° 3 F2'3,4
in 1
and 0 O 0t 1S,
NP 0 2 2+ spin 4 position D,




The deuteron and low-energy nucleon-nucleon scattering data

In the 1940s and early 1950s information about the nucleon—nucleon in-
teraction came largely from studying the simplest non-trivial nucleus, the
deuteron, denoted d or ?H, consisting of a neutron and a proton. For
the deuteron the most important properties, known since the 1930s are the
following

binding energy Eg = 2.25 MeV

spin, parity JE=1%

isospin T=0

magnetic moment u=0.8574 nm. = yp + pup— 0.0222 n.m.

quadrupole moment Q = 2.82 x 1073 barn

Much more information about the nucleon-nucleon interaction has been
obtained from the scattering of proton and neutron projectiles against protons
and neutrons.



Deuteron : ground state J =1 (Total spin S=1) proton

The deuteron is the only bound state of 2 nucleons, with isospin T' = 0, spin-parity J™ = 17, and

binding energy Ep=2.225 MeV. For two spin % nucleons, only total spins S = 0,1 are allowed. neutron
Then the orbital angular momentum is restricted to J —1 < < J+1, i.e., [ =0, 1 or 2. Since the

parity is 7 = (—)l =+, only [ = 0 and [ = 2 are allowed; this also implies that we have S = 1.

Y, = a‘ 3Sl> + b‘ 3D1>

Relative motion : S wave (L=0) + D wave (L=2)

\ /

Tensor force does mix

Vo=t ([0,0,]? YO (Q) ) Z(r)

contributes ] i
relative motion

only to S=1 states

The tensor force is crucial to bind the deuteron. Without tensor force, deuteron is unbound.
No S wave to S wave coupling by tensor force because of Y2 spherical harmonics




T e—

Attractive ~ Repulsive . Attractive Repulsive
Tensor force
Fig. 14.11. The tensor force in the deuteron is attractive in the cigar-shaped

configuration and repulsive in the disk-shaped one. Two bar magnets provide
a classical example of a tensor force.



Y, = a‘ 3Sl> + b‘ 3D1>

W1 R L2
H= vzt arz T Vet + s

we find the radial equations

h2 d?
M dr2

h2 [ &2 6
[l\-f (dz,-2 o 7.2) + E +2Vp(r) — V;:(,)] wp

These equations can be solved numerically.

+F — V(,)l = 8Vr(r)up

V8V (r)ug



n-online.org/NN/

Deuteron wave functibn :

— AVI8S
— AVI8-D,

~ = Niymegen I- 351
= = NimegenI ’ D, | —




http://www.phy.anl.gov/theory/movie-run.html

Anybody has a better solution?



