
Interactive Theorem Proving (ITP) Course
Parts V, VI

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version 1b43e90 of Sun Apr 23 20:08:16 2017

41 / 66

Part V

Basic HOL Usage

42 / 66

HOL Technical Usage Issues

practical issues are discussed in practical sessions
◮ how to install HOL
◮ which key-combinations to use in emacs-mode
◮ detailed signature of libraries and theories
◮ all parameters and options of certain tools
◮ . . .

exercise sheets sometimes
◮ ask to read some documentation
◮ provide examples
◮ list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

43 / 66

Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations
◮ Moscow ML (http://mosml.org)
◮ PolyML (http://www.polyml.org)

I recommend using PolyML

please use emacs with
◮ hol-mode
◮ sml-mode
◮ hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

44 / 66

General Architecture

HOL is a collection of SML modules

starting HOL starts a SML Read-Eval-Print-Loop (REPL) with
◮ some HOL modules loaded
◮ some default modules opened
◮ an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types
◮ implemented as input filter
◮ ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
◮ ‘‘:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces
◮ emacs (used in the course)
◮ vim
◮ bare shell

45 / 66

Filenames

*Script.sml — HOL proof script file
◮ script files contain definitions and proof scripts
◮ executing them results in HOL searching and checking proofs
◮ this might take very long
◮ resulting theorems are stored in *Theory.{sml|sig} files
◮ *Theory.sml files load quickly, because they don’t search/check proofs

*Theory.{sml|sig} — HOL theory

◮ auto-generated by corresponding script file
◮ do not edit

*Syntax.{sml|sig} — syntax libraries

◮ contain syntax related functions
◮ i. e. functions to construct and destruct terms and types

*Lib.{sml|sig} — general libraries

*Simps.{sml|sig} — simplifications

selftest.sml — selftest for current directory

46 / 66

Directory Structure

bin — HOL binaries

src — HOL sources

examples — HOL examples
◮ interesting projects by various people
◮ examples owned by their developer
◮ coding style and level of maintenance differ a lot

help — sources for reference manual
◮ after compilation home of reference HTML page

Manual — HOL manuals
◮ Tutorial
◮ Description
◮ Reference (PDF version)
◮ Interaction
◮ Quick (sheet pages)
◮ Style-guide
◮ . . .

47 / 66

Unicode

HOL supports both Unicode and pure ASCII input and output

advantages of Unicode compared to ASCII
◮ easier to read (good fonts provided)
◮ no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII
◮ harder to type (even with hol-unicode.el)
◮ less portable between systems

whether you like Unicode is highly a matter of personal taste

HOL’s policy
◮ no Unicode in HOL’s source directory src
◮ Unicode in examples directory examples is fine

I recommend turning Unicode output off initially
◮ this simplifies learning the ASCII syntax
◮ no need for special fonts
◮ it is easier to copy and paste terms from HOL’s output

48 / 66

Where to find help?

reference manual
◮ available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)

mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)

49 / 66

Part VI

Forward Proofs

50 / 66

Kernel too detailed

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators

usually one uses a much higher level of abstraction
◮ many operations and datatypes are defined
◮ high-level derived inference rules are used

let’s now look at this more common abstraction level

51 / 66

Common Terms and Types
Unicode ASCII

type vars α, β, . . . ’a, ’b, . . .
type annotated term term:type term:type

true T T

false F F

negation ¬b ~b

conjunction b1 ∧ b2 b1 /\ b2

disjunction b1 ∨ b2 b1 \/ b2

implication b1 =⇒ b2 b1 ==> b2

equivalence b1 ⇐⇒ b2 b1 <=> b2

disequation v1 6= v2 v1 <> v2

all-quantification ∀x. P x !x. P x

existential quantification ∃x. P x ?x. P x

Hilbert’s choice operator @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don’t start variable names with an underscore

52 / 66

Syntax conventions

common function syntax
◮ prefix notation, e. g. SUC x
◮ infix notation, e. g. x + y
◮ quantifier notation, e. g. ∀x. P x means (∀) (λx. P x)

infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the same as x + y

quantifiers of the same type don’t need to be repeated
Example: ∀x y. P x y is short for ∀x. ∀y. P x y

there is special syntax for some functions
Example: if c then v1 else v2 is nice syntax for COND c v1 v2

associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

53 / 66

Creating Terms

Term Parser

Use special quotation provided by unwind.

Use Syntax Functions

Terms are just SML value of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

54 / 66

Creating Terms II

Parser Syntax Funs

‘‘:bool‘‘ mk type ("bool", []) or bool type of Booleans
‘‘T‘‘ mk const ("T", bool) or T term true
‘‘ b‘‘ mk neg (negation of

mk var ("b", bool)) Boolean var b
‘‘... /\ ...‘‘ mk conj (..., ...) conjunction
‘‘... \/ ...‘‘ mk disj (..., ...) disjunction
‘‘... ==> ...‘‘ mk imp (..., ...) implication
‘‘... = ...‘‘ mk eq (..., ...) equation
‘‘... <=> ...‘‘ mk eq (..., ...) equivalence
‘‘... <> ...‘‘ mk neg (mk eq (..., ...)) negated equation

55 / 66

Inference Rules for Equality

⊢ t = t
REFL

Γ ⊢ s = t

x not free in Γ

Γ ⊢ λx . s = λx .t
ABS

Γ ⊢ s = t

∆ ⊢ u = v

types fit

Γ ∪∆ ⊢ s(u) = t(v)
MK COMB

Γ ⊢ s = t

Γ ⊢ t = s
GSYM

Γ ⊢ s = t

∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ p ⇔ q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

⊢ (λx . t)x = t
BETA

56 / 66

Inference Rules for free Variables

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

57 / 66

Inference Rules for Implication

Γ ⊢ p =⇒ q

∆ ⊢ p

Γ ∪∆ ⊢ q
MP, MATCH MP

Γ ⊢ p = q

Γ ⊢ p =⇒ q

Γ ⊢ q =⇒ p

EQ IMP RULE

Γ ⊢ p =⇒ q

∆ ⊢ q =⇒ p

Γ ∪∆ ⊢ p = q
IMP ANTISYM RULE

Γ ⊢ p =⇒ q

∆ ⊢ q =⇒ r

Γ ∪∆ ⊢ p =⇒ r
IMP TRANS

Γ ⊢ p

Γ− {q} ⊢ q =⇒ p
DISCH

Γ ⊢ q =⇒ p

Γ ∪ {q} ⊢ p
UNDISCH

Γ ⊢ p =⇒ F

Γ ⊢ ~p
NOT INTRO

Γ ⊢ ~p

Γ ⊢ p =⇒ F
NOT ELIM

58 / 66

Inference Rules for Conjunction / Disjunction

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q
CONJ

Γ ⊢ p ∧ q

∆ ⊢ p
CONJUNCT1

Γ ⊢ p ∧ q

∆ ⊢ q
CONJUNCT2

Γ ⊢ p

∆ ⊢ p ∨ q
DISJ1

Γ ⊢ q

∆ ⊢ p ∨ q
DISJ2

Γ ⊢ p ∨ q

∆1 ∪ {p} ⊢ r

∆2 ∪ {q} ⊢ r

Γ ∪∆1 ∪∆2 ⊢ r
DISJ CASES

59 / 66

Inference Rules for Quantifiers

Γ ⊢ p x not free in Γ

Γ ⊢ ∀x . p
GEN

Γ ⊢ ∀x . p

Γ ⊢ p[u/x]
SPEC

Γ ⊢ p[u/x]

Γ ⊢ ∃x . p
EXISTS

Γ ⊢ ∃x . p
∆ ∪ {p[v/x]} ⊢ r

v not free in Γ,∆, p and r

Γ ∪∆ ⊢ r
CHOOSE

60 / 66

Forward Proofs

axioms and inference rules are used to derive theorems

this method is called forward proof
◮ one starts with basic building blocks
◮ one moves step by step forwards
◮ finally the theorem one is interested in is derived

one can also implement own proof tools

61 / 66

Forward Proofs — Example I

Let’s prove ∀p. p =⇒ p.

val IMP_REFL_THM = let

val tm1 = ‘‘p:bool‘‘;

val thm1 = ASSUME tm1;

val thm2 = DISCH tm1 thm1;

in

GEN tm1 thm2

end

fun IMP_REFL t =

SPEC t IMP_REFL_THM;

> val tm1 = ‘‘p‘‘: term

> val thm1 = [p] |- p: thm

> val thm2 = |- p ==> p: thm

> val IMP_REFL_THM =

|- !p. p ==> p: thm

> val IMP_REFL =

fn: term -> thm

62 / 66

Forward Proofs — Example II

Let’s prove ∀P v . (∃x . (x = v) ∧ P x) ⇐⇒ P v .

val tm_v = ‘‘v:’a‘‘;

val tm_P = ‘‘P:’a -> bool‘‘;

val tm_lhs = ‘‘?x. (x = v) / P x‘‘

val tm_rhs = mk_comb (t_P, t_v);

val thm1 = let

val thm1a = ASSUME tm_rhs;

val thm1b =

CONJ (REFL tm_v) thm1a;

val thm1c =

EXISTS (tm_lhs, tm_v) thm1b

in

DISCH tm_rhs thm1c

end

> val thm1a = [P v] |- P v: thm

> val thm1b =

[P v] |- (v = v) /\ P v: thm

> val thm1c =

[P v] |- ?x. (x = v) /\ P x

> val thm1 = [] |-

P v ==> ?x. (x = v) /\ P x: thm

63 / 66

Forward Proofs — Example II cont.

val thm2 = let

val thm2a =

ASSUME ‘‘(u:’a = v) /\ P u‘‘

val thm2b = AP_TERM t_P

(CONJUNCT1 thm2a);

val thm2c = EQ_MP thm2b

(CONJUNCT2 thm2a);

val thm2d =

CHOOSE (‘‘u:’a‘‘,

ASSUME tm_lhs) thm2c

in

DISCH tm_lhs thm2d

end

val thm3 = IMP_ANTISYM_RULE thm2 thm1

val thm4 = GENL [t_P, t_v] thm3

1

> val thm2a = [(u = v) /\ P u] |-

(u = v) /\ P u: thm

> val thm2b = [(u = v) /\ P u] |-

P u <=> P v

> val thm2c = [(u = v) /\ P u] |-

P v

> val thm2d = [?x. (x = v) /\ P x] |-

P v

> val thm2 = [] |-

?x. (x = v) /\ P x ==> P v

> val thm3 = [] |-

?x. (x = v) /\ P x <=> P v

> val thm4 = [] |- !P v.

?x. (x = v) /\ P x <=> P v

64 / 66

Derived Tools

HOL lives from implementing reasoning tools in SML

rules — use theorems to produce new theorems

◮ SML-type thm -> thm
◮ functions with similar type often called rule as well

conversions — convert a term into an equal one

◮ SML-type term -> thm
◮ given term t produces theorem of form [] |- t = t’
◮ may raise exceptions HOL ERR or UNCHANGED

. . .

65 / 66

Conversions

HOL has very good tool support for equality reasoning

therefore conversions are important

there is a lot of infrastructure for conversions
◮ RAND CONV, RATOR CONV, ABS CONV
◮ DEPTH CONV
◮ THENC, TRY CONV, FIRST CONV
◮ REPEAT CONV
◮ CHANGED CONV, QCHANGED CONV
◮ NO CONV, ALL CONV
◮ . . .

important conversions
◮ REWR CONV
◮ REWRITE CONV
◮ . . .

66 / 66

