Interactive Theorem Proving (ITP) Course Parts V, VI

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period ⁴

version 1b43e90 of Sun Apr ²³ 20:08:16 ²⁰¹⁷

⁴¹ / ⁶⁶

HOL Technical Usage Issues

- practical issues are discussed in practical sessions
	- ► how to install HOL
	- \blacktriangleright which key-combinations to use in emacs-mode
	- \blacktriangleright detailed signature of libraries and theories
	- \blacktriangleright all parameters and options of certain tools
	- \blacktriangleright

exercise sheets sometimes

- \blacktriangleright ask to read some documentation
- ► provide examples
- \blacktriangleright list references where to get additional information
- if you have problems, ask me outside lecture (tuerk@kth.se)
- covered only very briefly in lectures

Installing HOL

- webpage: https://hol-theorem-prover.org
- HOL supports two SML implementations
	- ► Moscow ML (http://mosml.org)
	- ► $\textsf{PolyML}\left(\texttt{http://www.polyml.org}\right)$
- o I recommend using PolyML
- please use emacs with
	- ► hol-mode
	- ► sml-mode
	- \blacktriangleright hol-unicode, if you want to type Unicode
- please install recent revision from ^git repo or Kananaskis ¹¹ release
- documentation found on HOL webpage and with sources

Part ^V

Basic HOL Usage

General Architecture

- HOL is ^a collection of SML modules
- starting HOL starts ^a SML Read-Eval-Print-Loop (REPL) with
	- ► some HOL modules loaded
	- \blacktriangleright some default modules opened
	- \blacktriangleright an input wrapper to help parsing terms called $\texttt{unquote}$
- unquote provides special quotes for terms and types
	- \blacktriangleright implemented as input filter
	- ▶ ''my-term'' becomes Parse.Term [QUOTE "my-term"]
	- ► '':my-type'' becomes Parse.Type [QUOTE ":my-type"]
- main interfaces
	- \blacktriangleright emacs (used in the course)
	- \blacktriangleright vim
	- ► bare shell

⁴⁵ / ⁶⁶

Directory Structure

- bin HOL binaries
- src HOL sources
- examples HOL examples
	- \blacktriangleright interesting projects by various people
	- \blacktriangleright examples owned by their developer
	- \blacktriangleright coding style and level of maintenance differ a lot
- help sources for reference manual
	- \blacktriangleright after compilation home of reference $HTML$ page
- Manual HOL manuals
	- \blacktriangleright Tutorial
	- ► Description
	- ► Reference (PDF version)
	- ► Interaction
	- ► Quick (sheet pages)
	- \blacktriangleright Style-guide
	- ▶

Filenames

- *Script.sml HOL proof script file
	- \triangleright script files contain definitions and proof scripts
	- \blacktriangleright executing them results in HOL searching and checking proofs
	- \blacktriangleright this might take very long
	- \blacktriangleright resulting theorems are stored in $*\text{Theory}.\{\text{sm} \,|\, \text{sig}\}$ files
	- \blacktriangleright \ast Theory.sml files load quickly, because they don't search/check proofs
- *Theory.{sml|sig} HOL theory
	- \blacktriangleright auto-generated by corresponding script file
	- ► do not edit
- *Syntax.{sml|sig} syntax libraries
	- \blacktriangleright contain syntax related functions
	- \blacktriangleright i. e. functions to construct and destruct terms and types
- \ast Lib. $\{\texttt{sml|sig}\}$ general libraries
- $*\mathsf{Simps}.\{\mathsf{snl}\,|\,\mathsf{sig}\} \boldsymbol{\longrightarrow} \mathsf{simplications}$
- selftest.sml selftest for current directory

⁴⁶ / ⁶⁶

Unicode

- HOL supports both Unicode and pure ASCII input and output
- advantages of Unicode compared to ASCII
	- ▶ easier to read (good fonts provided)
	- \blacktriangleright no need to learn special ASCII syntax
- disadvanges of Unicode compared to ASCII
	- \blacktriangleright harder to type (even with hol-unicode.el)
	- \blacktriangleright less portable between systems
- whether you like Unicode is highly ^a matter of personal taste
- HOL's policy
	- ► no Unicode in HOL's source directory src
	- \blacktriangleright Unicode in examples directory examples is fine
- I recommend turning Unicode output off initially
	- \blacktriangleright this simplifies learning the ASCII syntax
	- \blacktriangleright no need for special fonts
	- \blacktriangleright it is easier to copy and paste terms from \sf{HOL} 's output

Where to find help?

• reference manual \blacktriangleright available as HTML pages, single PDF file and in-system help description manual Style-guide (still under development) HOL webpage (https://hol-theorem-prover.org) mailing-list hol-infoDB.match and DB.find *Theory.sig and selftest.sml files ask someone, e. g. me :-) (tuerk@kth.se)

Part VI

Forward Proofs

⁴⁹ / ⁶⁶

Kernel too detailed

we already discussed the HOL Logic

 \bullet the kernel itself does not even contain basic logic operators

- usually one uses ^a much higher level of abstraction
	- \blacktriangleright many operations and datatypes are defined
	- \blacktriangleright high-level derived inference rules are used

 \bullet let's now look at this more common abstraction level

Common Terms and Types

There are similar restrictions to constant and variable names as in SML. HOL specific: don't start variable names with an underscore

Syntax conventions

- common function syntax
	- ► prefix notation, e.g. $SUC \times$
	- infix notation, e.g. $x + y$
	- ► quantifier notation, e.g. $\forall x$. P x means (\forall) $(\lambda x.$ P x)
- infix and quantifier notation functions can turned into prefix notation Example: $(+)$ x y and $$+$ x y are the same as $x + y$
- quantifiers of the same type don't need to be repeated Example: [∀]^x y. ^P ^x ^y is short for [∀]x. [∀]y. ^P ^x ^y
- \circ there is special syntax for some functions Example: if ^c then v1 else v2 is nice syntax for COND ^c v1 v2
- associative infix operators are usually right-associative Example: b1 \land b2 \land b3 is parsed as b1 \land (b2 \land b3)

Operator Precedence

 It is easy to misjudge the binding strength of certain operators. Therefore use plenty of parenthesis.

⁵³ / ⁶⁶

Creating Terms II

Creating Terms

Term Parser

Use special quotation provided by unwind.

Use Syntax Functions

Terms are just SML value of type term. You can use syntax functions (usually defined in *Syntax.sml files) to create them.

⁵⁴ / ⁶⁶

Inference Rules for Equality

Inference Rules for free Variables

$$
\frac{\Gamma[x_1,\ldots,x_n]\vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n]\vdash p[t_1,\ldots,t_n]} \text{INST}
$$

 $\lceil [\alpha_1, \ldots, \alpha_n] \vdash p[\alpha_1, \ldots, \alpha_n]$ $\Gamma[\gamma_1,\ldots,\gamma_n]\vdash p[\gamma_1,\ldots,\gamma_n]$ INST_TYPE Inference Rules for Implication

$$
\Gamma \vdash p \Longrightarrow q
$$
\n
$$
\frac{\Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ MP, MATCH-MP}
$$
\n
$$
\frac{\Gamma \vdash p}{\Gamma - \{q\} \vdash q \Longrightarrow p} \text{ DISCH}
$$
\n
$$
\frac{\Gamma \vdash p \Longrightarrow q}{\Gamma \vdash q \Longrightarrow p} \text{EQ} \text{IMP_RULE}
$$
\n
$$
\frac{\Gamma \vdash q \Longrightarrow p}{\Gamma \cup \{q\} \vdash p} \text{ UNDISCH}
$$
\n
$$
\frac{\Gamma \vdash p \Longrightarrow q}{\Gamma \cup \{q\} \vdash p} \text{ UNDISCH}
$$
\n
$$
\frac{\Gamma \vdash p \Longrightarrow \Gamma}{\Gamma \cup \{q\} \vdash p} \text{ NOT_INTRO}
$$
\n
$$
\frac{\Gamma \vdash p \Longrightarrow \Gamma}{\Gamma \cup \Delta \vdash p = q} \text{ IMP_ANTISYM_RULE}
$$
\n
$$
\frac{\Gamma \vdash \sim p}{\Gamma \vdash p \Longrightarrow \Gamma} \text{ NOT_ELIM}
$$
\n
$$
\frac{\Gamma \vdash \sim p}{\Gamma \cup \Delta \vdash p \Longrightarrow r} \text{ IMP_TRANS}
$$

⁵⁷ / ⁶⁶

Inference Rules for Conjunction / Disjunction

Inference Rules for Quantifiers

$\Gamma \vdash p$	$\Delta \vdash q$	$\Gamma \vdash p$	$\Gamma \$																																															
-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	------------

Forward Proofs

Forward Proofs — Example ^I

```
Let's prove \forall p. p \Longrightarrow p.
```

```
val IMP_REFL_THM = let
 val tm1 = ''p:bool'';
 val thm1 = ASSUME tm1;
  val thm2 = DISCH tm1 thm1;
> val thm2 = |- p ==> p: thm
inGEN tm1 thm2
endfun IMP_{R}EFL t =
 SPEC t IMP_REFL_THM;
                               > val tm1 = ''p'': term
                               > val thm1 = [p] |- p: thm
                               > val IMP_REFL_THM =
                                  |- !p. p ==> p: thm
                               > val IMP_REFL =
                                  fn: term -> thm
```
⁶¹ / ⁶⁶

Forward Proofs — Example II

Let's prove $\forall P \vee \ldotp (\exists x \ldotp (x = \vee) \wedge P \times) \Longleftrightarrow P \vee$.

axioms and inference rules are used to derive theorems

 \blacktriangleright finally the theorem one is interested in is derived

• this method is called forward proof

 \blacktriangleright one starts with basic building blocks ► one moves step by step forwards

 \bullet one can also implement own proof tools

```
val tm_v = ''v:'a'';
val tm_P = 'P:'a -> bool'';
val tm_lhs = ''?x. (x = v) / P x''
val tm_rhs = mk\_comb (t_P, t_v);val thm1 = let
 val thm1a = ASSUME tm rhs;
 val thm1b =CONJ (REFL tm_v) thm1a;
  val thm1c =
   EXISTS (tm_lhs, tm_v) thm1b
in
DISCH tm_rhs thm1c
end> val thm1a = [P v] |- P v: thm
                                         > val thm1b =
                                            [P \ v] |- (v = v) / \ P v: thm
                                         > val thm1c =
                                           [P \ v] |- ?x. (x = v) / \ P x> val thm1 = [] |-
                                            P v ==> ?x. (x = v) / \ P x: thm
```

```
62 / 66
```
Forward Proofs — Example II cont.

Derived Tools

- HOL lives from implementing reasoning tools in SML
- rules use theorems to produce new theorems
	- ► SML-type thm -> thm
	- \blacktriangleright functions with similar type often called rule as well
- conversions convert ^a term into an equal one
	- ► SML-type term -> thm
	- ► given term t produces theorem of form $[]$ $|-$ t = t'
	- \blacktriangleright may raise exceptions HOL_ERR or UNCHANGED

 \bullet ...

Conversions

- HOL has very good tool support for equality reasoning
- therefore **conversions** are important
- \bullet there is a lot of infrastructure for conversions
	- ► RAND_CONV, RATOR_CONV, ABS_CONV
	- ► DEPTH_CONV
	- \blacktriangleright THENC, TRY_CONV, FIRST_CONV
	- ► REPEAT_CONV
	- ► CHANGED_CONV, QCHANGED_CONV
	- ► NO_CONV, ALL_CONV
	- \blacktriangleright
- important conversions
	- \blacktriangleright REWR_CONV
	- ► REWRITE_CONV
	- \blacktriangleright