
Interactive Theorem Proving (ITP) Course
Parts I - IV

Thomas Tuerk (tuerk@kth.se)

KTH

Academic Year 2016/17, Period 4

version 1b43e90 of Sun Apr 23 20:08:16 2017

1 / 41

Part I

Introduction

2 / 41

Motivation

Complex systems almost certainly contain bugs.

Critical systems (e. g. avionics) need to meet very high standards.

It is infeasible in practice to achieve such high standards just by
testing.

Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”

— Edsger W. Dijkstra

3 / 41

Famous Bugs

Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)

Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

. . .

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html

https://en.wikipedia.org/wiki/List_of_software_bugs

4 / 41

Proof

proof can show absence of errors in design

but proofs talk about a design, not a real system

⇒ testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;

and as far as they are certain,
they do not refer to reality.”

— Albert Einstein

5 / 41

Mathematical vs. Formal Proof

Mathematical Proof

informal, convince other
mathematicians

checked by community of
domain experts

subtle errors are hard to find

often provide some new
insight about our world

often short, but require
creativity and a brilliant idea

Formal Proof

formal, rigorously use a
logical formalism

checkable by stupid

machines

very reliable

often contain no new ideas
and no amazing insights

often long, very tedious, but
largely trivial

We are interested in formal proofs in this lecture.

6 / 41

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7 / 41

Automated vs Manual (Formal) Proof

Fully Manual Proof

very tedious one has to grind through many trivial but detailed proofs

easy to make mistakes

hard to keep track of all assumptions and preconditions

hard to maintain, if something changes (see Ariane V)

Automated Proof

amazing success in certain areas

but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
◮ run automated tool for a few days
◮ abort, change command line arguments to use different heuristics
◮ run again and iterate till you find a set of heuristics that prove it fully

automatically in a few seconds

8 / 41

Interactive Proofs

combine strengths of manual and automated proofs

many different options to combine automated and manual proofs
◮ mainly check existing proofs (e. g. HOL Zero)
◮ user mainly provides lemmata statements, computer searches proofs

using previous lemmata and very few hints (e. g. ACL 2)
◮ most systems are somewhere in the middle

typically the human user
◮ provides insights into the problem
◮ structures the proof
◮ provides main arguments

typically the computer
◮ checks proof
◮ keeps track of all use assumptions
◮ provides automation to grind through lengthy, but trivial proofs

9 / 41

Typical Interactive Proof Activities

provide precise definitions of concepts

state properties of these concepts
prove these properties

◮ human provides insight and structure
◮ computer does book-keeping and automates simple proofs

build and use libraries of formal definitions and proofs
◮ formalisations of mathematical theories like

⋆ lists, sets, bags, . . .
⋆ real numbers
⋆ probability theory

◮ specifications of real-world artefacts like
⋆ processors
⋆ programming languages
⋆ network protocols

◮ reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

10 / 41

Different Interactive Provers

there are many different interactive provers, e. g.
◮ Isabelle/HOL
◮ Coq
◮ PVS
◮ HOL family of provers
◮ ACL2
◮ . . .

important differences
◮ the formalism used
◮ level of trustworthiness
◮ level of automation
◮ libraries
◮ languages for writing proofs
◮ user interface
◮ . . .

11 / 41

Which theorem prover is the best one? :-)

there is no best theorem prover

better question: Which is the best one for a certain purpose?

important points to consider
◮ existing libraries
◮ used logic
◮ level of automation
◮ user interface
◮ importance development speed versus trustworthiness
◮ How familiar are you with the different provers?
◮ Which prover do people in your vicinity use?
◮ your personal preferences
◮ . . .

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 / 41

Part II

Organisational Matters

13 / 41

Aims of this Course

Aims

introduction to interactive theorem proving (ITP)

being able to evaluate whether a problem can benefit from ITP

hands-on experience with HOL

learn how to build a formal model

learn how to express and prove important properties of such a model

learn about basic conformance testing

use a theorem prover on a small project

Required Prerequisites

some experience with functional programming

knowing Standard ML syntax

basic knowledge about logic (e. g. First Order Logic)

14 / 41

Dates

Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

always in room 4523 or 4532

each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May

last lecture: 12th of June

last practical session: 21st of June

9 lectures, 17 practical sessions

15 / 41

Exercises

after each lecture an exercise sheet is handed out

work on these exercises alone, except if stated otherwise explicitly

exercise sheet contains due date
◮ usually 10 days time to work on it
◮ hand in during practical sessions
◮ lecture Monday −→ hand in at latest in next week’s Friday session

main purpose: understanding ITP and learn how to use HOL
◮ no detailed grading, just pass/fail
◮ retries possible till pass
◮ if stuck, ask me or one another
◮ practical sessions intend to provide this opportunity

16 / 41

Practical Sessions

very informal

main purpose: work on exercises
◮ I have a look and provide feedback
◮ you can ask questions
◮ I might sometimes explain things not covered in the lectures
◮ I might provide some concrete tips and tricks
◮ you can also discuss with each other

attendance not required, but highly recommended
◮ exception: session on 21st April

only requirement: turn up long enough to hand in exercises

you need to bring your own computer

17 / 41

Passing the ITP Course

there is only a pass/fail mark

to pass you need to
◮ attend at least 7 of the 9 lectures
◮ pass 8 of the 9 exercises

18 / 41

Communication

we have the advantage of being a small group

therefore we are flexible

so please ask questions, even during lectures

there are many shy people, therefore
◮ anonymous checklist after each lecture
◮ anonymous background questionnaire in first practical session

further information is posted on Interactive Theorem Proving
Course group on Group Web

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

19 / 41

Part III

HOL 4 History and Architecture

20 / 41

LCF - Logic of Computable Functions

Standford LCF 1971-72 by Milner et al.

formalism devised by Dana Scott in 1969

intended to reason about recursively defined
functions

intended for computer science applications

strengths
◮ powerful simplification mechanism
◮ support for backward proof

limitations
◮ proofs need a lot of memory
◮ fixed, hard-coded set of proof commands

Robin Milner
(1934 - 2010)

21 / 41

LCF - Logic of Computable Functions II

Milner worked on improving LCF in Edinburgh

research assistants
◮ Lockwood Morris
◮ Malcolm Newey
◮ Chris Wadsworth
◮ Mike Gordon

Edinburgh LCF 1979

introduction of Meta Language (ML)

ML was invented to write proof procedures

ML become an influential functional programming language

using ML allowed implementing the LCF approach

22 / 41

LCF Approach

implement an abstract datatype thm to represent theorems

semantics of ML ensure that values of type thm can only be created
using its interface

interface is very small
◮ predefined theorems are axioms
◮ function with result type theorem are inferences

=⇒ However you create a theorem, it is valid.

together with similar abstract datatypes for types and terms, this
forms the kernel

23 / 41

LCF Approach II

Modus Ponens Example

Inference Rule

Γ ⊢ a ⇒ b ∆ ⊢ a

Γ ∪∆ ⊢ b

SML function

val MP : thm -> thm -> thm

MP(Γ ⊢ a ⇒ b)(∆ ⊢ a) = (Γ∪∆ ⊢ b)

very trustworthy — only the small kernel needs to be trusted

efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

24 / 41

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.

HOL family
◮ HOL theorem prover
◮ HOL Light
◮ HOL Zero
◮ Proof Power
◮ . . .

Isabelle

Nuprl

Coq

. . .

25 / 41

History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

1981 Mike Gordon becomes lecturer in Cambridge

1985 Cambridge LCF
◮ Larry Paulson and Gèrard Huet
◮ implementation of ML compiler
◮ powerful simplifier
◮ various improvements and extensions

1988 HOL
◮ Mike Gordon and Keith Hanna
◮ adaption of Cambridge LCF to classical higher order logic
◮ intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

26 / 41

Family of HOL

ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

HOL Light
lean CAML / OCaml port by John Harrison

HOL Zero
trustworthy proof checker by Mark Adams

Isabelle
◮ 1990 by Larry Paulson
◮ meta-theorem prover that supports

multiple logics
◮ however, mainly HOL used, ZF a little
◮ nowadays probably the most widely used

HOL system
◮ originally designed for software verification

❊❞✐♥❜✉r❣❤ ▲❈❋

❈❛♠❜r✐❞❣❡ ▲❈❋

❍❖▲✽✽

❤♦❧✾✵

Pr♦♦❢P♦✇❡r

■s❛❜❡❧❧❡✴❍❖▲

❍❖▲ ▲✐❣❤t

❤♦❧✾✽ ❍❖▲ ❩❡r♦

❍❖▲✹

27 / 41

Part IV

HOL’s Logic

28 / 41

HOL Logic

the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

this sounds complicated, but is intuitive for SML programmers

(S)ML and HOL logic designed to fit each other

if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It’s also a common abbreviation for higher order
logic in general.

29 / 41

Types

SML datatype for types
◮ Type Variables (’a, α, ’b, β, . . .)

Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

◮ Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

◮ Compound Types ((σ1, . . . , σn)op)
op is a type operator of arity n and σ1, . . . , σn argument types.
Type operators denote operations for constructing types.
Examples: num list or ’a # ’b.

◮ Function Types (σ1 → σ2)
σ1 → σ2 is the type of total functions from σ1 to σ2.

types are never empty in HOL, i. e.
for each type at least one value exists

all HOL functions are total

30 / 41

Terms

SML datatype for terms
◮ Variables (x, y, . . .)
◮ Constants (c, . . .)
◮ Function Application (f a)
◮ Lambda Abstraction (\x. f x or λx . fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

terms have to be well-typed

same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i. e. no
distinction between functions and predicates, terms and formulae

31 / 41

Terms II

HOL term SML expression type HOL / SML
0 0 num / int

x:’a x:’a variable of type ’a
x:bool x:bool variable of type bool
x + 5 x + 5 applying function + to x and 5

\x. x + 5 fn x => x + 5 anonymous (a. k. a. inline) function
of type num -> num

(5, T) (5, true) num # bool / int * bool

[5;3;2]++[6] [5,3,2]@[6] num list / int list

32 / 41

Free and Bound Variables / Alpha Equivalence

the lambda-expression λx . t is said to bind the variables x in term t

variables that are guarded by a lambda expression are called bound

all other variables are free

Example: x is free and y is bound in (x = 5) ∧ (λy . (y < x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: λx . x and λy . y are alpha-equivalent

Example: x and y are not alpha-equivalent

33 / 41

Theorems

theorems are of the form Γ ⊢ p where
◮ Γ is a set of hypothesis
◮ p is the conclusion of the theorem
◮ all elements of Γ and p are formulae, i. e. terms of type bool

Γ ⊢ p records that using Γ the statement p has been proved

notice difference to logic: there it means can be proved

the proof itself is not recorded

theorems can only be created through a small interface in the kernel

34 / 41

HOL Light Kernel

the HOL kernel is hard to explain
◮ for historic reasons some concepts are represented rather complicated
◮ for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

there are two predefined constants
◮ = : ’a -> ’a -> bool
◮ @ : (’a -> bool) -> ’a

there are two predefined types
◮ bool
◮ ind

the meaning of these types and constants is given by inference rules
and axioms

35 / 41

HOL Light Inferences I

⊢ t = t
REFL

Γ ⊢ s = t

∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ s = t

∆ ⊢ u = v

types fit

Γ ∪∆ ⊢ s(u) = t(v)
COMB

Γ ⊢ s = t

x not free in Γ

Γ ⊢ λx . s = λx . t
ABS

⊢ (λx . t)x = t
BETA

{p} ⊢ p
ASSUME

36 / 41

HOL Light Inferences II

Γ ⊢ p ⇔ q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p ⇔ q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

37 / 41

HOL Light Axioms and Definition Principles

3 axioms needed

ETA AX (λx . t x) = t

SELECT AX P x =⇒ P((@)P))
INFINITY AX predefined type ind is infinite

definition principle for constants
◮ constants can be introduced as abbreviations
◮ constraint: no free vars and no new type vars

definition principle for types
◮ new types can be defined as non-empty subtypes of existing types

both principles
◮ lead to conservative extensions
◮ preserve consistency

38 / 41

HOL Light derived concepts

Everything else is derived from this small kernel.

T =def (λp. p) = (λp. p)
∧ =def λp q. (λf . f p q) = (λf . f T T)
=⇒ =def λp q. (p ∧ q ⇔ p)
∀ =def λP . (P = λx . T)
∃ =def λP . (∀q. (∀x . P(x) =⇒ q) =⇒ q)
. . .

39 / 41

Multiple Kernels

Kernel defines abstract datatypes

one does not need to look at the internal implementation

therefore, easy to exchange

there are at least 3 different kernels for HOL
◮ standard kernel (de Bruijn indices)
◮ experimental kernel (name / type pairs)
◮ OpenTheory kernel (for proof recording)

40 / 41

HOL Logic Summary

HOL theorem prover uses classical higher order logic

HOL logic is very similar to SML
◮ syntax
◮ type system
◮ type inference

HOL theorem prover very trustworthy because of LCF approach
◮ there is a small kernel
◮ proofs are not stored explicitly

you don’t need to know the details of the kernel

usually one works at a much higher level of abstraction

41 / 41

