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Slater determinant
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F dentical nucleons, the simple product wave function is not appropriate, since it
must describe indistinguishable particles and account for the Pauli exclusion

principle
A -
Y(,2,...,A)= H¢(i) Ua(1,2,A) = U o 0a(1,2,...4) = ﬁ STEDP T v, (7).
=1 P i=1

A normalized, antisymmetric A-particle wave function is defined by the Slater
determinant as
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Mean field theories
» Single-particle model
HO, WS...
» Hartree-Fock (density functional)

approaches
Skyrme force, boson exchange potentials

> Shell model

Monopole
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tgicles in a single j shell
= pairing interaction is the dominant component of the nuclear interaction.




Sum of angular momenta
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231 1f the operators A and B commute, then they have

—common eigenvectors (eigenvalues can be different

Ala) = ala) and B|B) = b|)
Alap) = alaB), Blag) = blap)
In our angular momenta case the standard choice is
i’%) I;lza ig, f/;z or j}%, ilg) 132, i’z
Corresponding to the representations

|l1m1l2m2) or |l1l2lm>



The projectors are

Z |l1m1l2m2)(l1m112m2| = f or Z |l1l2lm)(l1l2lm| :i
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One can then write
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(lymyloma|lm) = (lilalm|lymylams) is real and is called Clebsch-Gordan
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In the same fashion
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<1' Ip ) = R’nplpjp (T) [YIP (TA) X1/ 2] Jpmyp

ncoupled scheme

U, (pg; rims) = % [-Rp(rl) [YE,,(f'l)le]qu(Tz) [Yzq(f‘z)Xuz]q

. Rp(TQ) [Ylp(fvz)xllz]qu(Tl) [qu(fl)xl/z]q]

jj coupling scheme

We have also seen that one can choose another coupling scheme, in which the two
particles carry total angular momentum J = 3, + 3, with projection M = m, +m,,
such that |j, — j,| £ J < j, + j, and —J < M < J. This is called coupled-scheme.
In this scheme the two-particle wave function reads,

U,(pg, IM;7y7y) = N [R,,(rl)Rq(rz) [[Yz,,(fl)xl/z] P AGYS jq] I

= Ryr)Ry(r) | [¥;, ()], WP, | | )
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The quantum numbers associated to this wave function are {n,n,l,l,j,j,J M }.




In an coupled scheme for two particles in the shells p and g one has J = 31 + j2
and M = m,; + my

(120jpigs IM) = > (Gpmypigma|J M) (12|j,mpjemy) (4.6)
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Antisymmetry

(12|7pJgs IM)a = N((12|jqu; JM) — (21|jpjq; -]M))
=N Z (Gpmpdqmy| T M) ((125,mpiamg) — (21]jpmpdemy)) (4.7)
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But
(21|jpmpigmy) = (2|7omy) (1|igmg) = (12|j,mypmy) (4.8)

one gets

(12|jqu§ JM)a — N((12|jqu; JM) - (_l)jp+jq-J<12|jqu§ JM)) (4-9)

If j, = j,, then (—=1)»*%s = —1 and

(12|52, M), = N (1 + (-1)7)(12|52; JM) (4.10)

J must be even and N = 1/2 (since (jZ; JM|j2; JM) = 1). Otherwise N = 1/v/2.




el Parity of n-particle states
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Spin of n-particle states in a single-j shell

U, (pg, JM;riry) = N[Rq,(ﬁ)Rq(?”z) [[sz(f'l)XU?]jp [qu(f'?)XU?]jq] Y
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Isospin

The isospin is an internal quantum number used in the classification of
elementary particles

Isospin was introduced by Werner Heisenberg in 1932 to explain the fact that

the strength of the strong interaction is almost the same between two protons
or two neutrons as between a proton and a neutron

iIsospin is




S'and neutrons not only possess
almost the same mass (M,/M,, = 1.0014),
but they also show a far reaching
symmetry with regard to the nuclear
interaction.

Analysis of the results obtained
experimentally from scattering
protons by protons and neutrons by
protons show that the nuclear forces
for the pp and np system are equal to-
within a few percent.

The symmetric properties of mirror
nuclei and other sets of isobars
provides further pertinent
information. The energy spectra of
mirror nuclei (i.e. nuclei which
transform into each other by an
interchange of protons and neutrons)
are very m i '
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FIG. 2. Level scheme of *Ni, as deduced in this work, com-
pared to those of *Co and **Fe.




638 out that the influence of the Coulomb field can still be treated in many cases
wape rturbation in the energy, leaving the total isospin quantum number T virtually
unimpaired as a state label. At present one has obtained a large body of data on

isomultiplets corroborating the assumption of charge independence of the nuclear
forces.
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In 1932, W. Heisenberg proposed that the neutron and proton could be
considered as two different charge states of one and the same particle by
introducing an isospin variable t for which the projection t, can assume two
values: t,=-1/2 to label a proton and t,=1/2 to label a neutron.

The isospin formalism can be developed in complete analogy with the
description of intrinsic spin in terms of Pauli spinors with the two possibilities

of spin up and spin down. It is given by the invariance of the Hamiltonian
of the strong interactions under the action of the Lie group SU(2). The

neutron and the proton are assigned to the doublet (of the fundamental
representation) of SU(2):

A neutron wave function is represented by the isospinor

0u)= (*0) - = 90) (1) toar=+10u)

The proton wave function

¢p(r) = ( 4;8,)) = 4(r) ((;) tbp(r) = —16,(r)




The single-particle wave function can then be labeled by the spatial-spin quantum
numbers |nlsjm) (where s = 1/2) and the isospin quantum numbers |¢t,) (t = 1/2).
The corresponding wave function is,

(elnlsjmit.) = Ru;(r) [Yi(F)Xs)jm Tor. (18)

where 73;_ is the isospin state.




Introducing the analogues of the Pauli matrices into isospin space

{01 {o -y {1 0
=710/ P7li o) ™=T\o -1/’
one defines the isdspin vector operator as

_1

I=3 1.

it follows that the com’poneﬁts ix, 1y and 1, obey the commuta-
tion relations of an angular momentum

tx, ty] =it;
[, 1.]=0
and that the eigenvalues of #* are given by

2ar(t+l). o | _



<38 |n analogy with angular momentum one can define raising and lowering
34 operators as

The operators 7, that transform a proton state into a neutron state and vice versa

Direct application of the explicit matrix representations to the isospinors yields the
relations

LiPp 395“'; L+9a =0, {-¢p =0, [_@q = dp




In a composite system of two or more nucleons the (commuting)
individual isospins may be coupled to a total isospin

A
T= 27 Hk),
k=1

Again in analogy with the composition of ordinary spins, one finds that the vector
operator T obeys the angular momentum commutation relations and hence the
following eigenvalues are

> =>7(I+1),
For a given eigenvalueT the state is seen to be (2T + 1)-fold degenerate

Ly=-T,-T+1,.,T-1,T.

Tz is related to the numbers of neutrons and protons by

sz%(N"Z)




Isospin of the two-nucleon system

For the isospin part of the wave functions we have the uncoupled
basis consisting of the four states (the indices 1 and 2 refer to the two
partic
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In the coupled basis we have
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The states with total isospin T=1 are symmetric under exchange of the
two particles, whereas the state with isospin T=0 is antisymmetftric




(127pdqs IM)a = N ((12|5pdg: IM) — (—1)777(12]4,5,: IM))  (4.9)
If j, = j,, then (—1)#*% = —1 and
(12|52, IM), = N(1 + (-1)7)(12|52; I M) (4.10)

J must be even and N = 1/2 (since (j2; JMIjﬁ, JM) = 1). Otherwise N = 1//2.

As a consequence of the generalized Pauli principle a symmetric space-spin wave
function must be combined with an antisymmetric isospin function or.vice versa.
In both cases the complete wave function is antisymmetric under the mterchange of
all coordinates of the two particles. This leads to the general statement that one ob-
tains allowed two-particle states 1(4Y* )y only for

J+ T=odd

1-(-1)T
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