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L hecklist

* Review what will learned so far

* Single particle Hamiltonian: Harmonic Oscillator and Woods-
Saxon

* Discussion on evidences of nuclear shell effects: Try to
propose an alternate picture

* Evolution of shell structure in unstable nucle1

* Shell model from a perturbation perspective

* Homeworks and projects



A iEoncepts we learned in the first section
* Nuclear binding energy and separation energy
* Hermitian operator

« Commutation relation and representation

« Parity

* Angular momentum coupling

* One-particle Hamiltonian (in one dimension)

* Unbound states

Given two operators and their eigenstates as
Alo) =ala) and B|B) =b|B) (1.86)

and assuming that they commute, i. e. [fl, B] = 0, then they have common eigenvalues (see Homewor-
problems 1), i. e.,

Alog) = alaB), BlaB) =blap) (1.87)




& particle model (Independent-particle model)

HO(r)= EC(r)-

Spherical coordingtes " )
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[t is convenient to replace the radial eigenfunction R,,;(r) by the function wu,,;(r)
defined as

Ru(r) = wu(r)/r

and the eigenvalue problem acquires the simpler, one dimensional, form,

R d2 [(1+1)R2

“paet) [ Tr?

+ V(r)] U (1) = Byt ()



m Harmonic Oscillator

V(r) = mw?r?/2.
The eigenvalues corresponding to this potential are

En = (2n+l+g)ﬁw

principal quantum number

N =2n+1

Popular description
http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator




Eng evels corresponding to an Harmonic oscillator potential ¢ 0i,1g,2d,3s
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Empirical formula for fiy
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Raial wave function

Sibitdl angular momentum
n, number of nodes
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Rpy(r) = Npyo®e~ 7 2 (ar)! f(r?)
a=. T
Vo

The normalization factor Ny, is given by

2ﬂ+l+2 1/2 Z_é
N"‘-{ﬁ(zn+2l+1)!!} o

such that

fo | Rt (r) 2 r2dr = 1.

n!t= nn—2)(n—-4)..(Q2orl)



Table 3.1: Energy levels corresponding to an Harmonic oscillator potential of frequency
w. The states are labelled by N = 2n + [. The energies E,; are in units of fiw. D, is the
degeneracy of the state (n,l).
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The average binding energy per nucleon versus mass number A

>Fe has 8.8 MeV per nucleon

binding energy and is the most

.7 |tightly bound nucleus

Average binding energy per nucleon (MeV)
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Figure 17: The difference between the experimental and liquid-drop binding
energies as a function of N. The dashed lines show the magic numbers 28, 50,
82 and 126.
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1. The binding energies of magic-number nuclei is much larger than in the neighboring

nuclei. Thus larger energy is required to separate a single nucleon from magic nuclei.

2. The number of stable nuclei with magic values of Z or N is much larger than the
corresponding number in neighboring nuclei.

3. Naturally occurring isotopes with magic Z or N have greater relative abundances.

4. The first excited states in nuclei with magic numbers of neutrons or protons lie at
higher energies than the same states in neighboring nuclei.

5. Electric quadrupole moments of magic-number nuclei is zero as expected in closed shell
nuclei, since they should be spherically symmetric.

6. The energy of alpha or beta particles emitted by magic-number radioactive nuclei is
larger than that from other nuclei.




EXPERIMENTAL EVIDENCE FOR MAGIC NUMBERS
:
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tron separation energies

The energy &; i1s the one needed to separate the particle

A+1 P
Z:+1XNm — proton+ ; Y,

E(A+1)=(Z,+1)m,c* + N,,m,c* — B(A+1)

. E(A) = Z,,m,c* + N,ym,c* — B(A)
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Osc. Square Spect. Spin No. of Total
No. well term term states Shells
fig@oeppert Mayer, On Closed Shells in 0 ts ks bsus 2 2 2
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Thanks are due to Enrico Fermi for the remark, “Is there 25 25 2510 2 "
any indication of spin-orbit coupling?”’ which was the origin o ] o .
of this paper. ]lf af o )
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It is found experimentally that V, is negative, which means that the state with 4s 4s
J =I+ 1/2 is always energetically below the j = I — 1/2 level.




The Nobel Prize in Physics 1963
Eugene Wigner, Maria Goeppert-Mayer, J. Hans D. Jensen

¢ The Nobel Prize in Physics 1963

Eugene Wigner

Maria Goeppert-Mayer

J. Hans D. Jensen

Eugene Paul Wigner Maria Goeppert- J. Hans D. Jensen
Mayer
The Nobel Prize in Physics 1963 was divided, one half awarded to Eugene Paul Wigner
"for his contributions to the theory of the atomic nucleus and the elementary particles,
particularly through the discovery and application of fundamental symmetry
principles",the other half jointly to Maria Goeppert-Mayer and J. Hans D. Jensen "for




p2 1 2, .2
H—%—I—§mw7‘ +V90(T)l‘8

jP=0+s"+21 s
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with the basis |nlsjm)

l-s|nlsjm) = %2[3(] +1) = Ul +1) — s(s + 1)]|nlsjm)

the Schrodinger equation becomes

2 2 2
— h_d_unl(,r) + {l(l + 1)h + lWQTQ-l-

2m dr? 2mr2 2




|lymilomg) or [l1l5lm) (1.91)

and, therefore, the standard projectors are
Z |l1m1l2m2)(l1m1l2m2| = j or Z |l1l2lm)(l1l2lm| = f (192)
limilomg I lolm

One can write the vector in one representation in terms of the other representation, for instance

|l1m1l2m2) = Z |l1l2lm) (lllzlm|l1m1l2m2), (193)
Ilm
and
|l1m1l2m2) = z(l1m1l2m2|lm)|l1l2lm) (1.94)
Ilm

The number (lym;loma|lm) = (l1lslm|lymilames) is real and is called Clebsch-Gordan coefficient. Due to
the orthonormality of the basis elements

|l1l2lm) = Z (l1m1l2m2|lm}|l1m1l2m2) (1.95)

mimz2




The Clebsch-Gordan coefficient can best be written in terms of the 3-j symbol defined as

( l1 lo l )_ (_1)l1—l2+m
m; Mgz —m V20 +1

(l1m1l2m2|lm)

with the properties that

1 lh I 1 _ L | L _ A SR
) m; Mo m meg M My m myp Mo
9 ( Ll 1 ):(_1)ll+lz+l( lo L 1 )
' m; M2 M meg M1 M

3. ( h 2 l )=(_1)l1+l2+l( Ll 1 )
—mi —me2 T mi mg m

4. mi+mo—m =20

(1.96)



Consider a problem with two angular momenta L and S,
They each have a set of eigenstates

L2|lmg) = 1(1 + 1)[lmy) . S2%|sms) = s(s + 1)|sm;)
Ls|lm;) = my|lm;) . S3|smg) = mg|sms)

The two angular momenta are then described in the direct-product space
Imysms) = |lmy)|sm) . direct-product space

Since they act in different spaces, the operators L and S commute with
each other

| [I:z-, S'J] =0 . different spaces
Thus the operators {f;2, L3,S2, 5’3} all commute with each other

{ﬁz, Ls,S?, é’g} : mutually commuting



The direct-product states are evidently eigenstates of these mutually com-
muting hermitian operators

L2|lmysms) = I(1 + 1)|lmgsms)  ; La|lmysmg) = my|lmysms)

S2|lmysmy) = s(s + 1)|[lmysms) 5 Ss|llmysm,) = m|lmysms)  (3.67)

There are (2 + 1) x (2s + 1) states in this direct-product basis.
Now introduce the total angular momentum

J=L+S (3.68)



one may assume V(1) = —V,.
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[; j=1+4+1/2

G+ 1) = U+ 1) = 3/4]Veo(r) = —VO{ -1 j=1-1/2

The total angular momentum quantum

number j = /+1/2 of the nucleon is denoted by
an extra index j:  nl;

the 1f state splits into a 1f;, and a 1fs

state It o/ 1ty

117/,

The nljlevel is (2j + 1) times degenerate



Single particle energy levels:

=» Spin-orbit interaction leads to a sizeable " %
splitting of the energy states which are indeed 2

. 29 12
comparable with the gaps between the nl/ " .
shells themselves. 1i i !

126 —-
Magic numbers appear when the gaps 8
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As always
P =Jt+Ji+J2 (3.69)
The commutation relations for J follow immediately from the above

[jz ; j;)] - ifijkjk
32,7l =0 (3.70)

The square of the total angular momentum is now also given by
J2=12+8%+2L-S (3.71)

Since the square of an angular momentum commutes with all of its com-
ponents, the operators {L?,S2,J?, J3} all commute with each other

{L2,82,32, J5} . mutually commuting (3.72)



We make some comments on this result:

e The spectrum of eigenvalues of the total angular momentum follows
from our general analysis in the previous section;

e The eigenvalues of (S2,L2) must remain the same due to the orthogo-
nality of the eigenstates of hermitian operators;

e The goal now is to express the eigenstates of total angular momentum
in terms of the direct product basis in Egs. (3.64)

\lsjm;) = Z (lmysms|lsym;) [lmgsms) 3 C-G coefficients (3.74)

mp, Mg

The numerical transformation coefficients (lm;sms|lsjm; ) in this ex-
pression are known as the Clebsch-Gordan (C-G) coefficients.




#i€ commutation relations

Uy, ] Sy = by =il;
[sx. 8y] =isz

[2,1,]=0 ~“for k=xy,z
[s?,5x]=0 for k=xy.z.
5] =0.

[jx' ]y] = iiz

| ﬂdqym =1+ 1) Yiiym » '
S Vi3 jm =2G + 1) Ytk jom = 360 jm »
U jm =G+ 1) Wt jom

T2Wik jm = ML i




Since we assume that the nucleon-core potential is spherically symmetric the quantum
numbers [.j, m are conserved (as discussed in the previous Chapter). This potential will
also be assumed to be invariant under reflections, and therefore the parity 7 of the state
Inljm > will also be conserved. To find the value of the parity one has to analyze the
Spherical Harmonics Y, (f¢) which, for m; > 0, is given by

20 +1 l — mz my.imie pmy
Yim,(0p) = \/ (l+m )'( 1)™e™¥P™ (cosf) (3.32)

P = i 8 . Zi;: (- 5w € -1 (3.33)

where

For m; < 0 it is,

Yim,(00) = (=1)™Y,_, (0p) (3.34)




The parity transformation corresponds to » — —, that is (r,0,¢) — (r,m — 0,0+
), and since for spherically symmetric potentials the value of 7 is the same for all values
of the angles, only the transformation of the Spherical Harmonics has to be considered.

Therefore one finds,
\I”nljm(—r) — (_l)l\pnljm("') (335)

We have seen that the parity associated to this wave function is (—1)" and since
N = 2n + | the parity also is (—1)". That is, all the states in a band corresponding to
the quantum number N has the same parity.




] Symmetries
f'a given state, n, |, j, s, j,(m) parity are good quantum numbers
[l,s] =0.

The spherical harmonics.all possess definite parity
rr—r, rornfen—0,02n+¢

MY (0, 8) = Yim(m — 0,7+ ¢) = (1) Y1n (6, 6) .
P fr)= f-r) = 1L f(r)

Parity for the system

T = Hil (D"

Angular momentum of the system ,

j = Z ji
i=1




1 .
X122 = ( O) ms = +% (spin up) and

0
X-12 = (1) mg = -% (spin down)

The eigenvalues of 5, and s, are also 1 and ~3. The s, and s, ma-
trices cannot be diagonal if s, is diagonal. This follows from the com-
mutation relations satisfied by the components (3.17), namely

[5x,8y] = is; [52,5¢] = isy [sy,5:] = is,

(3.19)
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e spin orbit turns out to be mainly a surface effect, being a function of r and
connected to the average potential through a relation of the form

Vso(r) - _‘/so1 dV(T)

rodr




e mb effect
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Average nuclear potential well: Woods-

V(r)=-v, {1 +expl(r-R, )/ al}
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A7 re-write the Hamiltonian by adding and subtracting a one-body potential U(r) as

EEEEEE

A
FI—Z[—;—A,—I—U(1]+ Y W(i.j)— ZU(I) V.,

=1 i< j=1

HO is the single particle Hamiltonian describing an ensemble of independent particles
moving in an effective average potential. V is called the residual interaction. In some cases
it is also denoted as H® (recall the perturbation theory).

Hi=H©® 4 g1

The very notion of a mean field is fulfilled when H®) js small.
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The ttal Hamiltonian is a summation of all single-particle Hamiltonians

A
Hy =" Hy(i) (3.6)
i=1
the eigenvectors |, > and eigenvalues ¢, of Hy(i) satisfy
p?
Hy (%) < rilon >= (K + U(r;)) < rilgn, >= €n, < Iilgn > (3.7)

Since the Hamiltonian Hj, with eigenvalues given by

Hy|Y, >= E,|Y, > , (3.8)

is a sum of the Hamiltonians H,(i) and the degrees of freedom of different particles are




The total wave function is a product of single particle wave functions

W1,2,...,A) = Hq&(i)

< NTy, oLy AT 4| U, >= U, (ngr;, Noly, ... AT 1) = ©p, (T1)Pn, (T2)...0n,(ra)  (3.9)

and the eigenvalues are
E,=¢€n +¢€n,+ ...+ €, (3.10)

From < @i|p; >= 6;j, it follows that < U,|Us > = dap.



“Quite apart from the problem of the nature of the nuclear con-
stituents themselves, which is not of direct importance for the present
discussion, it is, at any rate, clear that the nuclear models hitherto
treated in detail are unsuited to account for the typical properties of
nuclei for which, as we have seen, energy exchanges between the in-
dividual nuclear particles is a decisive factor. In fact, in these models
it is, for the sake of simplicity, assumed that the state of motion of
each particle in the nucleus can, in the first approximation, be treated
as taking place in a conservative field of force, and can therefore be
characterized by quantum numbers in a similar way to the motion of
an electron in an ordinary atom. In the atom and in the nucleus we
have indeed to do with two extreme cases of mechanical many-body
problems for which a procedure of approximation resting on a com-
bination of one-body problems, so effective in the former case, loses
any validity in the latter ....”

Niels Bohr (1936)



Bohr’s criticism had a profound effect on the development of the
nuclear shell model. His strong objections discouraged theoretical
physicists from using it. Giulio Racah who started to work on nu-
clear spectroscopy was convinced that the shell model was indeed not
valid for nuclei. He then applied the methods he developed to atomic
spectroscopy. Calculations of nuclear energies were still carried out
by Wigner and Feenberg, Hund, Jahn and some others. Most of their



In r-representation it is,
(rlnlsjm) = Ru;(r) [Yi(0@)X1/2) ;s Buti(r) = nij(r) /7 (3.28)
and the Schrodinger equation becomes

B d2 I+ 1R 1

~ omarztni) ¥ { o2 T

+ %2[.7'(3' +1) —I(1+1) — 3/4] Vso(r)}unl(r) = Enun(r). (3.29)




T

aracterized by the good quantum numbers
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parity

article model can be used to make predictions about the spins of ground states

Filled sub-shells have zero nuclear spin and positive parity (observed
experimentally)

All even-even nuclei have J=0, even when the sub-shell 1s not filled.
(Pairing hypothesis)

Last neutron/proton determines the net nuclear spin-parity.

-In odd-A there 1s only one unpaired nucleon. Net spin can be
determined precisely

-In even-A odd-Z/odd-N nuclides we have an unpaired p and an
unpaired n. Hence the nuclear spin will lie in the range |jp-jn| to
(]p+]ﬁ> For the parity Pmtc/em - last_p X P/

ast_n




According to Eq. (3.10) the energy of the core is

A
Ecore = E :eh,-
=1

and the energy of A + 1 nucleus in the state py is

EA+1 (Pk) — Ecore + €pi

from where one gets,

€p. = EA+1 (Pk) - Ecore

Since all single-particle energies are negative one finds that

EA+1 (plc) < Ecore

(3.36)

(3.37)

(3.38)

(3.39)
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Single-particle states observed in odd-A nuclei (in particular, one nucleon + doubly magic nuclei like “He,
160, 49Ca) characterizes single-particle energies of the shell-model picture.
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Success of the extreme single-particle

model
Z Isotope Obsffrved Shell ;r_“)del » Ground state spin and parity:
. nij
3 o ; 2 /2 : Every orbit has 2j+1 magnetic sub-states,
5 135 (352_) 12 . fully occupied orbitals have spin J=0,
- 17N 1/2- lp:; Z they do not contribute to the nuclear spin.
9 2:1F 5/ 2: Lds - For a nucleus with one nucleon outside a
ié zglial' g;; ig“‘; z completely occupied orbit the nuclear spin is
15 33p 1/2+ 23‘1’/2 given by the single nucleon.
17 37C1 3/2+ ld3/2 n EJ N J
19 K 3/2% lds ;o (-)=mn
21 1°S¢ 7/27 1fz/2
23 :QV‘d 7/2— 1f7/2
25 53Mn 7/2” 1f7/2
27 °"Co 7/27 1f7 /2
29 ‘f:cu 3/2° 2p3 /2
31 b")Ga 3/2_ 2p3/2
33 %9 As (5/27) 1f5/2

35 Br (3/27) 1fs5/2




Figure 3.3: Single particle states in the shell model potential. The energies € are measured
from the continuum threshold. The Fermi level is indicated as FL.
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There are 8 protons and 9 neutrons, so we only
need the low lying states in the shell model spectrum
to understand the energy levels:
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Magnetic moment prediction: j =1+ %, odd neutron
2 H = Hneutron = -1.91 HN

measured value:  -1.89
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Next excited state: J7= -
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Nucleus|  Ejevel(keV) Jr Tip

130 0.0 (3/2-) 8.58 ms 5 0P/,
150 0.0 1/2- 122.24 s 16 |0pqp
170 0.0 5/2+4 STABLE 0d;s,
170 870.73 10 | 1/2+ 17%.2 ps 18 |18y
190 0.0 5/2+ 26.88 s 5 0ds),
190 96.0 5 3/2+ 1.39 ns 5

190 1471.7 4 1/2+ 0.88 ps 12 131/2
210 0.0 (5/2+) 3.42 s 10 10ds5),
210 1218 4 (1/2+) 1842
230 0 1/2+ 82 ms +45-28 |18
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Figure 3.4: Experimental spectrum of the nucleus "Niyy taken from the Internet site
mentioned in the text. Energies are in MeV. The level at 3.010 MeV has not been
completely determined yet. It can be 7/2% as well as 9/2F.



The experimental energies in the spectrum are given relative to the ground state of the
nucleus, as seen in Fig. 3.4. To obtain the corresponding values of € one has to evaluate
the binding energies B(Z, N). In the Internet site mentioned above are given the values
of B(Z,N)/A. For our case we need the binding energies of **Ni (the core) and of *'Ni
(see Eq. (3.38)), It is B(28,28)/56 = 8.643 MeV and B(28,29)/57 = 8.671 MeV, i. e.
€1p,,, = - 10.239 MeV. This is the lowest state. It corresponds to the state labelled p; in
Fig. 6.15. The state 0fs5/2, at 0.769 MeV, corresponds to p, (is less negative). Therefore
one gets €gg,,, = (- 10.239 + 0.769) MeV = - 9.470 MeV. In the same fashion it is €y, ,
= -9.126 MeV and €y, = - 7.229 MeV.

The evaluation of the single-particle energies follows this procedure in all cases.
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The energy of the nucleus referred to the core is now (see Eq. (3.38))
EA—l(hl) - Ecare = —€p, (340)

which is a positive number. This implies that a state which is more bound than A, for
instance the one labeled h, in Fig. 3.5, lies at higher energy than A, since |e,| > |eg, |.
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Figure 3.6: Experimental spectrum of the nucleus '3;Sng;. The levels are in parenthesis,

meaning that they are not completely determined yet. The level 11/27 is at 0.0+x MeV,
implying that it is only slightly above the 3/27 ground state.



The ground state single-particle energy is, according to Eq. (3.40), €5, = Ecore —
E4-1(h1), where h; is the hole state 1d3/, and the core is '*2Sn(gs) (gs means ground state).
The binding energies of interest are B(50, 81) /131 = 8.363 MeV and B(50,82)/132 = 8.355
MeV. Therefore it is E.,.. = -B(50,82) = -1102.860 Mev and E4_;(h;) = -B(50,81) =
-1095.553 MeV, from where one gets €4, = -7.307 MeV. For the other states it is €, 12
= -7.307 MeV also, €3, , = (-7.307 - 0.332) MeV = -7.639 MeV, €4, ,, = -8.962 MeV and
€0g/, = -9.741 MeV.




gl€-particle states in 133Sn: Doubly magic nature of 132Sn
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alosure in superheavy nuclei (an open problem)
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Synhesis of a New Element with Atomic Number Z=117, PRL 104, 142502 (2010)

According to classical physics, elements with Z >104 should not exist due to the large
Coulomb repulsion. The occurrence of superheavy elements with Z>104 is entirely due

to nuclear shell effects.

120 —

The nuclei in the chart decay by a
emission (yellow), spontaneous
fission (green), and B+ emission
(pink).

Physics 3, 31 (2010)

BiMeV) http://physics.aps.org/articles/v3/31
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Shell structure: B(E2) and E,*

Nuclei with magic N

» Relatively high-lying first 2+

exited state

« Relatively low B(E2) transition

strength




Shell evolution at drip lines
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Shell evolution and its indication on the isospin dependence of the spin-orbit splitting

Zhen-Xiang Xu and Chong Qi*
KTH (Royal Institute of Technology), Alba Nova University Center, SE-10691 Stockholm, Sweden
(Dated: September 3, 2012)

http://arxiv.org/pdf/1208.6461v1.pdf
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FIG. 1. (Color online) The evolution of the shell structure
as a function of (N — Z)/A with the HO potential plus SO
coupling of the form A(1+ kso ¥5Z)hwl-s. We take A = 0.2
and kso = —1 (left) and 1 (right). The Ogq,» orbital is shifted
upwards by 0.3hw for a clearer presentation.




Mean-field for dripline nuclei

: ith higher / loses its energy faster when going towards the dripline [. Hamamoto, Phys.
Rev. C 85, 064329 (2012).

This naturally explains the disappearing of N=14 subshell in C and N isotopes [It is due to a complicated interplay
between NN and NP interactions from a shell-model point of view, C.X. Yuan, C. Q1, F.R. Xu, Nucl. Phys. A 883,
25 (2012). 1.

»Choice of the Central and SO potential
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Simple rules of shell evolution

»HO magic numbers like N=8, 20 disappear;

»New SO magic numbers like N = 6, 14, 16, 32 and 34 will appear;

»The traditional SO magic numbers N = 28 and 50 and the magic number N = 14 will be eroded somehow but
are more robust than the HO magic numbers;

»Pseudospin symmetry breaks, resulting in new shell closures like N = 56 and 90;
»HO shell clo
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Chapter 4

Magnetic resonances in nuclei




iMagnetic Effects on Atomic Spectra—The
Normal Zeeman Effect
Consider the atom to behave like a small magnet.

Think of an electron as an orbiting circular current loop of I = dq /
dt around the nucleus.

The current loop has a magnetic moment y = /A and the period T
= 21mr/ v.

€ p where L = mvris the magnitude of the orbital

A =—
2m angular momentum.

|

L
1
o
Proton
| /
'
u




= Since there is no magnetic field to

o align them, & point in random
) directions. The dipole has a
o — .
e potential energy
,,,,,,,,,,, V.=—1-B
The angular momentum is aligned with the magnetic moment, and the
torque between and gicaus¢g a precession of . Y7
eh
M, = —m, =—HUgh,
2m

Where ug = eh / 2m is called a Bohr magneton.



The Normal Zeeman Effect

The potential energy is quantized due to the magnetic quantum number
m,.

Ve =—pB=+pmB

When a magnetic field is applied, the 2p level of atomic hydrogen is
split into three different energy states with energy difference of AE =
ugB Am,.

=1 i
m, Energy 1
A
E, + ugB f=1 AE= p, B
0" Hs _— X B 0
0 E, AE
Y _1
11 Eo- kB B=0 B= B,k




as

4.1 Charge particles in a magnetic field

Assume a nucleon in the presence of a magnetic field carrying only its intrinsic angular
momentum, i. e. its 1/2-spin. This would happen is the nucleon is trapped within the
region where the experiment is performed. For instance, a proton in some molecules
forming a crystal, or a proton in a molecule of human tissue, which is largely composed
of water with two hydrogen atoms (where the nucleus is the proton itself) in each H>O
(water) molecule.

Assuming also that the magnetic field applied externally has the form

B = Bk (4.1)
where By is constant and k is the unit vector in the z-direction, the Hamiltonian is
H=-p-B=—pB (4.2)
where the magnetic moment is defined by,

99
= 21 4.
p=g 8 (4.3)



Since only the intrinsic spin of the particle is considered, the g-factor in Eq. (4.3) is as
the g, factor above, but for clarity of presentation we give them again here. In the cases
of interest in the applications the g-factors are

2.00 electron
g= 5.58 proton (4.4)
—3.82 neutron

As before, g is the charge of the particle (g = —e for electron) and 8 = (s, sy, ;) are the
Pauli matrices given by,

R0 1 R0 —i 1 0
31‘5(1 o)’ sy‘i(i 0)’ 32‘5(0 —1) (4.5)




The Hamiltonian becomes,

— uBe-Y99B g ks =R (10
H=—-u-B= 2chos k= wys, = 5 (0 _1) (4.6)
where 9q

wo=—2—7ncBo (47)

and the eigenvalues are,

7(6)=5 (o) #(1)--5(0) s

There are two stationary (i.e. time independent) states with energies

E.= i“%ﬁ' (4.9)
If the particle is in the state +, it will not decay unless a perturbation disturbs it. When
it decays a photon with energy E. — E_ = hw, will be emitted which can be measured

with great precision, thus allowing one to determine precisely quantities like the g-factor.



A convenient way to perturb the system is by applying a weak and time-dependent mag-
netic field in the z-direction. Rabi chose for this purpose the form B;coswti,. The
perturbation will then vary from —B; to +B, as the time increases. The hope is that at
a certain value of w the transition will take place. Notice that B, has to be very small in
comparison to By in order not to destroy the spectrum determined by By (i.e. the levels
E.). The problem is then to solve the Hamiltonian

B
H = wys, — kil cos wts, (4.10)
2me
, B
with w; = _%371,;’ one gets
~wh (1 0 wih 0 1) ~h Wo W cos wt
H_T(O _1)+Tcoswt(1 0)_§(wlcoswt —wo (4.11)

where |w;| < |wg|. One has to use the time-dependent Schrédinger equation, i.e.

d(t)
dt

HU(t) = ik

(4.12)



Time-dependent perturbation treatment

Since B, is very small the solution ¥(#) should not be very different from the solution
corresponding to B; = 0. We will therefore solve first the case B; =0, i. e.

ifw O a(t) \ _ : a(t)
(5 ) ()= (56 ) 9
where a(t) = d?igt). One thus has
f gwoa(t) = ihd?lit) a(t) = a(0)e wot/2
< h db(t) = b(t) — b(O) iwpt /2 (414)
| —5 wob(t) = ik o -




The general case is

(o “2)(38)-2(8) e

since |w;| < |wp|, one proposes as solution

a(t) \ [ e ot2¢(t)
( b(t) ) - ( eiwot/2 d(t) (416)
which contains the main term explicitly.
The Schrodinger equation becomes

h wy  wcoswt e wot/2 ¢(¢)
2 \ wycoswt  —wp e“ot/2 d(t)
—i%Remiwot/2¢(t) 4 ei0t/2¢(t)
=] 2" . . .
i ( j60 giont/2qi(£) 4 giwot/2qi(2) ) (4.17)

with coswt = (e“/? + e7“4/2) /2,




C(t) [ei(wo-i-w)t + ei(wo—w)tl d(t)
( d(t) ) 4 ( [e—i(wo—w)t + e—i(wo-i—w t] C(t) (418)
The idea is to change w in the perturbation term B, coswt such that Aw, ~ Aw. Since wy
is large, the highly oscillating functions e*(“o*«) can be neglected. One thus gets

ié(t) = ‘% eilwo—)tg(4)

. (4.19)
id(t) = = "‘(“’0“")tc(t)

which is a coupled set of two first order differential equations. To solve it one transforms
it in a second order differential equation as follows.

ié(t) = 1 i)t [l(wo — w)d(t) + d(t)] 0

id(t) = “’1 -*<w°-w>*[ i(wo—w)c(t)+c'(t)]




and repla.cmg c(t) and ¢(t) from Eq. (4.19)
4i

id(t) = % g ilwo—w)t [ ~ i —w) eiwo—wltd(t) + 4]‘ eilo—)tq(¢)]
= (- w)dt) -1 (%) de)
d(t) + i(wo — w)d(t) + (‘%)2 d(t) = 0 (4.21)
which has the solution
d(t) = Ae7 @) 2gin Ot Q= %\/ (wo — w)? + (w1/2)? (4.22)

where A is a constant which is determined by the normalization condition, i.e.,

(c*(t),d"(2)) ( 28 ) = le@®)|” + |d@)|* = 1 (4.23)




One proceeds in the same fashion with ¢(¢) to obtain

W 4(&)0 _w)2

— , 2
c(t) = 24 20— M gilwo—w)t/2 (— sin (0t — i\/ A cos Qt)




Rabi formula
We have assumed that before the perturbation the system is in the state (+), i.e.
c(0)=1; d0)=0 (4.25)

1c(0)]” + ]d(0)|” = |e(0)” = 1 (4.26)

From |c(0)|2 = 1, and after some algebra, one gets,

|A|2 = (wo — fj));/_i)(wl/z)g (4.27)

and the probability that the transition takes place, i.e. that the system is in the state

(=) is

2 (w1/2)? gin?
ld@®)|” = (0= w) + (/2 Ot (4.28)

and a resonance occurs when w = wy. Eq. (4.28) is the Rabi’s formula.

Nuclear magnetic resonance was first described and measured in molecular beams by
Isidor Isaac Rabi in 1938. In 1944, Rabi was awarded the Nobel Prize in physics for this
work.

http://www.nobelprize.org/nobel_prizes/physics/laureates/1944/
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Figure 4.1: The resonant form of the signal as the energy E, corresponding to the weak
magnetic field B, approaches the energy E; induced by By. The width of the resonance
is I'.
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The wave function of a resonance with a peak at energy E; and a width I can be factorized

as

T/2
P = \/w @B+ @27 (24

where ¥(r) = /n['/2®(Ey,r). Through the Fourier transform, we obtain the time
evolution of the resonance

®(t,r) = / ®(E,r)e P/"GE = W(r)e ", (2.5)
which gives us the resonance in the form of a stationary state, but with a complex energy

E=E,- zg (2.6)

The probability of measuring the system at ¢ is given by

[@(t,r)|* = [T (r)*e™ " (2.7)




4.3 Nuclear magnetic resonance (NMR)

Nuclear magnetic resonance (NMR) is a physical phenomenon in which magnetic nuclei
in a magnetic field absorb and re-emit electromagnetic radiation. This energy is at a
specific resonance frequency which depends on the strength of the magnetic field and the
magnetic properties of the isotope of the atoms.

One sees that A shows a form similar to that of the Breit-Wigner formula

@/2? R (T2
(wo —w)?2 + (w1 /2)2 B2 (Ey— E)? + (I'1/2)?

(4.29)

from which one can define E = hwg as the magnetic resonance energy and I'y = hw, as
the the width.

In Fig. 4.1 the form of the signal resulting from this expression is shown. The signal-
energy plot shown in Fig. 4.1 has been used to investigate the inner structure of materials.
Many scientific techniques exploit NMR phenomena to study molecular physics, crystals,
and non-crystalline materials through NMR spectroscopy. NMR allows the observation of
specific quantum mechanical magnetic properties of the atomic nucleus. In particular, it
is used in Medicine to image nuclei of atoms inside the body (magnetic resonance imaging
(MRI)).

In all applications of MRI one uses SI units and introduces the Bohr magneton

B
g = 2q—mc (4.30)




In these units the frequency becomes

_ 998y _ gupBo _
2me h

wo vBo (4.31)

This is known as the Larmor Equation. As already mentioned, for electrons it is g = 2.00
and pp = 5.79 x 10~°eV /T, where the unit Tesla is 1T = 10'gauss. Remember hic ~
200MeVfm. The precise value of i is A = 6.58 x 1072?MeVsec. For protons g = 5.58
(as also already mentioned) and py = 3.15 x 107%¢V/T. In practical applications, the
frequency is similar to VHF and UHF television broadcasts (60—1000 MHz).
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4.4 Magnetic fields and magnetic moments

A nucleon moving in a single-particle state outside a central potential, as discussed above,
will be affected by the presence of an external magnetic field. The corresponding Hamil-
tonian is,

q
H=—-—"_yu.-B 4.32
2mcu ( )

where ¢ is the effective charge of the nucleon, B is the magnetic field and p is the
dimensionless nuclear dipole moment defined as,

p=gl+ g8 (4.33)

The effective charge should be ¢ = 1.0 e (e is the absolute value of the electron charge) for
protons and 0 for neutrons. However, its value is taken to be about 1.5 e for protons and
about 1.0 e for neutrons (these are illustrative values that can vary in different nuclear
regions, i. e. for different values of N and Z). The reason why the effective charge was
introduced is that the odd nucleon affects the core and it has been shown that its influence
can be taken into account by the effective charge.




The magnetic moments can be measured with great precision, thus providing precise
value for the g-factors also. These are given by,

1 proton 5.58 proton
g1 = { P gs = { P (4.34)

0 neutron —3.82 neutron
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Dipole magnetic moments in nuclei

When the magnetic field is applied the energies observed experimentally are quantized
according to the allowed angular momenta in Eq. (4.33). To measure the dipole magnetic
moment y one chooses the maximum splitting of the levels. One sees from Eq. (4.32) that
the maximum effect of the magnetic field would be induced by the maximum alignment
of u and B. This is what one chooses experimentally. Classically this occurs when j, = j
(since B is in the z-direction). In Quantum Mechanics one has to choose the projection
m of the total angular momentum such that m = j. Therefore one defines the dipole
magnetic moment as

u= (m = jlal, + g:8.|37) (4.35)

notice that p is just a number without dimensions.
Since I = 7 — 8 one can write

= (JJ|913z + (gs - gl)§z|.7.7) (436)

To calculate the values obtained by the application of the operator §, upon the state |j7),
we expand this state in terms of the eigenvectors of 3., i. e.

gm) = Y (tmy1/2m|jm)|imy1/2m,) (4.37)



It is my = j — ms and ms = £1/2, my = j F 1/2. Therefore

: 111 .\ 2 o gs — qi

11 1), \2 . 9s— g
+<l,9+—,§,—§)n> [gu— 5 ]
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a) l—1/2

<.+1 _}11>2 B 1
Sl 11 1]..2 2j + 1
<’+2’J+2’2’ 2“> T 2+ 1)
p=gJ— (9s — 9) J (4.39)
2(7+1)
b) j=1+1/2
1 . 11 1]..\2
<J—§,J—§,§,§JJ> =1
<._1 .+11_1 ..>2 — 0
J 2).7 279" 2.7.7 =

(4.40)

p=aqj+(gs—q)/2




etic moments

Uy — nuclear magneton, g — Lande g-factor

_j(j+1)+l(l+1)—s(s+1) +j(j+1)—l(l+1)+s(s+1)

RV VRS 2+
IFj=[+1/2
Jjg,=gl+g,/2 for j=0[+1/2

21 +1 21 +1

jgj=glj(1+ : )—gsj( : ) for j=1-1/2



g =1torpand g =0forn g =+506torpand g =-3.8 for »

jgpmmn=l+5.6x%=j+2.8 for j=1+1/2

1 1 2.3
' =71+ -5.6x7 =]-—— for i1=[-1/2
‘]ngOIOH J ( 2[ + 1 ) ] ( ) 1 ‘]

20 +1 j+
jgneutron = _3'8X% = _19 fOI‘ ] =l+1/2
| {1\ 19 .
=3.8x = for j=1-1/2
.]gneutron J(21+1) ]+1 _]

For a given j the measured moments lie between j=/-1/2andj = /+1/2
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