
ITP Exercise 1
due Friday 28th April

1 Setting up Environment

We will use the HOL theorem prover1. For the practical sessions you will need to be able to use
HOL on your own machine. Therefore, please set up the following software.

1.1 Standard ML

You will need to have Standard ML available. Please install PolyML 5.623 or later.

1.2 HOL

Please install a recent version of the HOL theorem prover. I recommend installing the most
recent version from the git repository. If for some reason you don’t want to do this, the latest
release should be fine as well. Installation instructions can be found on HOL’s webpage4.

1.3 Emacs

In the lecture GNU Emacs5 will be used as a user-interface. Please install a recent version of
Emacs. Please make sure you use Emacs and not XEmacs.

1.4 HOL-Mode and SML mode

We will use the hol-mode for Emacs. It is distributed with HOL, but needs setting up in Emacs.
Please set it up and familiarise yourself with its basic usage. Documentation can be found on
HOL’s webpage6. We will write SML programs all the time. Please install the SML mode7 to
enable syntax highlighting for ML in Emacs. Information on both the SML and the HOL mode
can also be found in HOL’s interaction manual8.

2 SML

Let’s refresh our knowledge about Standard ML. Moreover, these exercises are aimed at getting
familiar with Emacs and using the HOL mode. So, please use Emacs with HOL mode as a
user-interface and treat HOL like a ML REPL.

To learn more about the Emacs mode, you can have a look at the HOL interaction manual.
If you need a brush-up on SML syntax, I recommend reading something compact like https://

learnxinyminutes.com/docs/standard-ml/. If you need more, the book ML for the Working
Programmer by Prof. Larry Paulson is a good introduction.

1https://hol-theorem-prover.org
2webpage http://www.polyml.org
3download link https://github.com/polyml/polyml/releases/tag/v5.6
4see https://hol-theorem-prover.org/#get
5https://www.gnu.org/software/emacs/
6see https://hol-theorem-prover.org/hol-mode.html
7https://elpa.gnu.org/packages/sml-mode.html
8https://hol-theorem-prover.org/HOL-interaction.pdf

1

https://learnxinyminutes.com/docs/standard-ml/
https://learnxinyminutes.com/docs/standard-ml/
https://hol-theorem-prover.org
http://www.polyml.org
https://github.com/polyml/polyml/releases/tag/v5.6
https://hol-theorem-prover.org/#get
https://hol-theorem-prover.org/hol-mode.html
https://elpa.gnu.org/packages/sml-mode.html
https://hol-theorem-prover.org/HOL-interaction.pdf


2.1 Our Own Lists

Of course SML comes with a decent list library. However, as an exercise implement your own
list datatype and implement the following list operations for your own datatype:

• length

• append (@)

• rev

• revAppend

• exists

If you don’t know what these functions should do, you can find documentation of the Standard
ML Basis Library at e. g. http://sml-family.org.

In addition implement a function replicate : ’a -> int -> ’a list, which is supposed to
construct a list of the given length that only contains the given element. For example replicate
"a" 3 should return the list ["a", "a", "a"].

1. Prove with pen and paper that for your implementation append l [] = l holds for all l.

2. Similarly, prove ∀l1 l2. length (append l1 l2) = length l1 + length l2.

3. There are strong connections between append, revAppend and rev. One can for exam-
ple define revAppend by revAppend l1 l2 = append (rev l1) l2. Write down similar
definitions for rev and append using only revAppend.

2.2 Making Change

In the following, let’s use the standard list library again. Write a program that given the coins
and notes you have in your wallet, lists all the possible ways to pay a certain amount. Represent
the coins you have as a list of integers. If a number occurs twice in this list, you have two coins
with this value. The result should be returned in the form of a list of lists. For simplicity, the
output may contain duplicates.

An example implementation of the function make change : int list -> int -> int list

list should shows for example the following outputs. Notice however, that the output of your
implementation is allowed to contain duplicates and use a different order of the lists.

• make change [5,2,2,1,1,1] 6 =

[[5, 1], [2, 2, 1, 1]]

• make change [5,2,2,1,1,1] 15 = []

• make change [10,5,5,5,2,2,1,1,1] 10 =

[[10], [5, 5], [5, 2, 2, 1], [5, 2, 1, 1, 1]]

Write down as formally as you can some properties of make change. An example property is

∀cs n. n > sum cs =⇒ make change cs n = []

where sum is defined by val sum = foldl (op+) 0 and we assume that cs contains no number
less than 0.

2

http://sml-family.org

	Setting up Environment
	Standard ML
	HOL
	Emacs
	HOL-Mode and SML mode

	SML
	Our Own Lists
	Making Change


