

EP1200 Introduction to Computing Systems Engineering

Sequential Logic

Perspective on Boolean logic

Each Boolean function has a canonical representation

- expressed in terms of And, Not, Or
- And, Not, Or can be expressed in terms of Nand alone

Universal building blocks

- mass production
- unique topology

Perspective on Boolean arithmetic

Combinational logic: time for output to be trusted?

The adder design is very basic: no parallelism

It pays to optimize adders

The ALU is also very basic without multiplication and division

- What about more advanced math operations?
- A typical hardware/software tradeoff

Sequential vs. combinational logic

Combinational devices

- operate on data only
- provide calculation services (e.g. Nand ... ALU)

Problem

When is the output signal stable and useful?

Sequential devices

- operate on data and a clock signal
- storage and synchronization
- called "clocked devices"

The low-level behavior of clocked / sequential gates is tricky

- All sequential chips can be based on one low-level sequential gate
 - the "data flip flop", or DFF
- The clock-dependency encapsulated at the low-level DFF level
- Higher-level sequential chips can be built on top of DFF gates using combinational logic only.

Lecture plan

Clock

A hierarchy of memory chips

- Flip-flop gates
- Binary cells
- Registers
- RAM

Counters

The clock

A clock cycle

- tick-phase (low) and a
- tock-phase (high)

In real hardware, the clock is implemented by an oscillator

In the hardware simulator, clock cycles generated

- manually by the user
- automatically by a test script

Data flip-flop

A fundamental state-keeping device

Not concerned with DFF implementation

given, similarly to NAND for combinational logic

Memory devices

- many flip-flops
- regulated by the same master clock signal

A one-bit register

A storage unit that can

- change its state to a given input
- maintain its state over time (until changed)

if load(t-1) then out(t)=in(t-1) else out(t)=out(t-1)

Basic building block

Won't work

A one-bit register

Interface

if load(t-1) then out(t)=in(t-1) else out(t)=out(t-1)

Implementation

Multi-bit register

if load(t-1) then out(t)=in(t-1) else out(t)=out(t-1)

1-bit register

if load(t-1) then out(t)=in(t-1) else out(t)=out(t-1)

w-bit register

RAM hierarchy

RAM 64

RAM 8

Register

RAM interface

Chip name: RAMn // n and k are listed below

Inputs: in[16], address[k], load

Outputs: out[16]

Function: out(t)=RAM[address(t)](t)

If load(t-1) then

RAM[address(t-1)](t)=in(t-1)

Comment: "=" is a 16-bit operation.

The specific RAM chips needed for the Hack platform are:

Chip name	n	K
RAM8	8	3
RAM64	64	6
RAM512	512	9
RAM4K	4096	12
RAM16K	16384	14

Program Counter


```
If reset(t-1) then out(t)=0
else if load(t-1) then out(t)=in(t-1)
    else if inc(t-1) then out(t)=out(t-1)+1
    else out(t)=out(t-1)
```

A storage device that can

- set its state to a base value (load)
- increment the state in every clock cycle
- maintain its state (stop incrementing) over clock cycles
- reset its state

Typical function: *program counter*

Implementation: register chip + combinational logic

For next class

- 1. Read
 - Chapter 3 on sequential logic
 - Appendix A, pages 289-296
- 2. Do project 2 from course web
 - In folders
 - projects/03/a and projects/03/b (large RAM)
 - Hints
 - Fan out, use "out=a, out=b, ..."
 - For PC, several control signals may be set at the same time
 - follow the if clauses in the definition of the chip
- 3. Hand in Project 3 by March 28 at 8.00