
Lab 6: Optimization

March 3, 2017

Introduction

In this lab you will implement Newton’s method for root-finding to solve the problem of
computing the square root. In the second problem you will implement a general solver for
a stationary non-linear partial differential equation. The last problem in this lab is a 2D
source identification problem. This type of problem is important for many applications
such as in cleaning groundwater pollution and in problems related to the electrical activity
of the brain.

1 Newton’s method to compute square root

We will use Newton’s method to compute square roots, x =
√
a for a > 0. This is

equivalent to solving x2 = a, or x2−a = 0. An interesting fact is that a method to compute
square roots that is essentially equivalent to Newton’s method was the Babylonian method
which dates back to the ancient Babylonians (more than 3000 years ago). A Babylonian
clay tablet from circa 1000 B.C. gives the results of the square root of 2 up to 6 decimal
figures!!
Recall that Newton’s method for solving f(x) = 0 is given by iterating,

xn+1 = xn −
f(xn)

f ′(xn)

until convergence. In our case f(x) = x2 − a.

Exercise: Verify that using Newton’s method on the square root problem results in
the sequence of iterates,

xn+1 =
1

2
(xn +

a

xn
)

We start with an initial guess of x = 0.5 and iterate. You will see that after only five
iterations, Newton’s method already has achieved 12 digits of precision.

import numpy as np

a = 2; x = 0.5; iters = 10;

for i in np.arange(iters):

x = 0.5*(x + a/x)

print x

1

Define the relative error e = |xn−
√
a|√

a
. Start with an initial guess of 30 and print the first

10 iterations of the relative error. The code for doing it is the following,

import numpy as np

a = 2; x = 30; iters = 10;

for i in np.arange(iters):

x = 0.5*(x + a/x)

relerr = np.abs(x-np.sqrt(a))/np.sqrt(a)

print relerr

Exercise: By looking at the relative errors, can you deduce the rate of convergence of
Newton’s method? (Note that the last two errors displayed are the same because we have
reached machine precision.)

2 Bratu Problem

In this section, you will implement a general solver for a stationary non-linear partial
differential equation. We will use the Bratu problem as our PDE. The Bratu problem
comes from a simplification of the solid fuel ignition model in combustion theory. It also
has an application in the theory of the expansion of the universe. It can be described as,

−∇2u = λ exp(u) + f(x) in Ω

u = 0 on ∂Ω

Consider the Bratu problem in 1D with homogeneous Dirichlet boundary conditions on
the interval [0, 1] and f(x) = π2 sin(πx) − λ exp(sin(πx)). This solution has an exact
solution,

uexact = sin(πx)

Exercise: Verify that this is an exact solution to Bratu’s problem.

Newton’s method for solving F (u) = 0, is analogously to the case described in problem 1,

F (un) +
∂F

∂u

∣∣∣
un

(un+1 − un) = 0

In our case, F (un) = −∇2u − λ exp(u) − f(x). Let w = (un+1 − un). Then, Let w =
(un+1 − un). Then, the equation can be written as,

F (un) +
∂F

∂u

∣∣∣
un

w = 0

After a few calculus operations regarding Gateaux derivatives, the linearized equation for
Newton becomes,

−∇2un − λ exp(un)−∇2w − λ exp(un)w − f(x) = 0 in Ω

w = −un on ∂Ω

Note that now the equation is a partial differential equation and the weak form would be
bilinear in terms of w and v since un is known already as the value of the previous step
(and is thus held constant). Once we have calculated w, we update un+1 = un + w as

2

usual, and iterate again.

If you are not familiar with Gateaux derivatives, it is not a problem. FEniCS has a
function “derivative” that is able to calculate the Gateaux derivatives for us. The syntax
for computing dwF (un) is very easy once F (un) is defined.

J = derivative(F,un,w)

We start with an initial guess of u0 = −5 everywhere, and λ = 2 on a mesh with N = 40.

from dolfin import*

import numpy as np

%matplotlib inline

lamda = 2.; N = 40

mesh = UnitIntervalMesh(N)

V = FunctionSpace(mesh, "CG", 1)

u0 = Constant(-5); un = project(u0,V)

v = TestFunction(V)

u = TrialFunction(V)

ut = TrialFunction(V)

uex = Expression("sin(pi*x[0])")

uex = interpolate(uex,V)

f = Expression(("pow(pi,2)*sin(pi*x[0]) - lamda*exp(sin(pi*x[0]))"), lamda =

lamda, degree = 1)

iters = 2

err = np.zeros((iters,1))

w = TrialFunction(V)

for i in np.arange(iters):

fm = (dot(grad(v), grad(un)) - lamda*exp(un)*v) * dx - f*v*dx

J = derivative(fm,un,w)

a = J

L = -fm

bc = DirichletBC(V, -un, lambda x, on_boundary: on_boundary)

A,b = assemble_system(a,L,bcs = bc)

A_mat = as_backend_type(A).mat();

from scipy.sparse import csr_matrix

As = csr_matrix(A_mat.getValuesCSR()[::-1], shape = A_mat.size)

x = np.linalg.solve(As.toarray(),b.array())

un.vector()[:] += x

import matplotlib.pyplot as plt

plt.plot(mesh.coordinates(),un.vector().array())

plt.plot(mesh.coordinates(),uex.vector().array())

plt.legend(["Numerical Solution", "Analytical Solution"])

plt.xlabel(’x’)

plt.ylabel(’u’)

3

plt.show()

Since this system is now linear, we can also use conjugate gradient to solve the linear
system.

Exercise: Change the number of iterations until you observe convergence (visual ex-
amination is okay).
Exercise: Use the code you had written for conjugate gradient in the first assignment
to solve this system, instead of the x = np.linalg.solve() command.

3 Optimization (Location of a source)

In this part of the lab, we will solve an optimization problem to locate a Gaussian source.
More specifically, the problem we are interested in is the 2D Poisson equation −∇2u = f
on [−1, 1], the same problem as in Lab1. Assume we have a Gaussian source, i.e.

f = 2 exp

(
−
(
x− s0

2σ

)2

−
(
y − s1

2σ

)2
)

Below are examples of three gaussians with different centers (x0, y0).

Figure 1: Example Gaussians with varying (s0, s1)

Suppose we do not know what s0 or s1 are and we are trying to estimate it using data
on the values of u and the positions along the grid where u is measured. We are given
a dataset “data mat.mat” with the locations and values of u at the locations shown in
Figure 2.
To load the data, we use the following:

import scipy.io as sio

A = sio.loadmat(’data_mat’)

uvalues = A[’values’]

pos = A[’posx’]

We first need to define the function that we are trying to optimize. In particular, we
want to minimize the error between our solution u at the locations of interest with the
predicted (x0, y0) and the u-data we are given, i.e. uvalues. In mathematical notation,
this is equivalent to,

minimize
x0,y0

‖u(pos)− uvalues‖2

The first step is to define our function,

f(s) = ‖u(pos)− uvalues‖2

4

Figure 2: Locations at which we are given the values of u.

def f(s, pos, uvalues,V):

u = TrialFunction(V)

v = TestFunction(V)

#Parameters

s0 = s[0]

s1 = s[1]

sigma = 0.1

f = Expression(’2.*exp(-0.5*(pow((x[0] - s0)/sigma, 2)) ’

’ - 0.5*(pow((x[1] - s1)/sigma, 2)))’,

sigma=sigma,s0 = s0, s1 = s1)

a = inner(grad(u), grad(v))*dx

fproj = interpolate(f,V)

L = f*v*dx

Assemble system

A,b = assemble_system(a,L,bcs)

A_mat = as_backend_type(A).mat();

from scipy.sparse import csr_matrix

As = csr_matrix(A_mat.getValuesCSR()[::-1], shape = A_mat.size)

u = np.linalg.solve(As.toarray(),b.array())

return np.linalg.norm(u[pos] - uvalues)

We first use a derivative free method, scipy has Nelder-Mead implemented, we start with
the initial guess of [0, 0].

import scipy.optimize as optimize

import scipy.io as sio

A = sio.loadmat(’data_mat’)

uvalues = A[’values’]

pos = A[’posx’]

N = 40

mesh = UnitSquareMesh(N, N)

5

mesh.coordinates()[:,0] = mesh.coordinates()[:,0]*2.0-1.0

mesh.coordinates()[:,1] = mesh.coordinates()[:,1]*2.0-1.0

def boundary(x):

return x[0] < -1 + DOLFIN_EPS or x[1]< -1 + DOLFIN_EPS or x[0]>1 -

DOLFIN_EPS or x[1]>1 - DOLFIN_EPS

V = FunctionSpace(mesh, "CG", 1)

bcs = [DirichletBC(V,Constant(0.0), boundary)]

Define variational problem

result = optimize.minimize(f, [0.,0.], args = (pos,uvalues,V),

method=’Nelder-Mead’, tol=1e-6)

Once the code has finished, just print result and you should get the values of the source
it has found. You should get something close to 0.5, 0.5, which is the correct value of the
Gaussian source.

6

