
Lab module 4: The Finite Element Method for Partial Differential
Equations - diffusive and convective models

Johan Jansson (jjan@kth.se)

February 28, 2017

0 Jupyter-FEniCS web PDE solver environment

The address of the web Jupyter-FEniCS cloud environment, described more in detail below, is provided
via email with the ip of the cloud virtual machine and Jupyter login. To run a program in Jupyter-
FEniCS, open the Python 2 notebook and select the Run command under the Cell menu.

You can find example Jupyter notebooks with implementations from the lab under the src directory
in the zip archive of the lab module, which you can upload in the Jupyter interface.

NB!: The files in the web environment are not stored on disk, which means they will disappear if
the system is rebooted. Do not forget to save your notebook regularly to your own computer, by using
Download as > IPython Notebook (.ipynb) under File in your notebook.

You can also set up the environment at your own computer by using the command:

sudo docker run -t -i -p 80:8000 jjan/fenics-mooc:test

and using the login name and passwords listed on the terminal window by accessing localhost from a
web browser.

1 Introduction

In this lab session you will use the FEniCS [2] framework for automated solution of partial differential
equations (PDE) to formulate finite element methods (FEM) that solve PDE and investigate some of
the concepts for ODE and PDE in the course.

Specifically you will investigate FEM for fluid flow modeled by the incompressible Navier-Stokes
equations [3, 4] and transport and chemical reactions modeled by convection-reaction equations.

The goal of this session is to:

1. Understand how to enforce Dirichlet and Neumann boundary conditions weakly using the Robin
formulation.

2. Become familiar and experiment with diffusion, convection and reaction models.

3. Become familiar and experiment with different time-stepping methods here applied to the in-
compressible Navier-Stokes equations.

In this session we will work with the Python interface to FEniCS. We will use FEniCS version 1.6
which is installed in the Jupyter notebook (http://jupyter.org) Python web environment provided
at the link at the top of the instructions. On the FEniCS home page [2] there is extensive documentation
of the interface at both overview and detail level.

For reference material, please see the lecture notes from the DD1354 Models and Simulation course
at KTH [?] and the book Computational Differential Equations [1].

1



2 Exercises

2.1 Convection and Diffusion

As a basic linear model problem we examine the stationary convection-diffusion equation:

R(u) = β · ∇u−∇ · (ε∇u) = 0

u = gD, x ∈ ΓD Dirichlet boundary condition
−(∇u · n = gN , x ∈ ΓN Neumann boundary condition (1)

where u = u(x), β · ∇u convects the quantity u by the divergence-free flow velocity β, and ∇ · (ε∇u)
diffuses the quantity with diffusion coefficient ε.

The weak form of (1) is given by:

r(u, v) = (β · ∇u, v) + (ε∇u,∇v)− ((∇u) · n, v)Γ = 0, ∀v ∈ V (2)

where we have integrated the diffusion term by parts to generate the boundary term denoted by Γ.
Before we can procced to derive the finite element method for the model, we need to consider how

to enfore the boundary conditions. We will learn about a general method for achieving this below.

2.1.1 General Robin boundary conditions

A unified formulation to be able to enforce both the Dirichlet and Neuman is the Robin condition:

−(∇u) · n = γ(u− gD) + gN , x ∈ Γ (3)

When γ = 0 we recover the Neumann condition, and when 1
γ = 0 we recover the Dirichlet condition.

The parameter γ can thus be seen as a penalty parameter.
The Robin condition can then be treated just as a Neumann condition, but with the advantage of

also being able to model Dirichlet boundary conditions.
To enfore the Robin condition in the weak form, we simply replace the normal derivative boundary

term in the weak form ((∇u) · n, v)Γ, by the data in the Robin condition γ(u− gD) + gN . This gives
the new weak form:

r(u, v) = (β · ∇u, v) + (ε∇u,∇v) + (γ(u− gD) + gN , v)Γ = 0, ∀v ∈ V (4)

now with enforced Robin boundary conditions.

2.1.2 Finite element method

The finite element method for the model is then simply plugging in a finite element solution U =∑N
i=0 ξiφi(x) instead of u, and requiring orthogonality against only the finite element basis functions:

r(U, v) = (β · ∇U, v) + (ε∇U,∇v) + (γ(U − gD) + gN , v)Γ = 0, U =
N∑
i=0

ξiφi(x), ∀v ∈ {φ0, ..., φN}

(5)

We cannot choose γ arbitrarily large as this will deteriorate the condition number of the matrix.
A balanced choice appears to be γ = 10

h with h the cell size.

2.1.3 FEniCS formulation

A FEniCS formulation of the finite element method for the convection-diffusion model is then simply
transcribing into ASCII notation:

r = (inner(beta, grad(u))*v + inner(epsilon*grad(u), grad(v)))*dx + inner(gamma*(u - g_D) + g_N, v)*ds

To mark different boundary conditions on different parts of the boundary, we may multiply the
boundary terms with boundary markers, which are 1 or 0, depending on which part of the subdomain
is marked.

2



2.1.4 Questions

1. You are given a complete FEniCS implementation in src/Convection-Diffusion.ipynb. The
“Dm1” marker marks the circle boundary inside the box, and the “Dm2” marker marks the
left boundary. Enforce a Dirichlet condition on the left boundary with gD = 1, and Dirichlet
condition on the circle boundary with gD = 0.

2. Modify the diffusion coefficient, try the values: 1e− 2, 1e− 3 and 1e− 4. What do you observe?
We will introduce a method to handle this deficiency of the method in the next section below.

2.2 Timestepping the incompressible Navier-Stokes equations

Now we will study two different timestepping methods: implicit Euler (first order accurate) and the
Midpoint method (second-order accurate and energy-conserving, in principle the same method as the
Trapezoid method). We will do this for fluid flow, the incompressible Navier-Stokes equations to
investigate a realistic case. The timestepping is separated from the spatial discretization, which is
more complex and does not have to be fully understood in this lab, but is here fully described to see
the generality of the methodology and interface.

We would like to solve the system of incompressible Navier-Stokes equations, which in weak form,
with weak residual r can be stated as:

r(û, v̂) = (u̇+ (u · ∇)u+∇p, v) + (ν∇u,∇v) + (∇ · u, q) = 0, (6)

û ∈ [Vh]2 ×Qh, ∀v̂ ∈ [Vh]2 ×Qh
û = (u, p) (Solution: velocity and pressure)
v̂ = (v, q) (Test function)

with ν a diffusion parameter.
In FEniCS notation this can be written:

r = (inner((u - u0)/k + grad(p) + grad(um)*um, v) + nu*inner(grad(um), grad(v)) + div(um)*q)*dx

with k the time step, u0 the velocity from the previous time step, and um = u+u0
2 . Here we have

applied the Midpoint timestepping method, which is why we evaluate the solution at the mean value
in the timestep u+u0

2 .
To fully specify the solution, we need to add known data on the boundary ∂Ω of the domain Ω,

in the form of boundary conditions. We want to specify a known inflow velocity uin profile at the left
edge of the domain (the inlet), zero pressure at the right edge (the outlet), and zero velocity on the
rest of the boundary (a “no-slip” condition).

We will apply these boundary conditions weakly which means that we will add penalty terms to
the weak residual, active only on the boundary, which will force the solution to the desired values
if a penatly parameter is chosen large enough. We choose the penalty parameter γ = 104. For the
inflow velocity for example, we add the term γ(u − uin, v). If γ goes to infinity, solving the equation
r(û, v̂) = 0, ∀v ∈ Vh means that u = uin.

We define boundary markers which are 1 on the part of the boundary we are interested in, and zero
elsewhere, here im is the inlet marker, om is the outlet marker and nm is the no-slip marker:

r = (inner((u - u0)/k + grad(p) + grad(um)*um, v) + nu*inner(grad(um), grad(v)) + div(um)*q)*dx + \
gamma*(om*p*q + im*inner(u - uin, v) + nm*inner(u, v))*ds

To be able to guarantee stability of the solution, i.e. that the solution and its derivatives are bounded
by the given data, we use a stabilized method, which adds stabilization terms with a stabilization
parameter d:

r = (inner((u - u0)/k + grad(p) + grad(um)*um, v) + nu*inner(grad(um), grad(v)) + div(um)*q)*dx + \
gamma*(om*p*q + im*inner(u - uin, v) + nm*inner(u, v))*ds + \
d*(inner(grad(p) + grad(um)*um, grad(q) + grad(um)*v) + inner(div(um), div(v)))*dx # Stabilization

3



again in FEniCS we can solve the equation for one timestep simply by:

solve(r_C==0, c)

Finally we carry out all the timesteps in the time interval I = [0, T ] with a timestepping loop:

t, T = 0., 10. # Time interval
while t < T: # Time-stepping loop

... # Solve the Navier-Stokes PDE (one timestep)

t += k; u0 = project(u, V); # Shift to next timestep

Plotting is implemented in the plot() utility function, using the Matplotlib interface.
The geometry and domain is constructed using the generate_mesh() function, via the Mshr

interface. It provides a Constructive Solid Geometry interface for geometry, which we hope is fairly
self-explanatory from the template, and a mesh resolution parameter as the last argument. The mesh
is then locally refined using the mesh refinement interface in FEniCS.

2.2.1 Screenshot

The template program (here in compact format) and the expected output when running it should look
like this:

4



2.2.2 Questions

a) Implement the Backward Euler timestepping method, and compare the Midpoint and Backward
Euler methods for Navier-Stokes (the PDE defined by the weak residual "r") with the parameters
given in the template program, what do you see? How is it related to the analytical properties
of the methods?

2.3 Convection-reaction equations

We will now use the velocity field computed from solving the fluid model to transport a quantity, here
the concentration c of a chemical.

We would now like to solve a system of convection-reaction equations with Nc components (species)
where Zh = [Vh]Nc :

rC(c, z) = (ċ+ (u · ∇)c, z) + γ((c0c1, z0) + (c0c1, z1)) = 0, ∀z ∈ Zh (7)
c (Solution: concentration (vector-valued with Nc components)
z (Test function (vector valued with Nc components))

This system models the convection (or transport) of c with the convective time derivative: ċ+(u·∇)c
which arises from an Eulerian choice of coordinates (fixed in space, observing the quantity flowing past

5



with velocity u). The chemical reaction c0 + c1 → c2, meaning that c0 reacts with c1 to form c2, is
modeled by the terms γ((c0c1, z0) + (c0c1, z1)) with the reaction constant γ determining the reaction
rate. We do not represent c2 in the template model that you are given, so here c0 and c1 are simply
removed from the system when they react.

In FEniCS notation the model can be written:

r_C = (inner(c - c0, z)/k + inner(dot(grad(c), u), z))*dx + gamma*(c[0]*c[1]*z[0] + c[0]*c[1]*z[1])*dx

again we add boundary conditions and stabilization:

r_C = ((inner(c - c0, z)/k + inner(dot(grad(c), u), z))*dx + gamma*(c[0]*c[1]*z[0] + c[0]*c[1]*z[1])*dx +
gamma*(im*cm*inner(c[0] - 1., z[0]) + im*(1. - cm)*inner(c[1] - 1., z[1]))*ds + # Weak boundary cond.
delta*inner(grad(c)*u, grad(z)*u)*dx + delta*inner(grad(c), grad(z))*dx) # Stabilization

again in FEniCS we can solve the equation for one timestep simply by:

solve(r==0, w)

and again we have a very similar timestepping loop:

t, T = 0., 10. # Time interval
while t < T: # Time-stepping loop

... # Solve the Navier-Stokes and convection-reaction PDEs (one timestep)

t += k; # Shift to next timestep
u0 = project(u, V);
c0 = project(c, Z)

By studying the plots we can get an approximate overview of the reaction process. However, to get
a quantitative measure of the reaction, we compute a scalar functional of the solution (an integrated
quantity). In this case we integrate the sum of the concentrations Mc =

∫ T
0

∫
∂Ωo

∑Nc
0 cidsdt over the

outlet boundary, with the FEniCS notation:

Mc = k*om*(c[0] + c[1])*ds; ctot += assemble(Mc) # Compute total concentration flowing out

which is inside the timestepping loop, resulting in an integral over the time interval.

2.3.1 Screenshot

The template program and the expected output when running it should look like this:

6



2.3.2 Questions

a) Study how much and how little you can make the chemicals react by modifying the mixing of
the fluid. For example, how does the viscosity ν in the fluid model influence the mixing? Can
you modify the geometry or other model parameters so that the species fully react (one of them
is completely consumed before reaching the outlet)?

b) Add the third species c2 to the model, by adding reaction terms, and to the plotting, by adding
plotting commands to the plot() function. The NC variable specifies the size of the convection-
reaction system (how many species and how many equations that are allocated).

c) Try to invent your own chemical reactions and implement them in the model.

References

[1] Kenneth Eriksson, Don Estep, Peter Hansbo, and Claes Johnson. Computational Differential
Equations. Cambridge University Press New York, 1996.

[2] FEniCS. Fenics project. http://www.fenicsproject.org, 2003.

7



[3] Johan Hoffman, Johan Jansson, Rodrigo Vilela de Abreu, Niyazi Cem Degirmenci, Niclas Jansson,
Kaspar Müller, Murtazo Nazarov, and Jeannette Hiromi Spühler. Unicorn: Parallel adaptive finite
element simulation of turbulent flow and fluid-structure interaction for deforming domains and
complex geometry. Computers and Fluids, 2012.

[4] Johan Hoffman and Claes Johnson. Computational Turbulent Incompressible Flow: Applied Math-
ematics Body and Soul Vol 4. Springer-Verlag Publishing, 2006.

8


