Lab module 3: The Finite Element Method for Partial Differential
Equations - assembling linear systems

Johan Jansson (jjan@kth.se), Tania Bakhos, Massimiliano Leoni

February 27, 2017

0 Jupyter-FEniCS web PDE solver environment

The address of the web Jupyter-FEniCS cloud environment, described more in detail below, is provided
via email with the ip of the cloud virtual machine and Jupyter login. To run a program in Jupyter-
FEniCS, open the Python 2 notebook and select the Run command under the Cell menu.

You can find example Jupyter notebooks with implementations from the lab under the src directory
in the zip archive of the lab module, which you can upload in the Jupyter interface.

NB!: The files in the web environment are not stored on disk, which means they will disappear if
the system is rebooted. Do not forget to save your notebook regularly to your own computer, by using
Download as > IPython Notebook (.ipynb) under File in your notebook.

You can also set up the environment at your own computer by using the command:

sudo docker run -t -i -p 80:8000 jjan/fenics-mooc:test

and using the login name and passwords listed on the terminal window by accessing localhost from a
web browser.

1 Introduction

In this lab session you will learn about the underlying concepts of the FEniCS [2] framework for
automated solution of partial differential equations (PDE), and learn how to implement parts of the
algorithms yourself.

Specifically you will investigate general assembly of linear systems, a key algorithm in FEM, and
the basis for the FEniCS framework.

The goal of this session is to:

1. Learn the basic components of FEM: piecewise linear approximation and weak form of PDE.
2. Learn the basic interface of FEniCS: form language and function, mesh and solve interfaces.

3. Become familier with the Jupyter web Python notebook interface, through which FEniCS will
be run in this course.

4. Understand the general algorithm and implementation for finite element assembly of linear sys-
tems

In this session we will work with the Python interface to FEniCS. We will use FEniCS version 1.6
which is installed in the Jupyter notebook (http://jupyter.org) Python web environment provided
at the link at the top of the instructions. On the FEniCS home page [2] there is extensive documentation
of the interface at both overview and detail level.

For reference material, please see the lecture notes from the DD2263 Methods in Scientific Com-
puting course at KTH [3] and the book Computational Differential Equations [1].

2 Exercises

2.1 FEM for PDE

We start with the simplest equation: the Ls-projection, which computes the optimal projection of a
function f into a finite element space V3. To compute the Lo-projection we want to solve the equation,
or “weak form”:

r(u,v) = (u,v) = (f,v) =0 (1)

where v is the unknown solution function and f is a known function. v is a “test function”, we will specify
it below, and with the standard notation for the Ly inner product of functions: (v,w) = [, vwdz.

The finite element method (FEM) means that we require the weak form to be true for all basis
functions ¢;(z) of a finite element vector space V3, and also requiring the unkown function U(x) to be
a linear combination of the basis vectors of ¢;(z):

N
rU0) = (U,v) = (f,0) =0, U)=> &dij(z), Yve{do,....on} (2)
=0

where &; are the coefficients determining the function.
Writing the equation like this and plugging in the definitions of U and v we get:

N
(Uv) = (fv), Ul) =Y &bi(x), Yve{poon}=> (3)
=0

N
> [si@aade &= [foarde. j=0...N (1)
=0

Which is an N x N linear system of the form A¢ = b, i.e. we have N unkown coefficients for U(z)
representing a row and we have N rows for the N test functions.

The standard choice of basis functions is the continous piecewise linear nodal basis, which thus
means that U(z) is a piecewise linear function. The basis functions are constructued on a mesh 7
(triangulation in 2D) with cells K (triangles in 2D), cell diameter h and nodes x; where the coefficients
& are defined. The basis functions are defined by:

1, z=uxz;
¢j($):{07 v 47, (5)

We then also have that U(x;) = &;, i.e. that the value of the function U(x) is the same as the value
of coefficient in the node z;.

Some examples of piecewise linear functions in the function space V;, are shown below.

Here a 1D mesh of the interval [0, 1] is chosen with A = 0.1, and a piecewise linear function
approximating 1 + sin(10z) * cos(7y) is plotted:

210 =

ulx) 105 o

0.525 7

Um T L] T T 1
0.00 0.200 0.400 0.600 0.800 1.00

We now plot a 2D version of the above, now on the domain [0,1] x [0,1] with A = 0.1, and the
same piecewise linear function approximating 1 4 sin(10z), we also plot the mesh:

2.20 g

1.65

1.10

0.550

0.00

A basis function in 1D looks as follows:

100 7
0,750
ux) 0500 1
0,250

0,00 ? ¢ % ? 7

0.00 0,300 0.400 0,600 0,800 1.00

And a basis function in 2D

1.00

0.750

0.500

0.250

0.00

If we replace the finite dimensional space Vj, with the space V of all integrable functions (with
bounded integral), the “strong” equation below is equivalent:

Ru)=u—f=0 (6)

which has the trivial solution u = f. In all the exercises in the lab we will use the weak form of the
presented equations. The strong form can be derived as above if desired.

2.2 FEniCS interface

We first include the plotting interface for Jupyter:

smatplotlib inline
%srun /home/fenics/fenics-matplotlib.py

We can then define the representation of the equation in FEniCS as:

from dolfin import =

mesh = UnitSquareMesh(10, 10)

V = FunctionSpace(mesh, "CG", 1)
f = Expression("1l. + sin(10*x[0])*cos(7+x[1])", degree=3)
v = TestFunction(V)
u = Function(V) # FEM solution
r = (u - f)xvkxdx
To solve the equation we use the compact solve() notation:
solve(r == 0, u)

and we can plot in the Jupyter environment with the provided mplot_function() function:

mplot_function(u)

2.2.1 Screenshot

The template program (here in compact format) and the expected output when running it should look
like this:

o Jupyter jupter-fenics-projection01 Last Checkpoint: 4 minutes ago (autosaved) Control Panel | Logout
File Edit View Insert Cell Kernel Help Python2 O
+ x @ B 4+ ¥ M B C coe 4 el Toolbar: wone |

In [6]: =matplotlib inline
%run /home/fenics/fenics-matplotlib. py
from dolfin import *
import logging; logging.getlLogger('FFC').setlLevel(logging.WARNING)
esh = UnitSquareMesh(16, 18)
= FunctionSpace(mesh, "CG", 1)
= Expression("1l. + sin(10*x[0])*cos(7*x[1])", degree=3)
= TestFunction(V)
= Function(V) # FEM solution

m
\'
f
v
u
r= (u - f)*v¥dx
solve(r == 0, u)

mplot_function(u)
plt.coloerbar()

Out[6]: <matplotlib.colorbar.Colorbar instance at 0x7ff421019be0>

10

200
os b 175

150
06 125

100
04 075

050
02

025
00 0.00

0o 02 04 06 08 10

FEniCS can also output solution functions in the VTK format, that for example ParaView can

then visualize:

file = File("solution.pvd")
file << u

2.2.2 Questions

First try running the above given program, then try different things, for example:

a) Add a diffusion term: v(Vu, Vo), written as nu * inner(grad(u), grad(v))xdx in FEniCS,
to the weak form. What happens when you vary nu?

b) The coefficient vector £ can be accessed by u.vector(). Compute the max-norm of the solution,
this can be done by: u.vector().norm(’linf").

c) Try plotting a basis function yourself. Set the coefficient vector to 0 by: u.vector()[:] =
0.0, where : means all indices. Then choose a specific index and set its value to one, and plot
the corresponding basis function of the index.

2.3 General algorithm for finite element assembly of linear systems

We saw in the introduction that applying FEM to a linear PDE generates a linear system for the
unkown coefficients £ describing the finite element solution function U(z) = Zf\io &i¢j(x), where we
recall that ¢(z) are the basis functions.

Standard notation is to decompose the weak residual r(u,v) into a bilinear part a(u,v) which
includes all the terms with the unknown u, and a linear term L(v), with all the known source terms.
We then have r(u,v) = a(u,v) — L(v).

Using this notation, we can now write out the general relations underlying the general algorithm
for finite element assembly of linear systems:
In general, the matrix Ay, representing a bilinear form a(u,v) is given by:

(An)ij = ale;j, $i)-
and the vector by, representing a linear form L(v) is given by:
(bn)i = L(¢3).

In other words, by plugging in the basis functions with index i and j into the bilinear form a(u, v),
we can compute matrix element (Ap);;. As an example, in the L2-projection above the bilinear
form is a(u,v) = (u,v) = [, uvdz. Matrix element (Ap);; is then simply computed by the integral:

(An)ij = (05, ¢i) = [djdida .
We are now ready to formulate the algorithms for assembling a matrix and vector given a weak
form.

2.3.1 DMatrix assembly algorithm
for all cells K € T
for all test functions ¢; on K
for all trial functions ¢; on K
1. Compute I = a(¢;, ¢i)x
2. Add I to (Ap)ij
end
end

end

2.3.2 Vector assembly algorithm
for all cells K € T
for all test functions ¢; on K
1. Compute I = L(¢;) i
2. Add I to (Ap)ij
end

end

2.3.3 Python implementation of the general assembly algorithm

In FEniCS this algorithm is available as the assemble() function, where a typical use can be: A =
assemble(a) with A a FEniCS matrix and a a bilinear form.

In this module we will look at a minimal, simple implementation of the assemble() function in
2D, we call our implementation myassemble(). It is available under src/myassemble_numpy.ipynb
and can be uploaded and run in the Jupyter environment.

The implementation is based on computing the integrals on a reference cell, here the triangle
with vertices {(0,0), (1,0),(0,1)}, where the basis functions are easily defined. The integrals are then
transformed through a coordinate map to the physical cell in the triangulation.

The myassemble() implementation is available in the file src/myassemble_numpy, and a verifi-
cation test, comparing the assembled matrix to the one assembled by FEniCS, is available in the file
src/myassemble_numpy_test.py.

2.3.4 Questions

Upload the given Python files to the Jupyter system to carry out the programming questions below.
a) With pen and paper, compute the integral (V¢g, V) on the reference cell defined above.
b) Why is it enough to only test against the functions ¢; € V}, and not against all functions v € V,7

¢) In myassemble(), the weak form a(u,v) = (Vu, Vo) is assembled. Modify the implementation
to instead assemble a(u,v) = (Vu, Vv) + (u,v). Verify the assembled matrix against the FEniCS
assemble() function using src/myassemble_numpy_test.py . Compute the max norm of the
difference of the matrices.

d) Write out the quadrature rule (numerical integration method) used in myassemble() in mathe-
matical notation.

References

[1] Kenneth Eriksson, Don Estep, Peter Hansbo, and Claes Johnson. Computational Differential
Equations. Cambridge University Press New York, 1996.

[2] FEniCS. Fenics project. http://www. fenicsproject.org, 2003.

[3] Johan Hoffman. Lecture notes for dd2263 methods in scientific computing, 2017.

