
Chapter 9

Initial value problems

Di↵erential equations are fundamental to model the laws of Nature, such as
Newton’s laws of motion, Einstein’s general relativity, Schrödinger’s equa-
tion of quantuum mechanics, and Maxwell’s equations of electromagnetics.

The case of one single independent variable, we refer to as ordinary
di↵erential equations, whereas partial di↵erential equations involve several
independent variables. We first consider the initial value problem, an ordi-
nary di↵erential equation where the independent variable naturally repre-
sents time, for which we develop solution methods based on time-stepping
algorithms.

9.1 The scalar initial value problem

We consider the following ordinary di↵erential equation (ODE) for a scalar
function u : R+ ! R, with derivative u̇ = du/dt,

u̇(t) = f(u(t), t), 0 < t T, (9.1)

u(0) = u0,

which we refer to as a scalar initial value problem, defined on the interval
I = [0, T] by the function f : R ⇥ R+ ! R, and the initial condition
u(0) = u0.

Only in simple special cases can analytical solutions be found. Instead,
in the general case, numerical methods must be used to compute approxi-
mate solutions to (9.1).

85

86 CHAPTER 9. INITIAL VALUE PROBLEMS

9.2 Time stepping methods

The variable t 2 [0, T] is often interpreted as time, and numerical methods
to solve (9.1) can be based on the idea of time-stepping, where successive
approximations U(t

n

) are computed on a partition 0 = t0 < t1 < ... < t
N

=
T , starting from U(t0) = u0, with a suitable interpolation of U(t) on each
subinterval I

n

= (t
n�1, tn) of length k

n

= t
n

� t
n�1.

t1	 t2	 t3	 tN-1	t0=0	
t	

tN=T	

In	=	(tn-1,tn)	

kn	=	tn	-	tn-1	

tn-1	 tn	

Figure 9.1: Partition of the interval I = [0, T], 0 = t0 < ... < t
N

= T .

Forward Euler method

For node t
n

, we may approximate the derivative u̇(t
n

) by

u̇(t
n�1) ⇡ u(t

n

)� u(t
n�1)

k
n

, (9.2)

so that

u(t
n

) ⇡ u(t
n�1) + k

n

u̇(t
n�1) = u(t

n�1) + k
n

f(u(t
n�1), tn�1), (9.3)

9.2. TIME STEPPING METHODS 87

which motivates the forward Euler method for successive computational
approximation of U

n

= U(t
n

).

Algorithm 14: Forward Euler method

U0 = u0 . initial approximation

for n = 1, 2, ..., N do
U
n

= U
n�1 + k

n

f(U
n�1, tn�1) . explicit update

end

We note that the forward Euler method is explicit, meaning that U
n+1

is directly computable from the previous solution U
n

in the time-stepping
algorithm. The method is thus also referred to as the explicit Euler method.

Backward Euler method

Alternatively, we may approximate the derivative u̇(t
n+1) by

u̇(t
n

) ⇡ u(t
n

)� u(t
n�1)

k
n

, (9.4)

so that

u(t
n

) ⇡ u(t
n�1) + k

n

u̇(t
n

) = u(t
n�1) + k

n

f(u(t
n

), t
n

), (9.5)

which motivates the backward Euler method for successive computational
approximation of U

n

= U(t
n

).

Algorithm 15: Backward Euler method

U0 = u0 . initial approximation

for n = 1, 2, ..., N do
U
n

= U
n�1 + k

n

f(U
n

, t
n

) . solve algebraic equation

end

Contrary to the forward Euler method, the backward Euler method is
implicit, thus also referred to as the implicit Euler method, meaning that
U
n+1 is not directly computable from U

n

, but is obtained from the solution
of an algebraic (possibly nonlinear) equation,

x = U
n�1 + k

n

f(x, t
n

), (9.6)

for example, by the fixed point iteration,

x(k+1) = U
n�1 + k

n

f(x(k), t
n

). (9.7)

88 CHAPTER 9. INITIAL VALUE PROBLEMS

We note that the fixed point iteration (9.7) converges if k
n

L
f

< 1, with
L
f

the Lipschitz constant of the function f(·, t
n

), thus if the time step k
n

is small enough.

Time stepping as quadrature

There is a strong connection between time-stepping methods and numerical
approximation of integrals, referred to as quadrature. For example, assume
that the initial condition is zero and that the function f in (9.1) does not
depend on the solution u, but the time t only, that is f = f(t). The
solution u(t) is then the primitive function of f(t) that satisfies u(0) = 0,
corresponding to the area under the graph of the function f(t) over the
interval [0, t].

We can approximate this primitive function by left and right rectangular
rule quadrature, or Riemann sums, which we illustrate in Figure 9.2. The
two approximations of the area under the graph then corresponds to the
forward and backward Euler approximations to the initial value problem
(9.1) with u0 = 0 and f = f(t).

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

Figure 9.2: Left (left) and right (right) rectangular rule quadrature, or
Riemann sums, approximating the primitive function of f(t), corresponding
to the area under the graph.

More generally, by the Fundamental Theorem of Calculus we have, for
each subinterval I

n

= (t
n�1, tn), that

u(t
n

) = u(t
n�1) +

Z
tn

tn�1

f(u(t), t) dt, (9.8)

from which we can derive suitable time stepping methods corresponding to
di↵erent quadrature rules used to evaluate the integral in (9.8).

9.2. TIME STEPPING METHODS 89

Quadrature as interpolation

Quadrature as an approximate integral of an exact function, can alterna-
tively be expressed as exact integration of an approximate function. For
example, the rectangular quadrature rules in Figure 9.2, corresponds to
exact integration of a piecewise constant (over each subinterval I

n

) approx-
imation of the function f(t), with its value determined by the function value
at the left or right endpoint of the interval, f(t

n�1) or f(tn).
From this perspective, one may ask if such a piecewise constant ap-

proximation can be chosen in a more clever way to reduce the error in the
approximation of the integral, which naturally leads to the midpoint rule
where the piecewise constant function is chosen based on the function value
at the midpoint of the subinterval, that is (f(t

n�1) + f
n

)/2.
Further, we may seek to approximate the function by a higher order

polynomial. By linear interpolation over the partition T
k

, corresponding
approximation of the function by a continuous piecewise linear polynomial
which is exact at each node t

n

, exact integration corresponds to the trape-
zoidal rule.

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

f(t)	

t1	 t2	 t3	 t4	t0=0	 tN=T	 t	

Figure 9.3: Midpoint (left) and trapezoidal (right) quadrature rules, cor-
responding to interpolation by a piecewise constant and piecewise linear
function respectively.

Interpolation as time stepping

By (9.8), the midpoint and trapezoidal rules can also be formulated as
time stepping methods. Although, in the case of a time stepping method,
interpolation cannot be directly based on the function f(u(t), t) since u(t) is
unknown. Instead we seek an approximate solution U(t) to the initial value

90 CHAPTER 9. INITIAL VALUE PROBLEMS

problem (9.1) as a piecewise polynomial of a certain order, determined by
f(U

n

, t
n

) through the successive approximations U
n

.

Algorithm 16: Trapezoidal time stepping method

U0 = u0 . initial approximation

for n = 1, 2, ..., N do

U
n

= U
n�1 +

k
n

2
(f(U

n

, t
n

) + f(U
n�1, tn�1)) . solve equation

end

Both the midpoint method and the trapezoidal method are implicit,
and thus require the solution of an algebraic equation, possibly nonlinear,
at each time step.

To seek approximate solutions to di↵erential equations as piecewise poly-
nomials is a powerful idea that we will meet many times. Any piecewise
polynomial function can be expressed as a linear combination of basis func-
tions, for which the coordinates are to be determined, for example, based on
minimization or orthogonality conditions on the residual of the di↵erential
equation.

U1	

t1	 t2	 t3	 t4	t0=0	
t	t5	

U2	

U3	
U4	

U5	 U0	

t1	 t2	 t3	 t4	t0=0	
t	t5	

U2	

U3	
U4	

U5	

U1	

Figure 9.4: Examples of a discontinuous piecewise constant polynomial
determined by its value at the right endpoint of the subinterval (left), and
a continuous piecewise linear polynomial determined by its value in the
nodes of the partition (right).

The residual of (9.1) is given by

R(U(t)) = f(U(t), t)� U̇(t), (9.9)

and in the case of a continuous piecewise linear approximation U(t), an
orthogonality condition enforces the integral of the residual to be zero over

9.2. TIME STEPPING METHODS 91

each time interval I
n

, that is

Z
tn

tn�1

R(U(t)) dt = 0, (9.10)

or equivalently,

U
n

= U
n�1 +

Z
tn

tn�1

f(U(t), t) dt,

which corresponds to (9.8). If f(·, ·) is a linear function, it follows that

U
n

= U
n�1 +

k
n

2
(f(U

n

, t
n

) + f(U
n�1, tn�1)), (9.11)

else we have to choose a quadrature rule to approximate the integral, with
(9.11) corresponding to a trapezoidal rule for a nonlinear function f(·, ·).

The ✓-method

We can formulate the forward and backward Euler methods, and the trape-
zoidal method, as one single method with a parameter ✓, the ✓-method.
For ✓ = 1, we get the explicit Euler method, for ✓ = 0 the implicit Euler
method, and ✓ = 0.5 corresponds to the trapezoidal rule.

Algorithm 17: The ✓-method for initial value problems

U0 = u0 . initial approximation

for n = 1, 2, ..., N � 1 do
U
n

= U
n�1 + k

n

((1� ✓)f(U
n

, t
n

) + ✓f(U
n�1, tn�1)) . update

end

Theorem 16 (Local error estimate for the ✓-method). For the ✓-method
over one subinterval I

n

= (t
n�1, tn) of length k

n

= t
n

� t
n�1, with U

n�1 =
u(t

n�1), we have the following local error estimate,

|u(t
n

)� U
n

| = O(k3
n

), (9.12)

for ✓ = 1/2, and if ✓ 6= 1/2,

|u(t
n

)� U
n

| = O(k2
n

). (9.13)

92 CHAPTER 9. INITIAL VALUE PROBLEMS

Proof. With the notation f
n

= f(U
n

, t
n

), so that f
n�1 = u̇(t

n�1) and f
n

=
u̇(t

n

), and observing that U
n�1 = u(t

n�1), we have by Taylor’s formula that

|u(t
n

)� U
n

| = |u(t
n

)� (U
n�1 + k

n

((1� ✓)f
n

+ ✓f
n�1))|

= |u(t
n�1) + k

n

u̇(t
n�1) +

1

2
k2
n

ü(t
n�1) +O(k3

n

)

�(u(t
n�1) + k

n

((1� ✓)u̇(t
n

) + ✓u̇(t
n�1))|

= |k
n

u̇(t
n�1) +

1

2
k2
n

ü(t
n�1) +O(k3

n

)

�(k
n

((1� ✓)(u̇(t
n�1) + k

n

ü(t
n�1) +O(k2

n

)) + ✓u̇(t
n�1))|

= |✓ � 1

2
||ü(t

n�1)|k2
n

+O(k3
n

).

9.3 System of initial value problems

We now consider systems of initial value problems for a vector valued func-
tion u : R+ ! Rn defined on the interval I = [0, T], with derivative u̇ =
du/dt = (du1/dt, ..., dun

/dt)T defined by the function f : Rn ⇥ R+ ! Rn,
such that

u̇(t) = f(u(t), t), 0 < t T, (9.14)

u(0) = u0.

Time stepping methods for (9.14) are analogous to the scalar case (9.1),
including the ✓-method of Algorithm 17, with the di↵erence that for implicit
methods a system of (possibly nonlinear) equations needs to be solved.

Newton’s laws of motion

Newton’s laws of motion for a particle can be formulated as an initial value
problem (9.14), with Newton’s 2nd law expressing that force equals mass
times acceleration,

mẍ(t) = F (t), (9.15)

given by

u =

v
x

�
, f =

F/m
v

�
, (9.16)

for x = x(t) the particle position, v = v(t) = ẋ(t) the velocity, m the mass
of the particle, and F = F (t) the force applied.

9.3. SYSTEM OF INITIAL VALUE PROBLEMS 93

For example, the force F = mg models gravitation, with g the gravi-
tation constant, and the force F = �kx models an elastic spring (Hooke’s
law) with spring constant k. Newton’s first law that expresses that a parti-
cle remains in its state in the absence of a force, follows from (9.15) in the
case F = 0.

The N-body problem

Newton’s third law states that if one particle p
i

exerts a force F
ji

on another
particle p

j

, then p
j

exerts a force F
ij

= �F
ji

on p
i

, of the same magnitude
but in the opposite direction.

The N-body problem refers to the initial value problem (9.14) describing
Newton’s laws of motion for a system of N particles {p

i

}N
i=1, with the pair-

wise force interactions F
ij

given by the system under study, for example
gravitation in celestial mechanics, Coulomb interactions in electrostatics,
Hookean springs in elasticity theory, or interatomic potentials in molecular
dynamics simulations.

The N -body problem takes the form (9.14) in R2N ,

u =

2

66666664

v1
...
v
N

x1
...
x
N

3

77777775

, f =

2

66666664

F1/m1
...

F
N

/m
N

v1
...
v
N

3

77777775

(9.17)

with the resulting force on particle p
i

given by the sum of all pairwise
interactions,

F
i

=
NX

j 6=i

F
ij

. (9.18)

To solve (9.17) using a time-stepping is an O(N2) algorithm, which is
very expensive for N large. Optimized algorithms of order O(N) can be
developed based on the idea of clustering the force from multiple particles
at a distance.

Celestial mechanics

Newton’s gravitational law models pairwise gravitational force interactions,
which can be used to model the solar system for example. Every particle

94 CHAPTER 9. INITIAL VALUE PROBLEMS

p
i

is e↵ected by the sum of all other particles, and the force F
ij

acting on
particle p

i

by p
j

, is given by,

F
ij

= G
m

i

m
j

kx
i

� x
j

k2 , (9.19)

where m
i

2 R and x
i

2 Rn denotes the mass and position of particle p
i

.

Mass-spring model

The forces in a mass-spring model represent pairwise force interactions be-
tween adjacent particles in a lattice, connected via springs, such that the
force F

ij

acting on particle p
i

by p
j

is given by,

F
ij

= �k
ij

(x
i

� x
j

), (9.20)

with k
ij

= k
ji

the relevant spring constant.

