Chapter 19

Minimization problems

19.1 Unconstrained minimization

The minimization problem

Find $\bar{x} \in D \subset \mathbb{R}^{n}$, such that

$$
\begin{equation*}
f(\bar{x}) \leq f(x), \quad \forall x \in D, \tag{19.1}
\end{equation*}
$$

with $D \subset \mathbb{R}^{n}$ the search space, $\bar{x} \in D$ the optimal solution, and $f: D \rightarrow \mathbb{R}$ the objective function (or cost function).

A stationary point, or critical point, $\hat{x} \in D$ is a point for which the gradient of the objective function is zero, that is,

$$
\begin{equation*}
\nabla f(\hat{x})=0, \tag{19.2}
\end{equation*}
$$

and we refer to $x^{*} \in D$ as a local minimum if there exists $\delta>0$, such that,

$$
\begin{equation*}
f\left(x^{*}\right) \leq f(x), \quad \forall x:\left\|x-x^{*}\right\| \leq \delta . \tag{19.3}
\end{equation*}
$$

If the minimization problem is convex, an interior local minimum is a global minimum, where in a convex minimization problem the search space is convex, i.e.

$$
\begin{equation*}
(1-t) x+t y \in D, \tag{19.4}
\end{equation*}
$$

and the objective function is convex, i.e.

$$
\begin{equation*}
(1-t) f(x)+t f(y) \leq f((1-t) x+t y), \tag{19.5}
\end{equation*}
$$

for all $x, y \in D$ and $t \in[0,1]$.

Gradient descent method

The level set of the function $f: D \rightarrow \mathbb{R}^{n}$ is defined as

$$
\begin{equation*}
L_{c}(f)=\{x \in D: f(x)=c\} \tag{19.6}
\end{equation*}
$$

where we note that $L_{c}(f)$ represents a level curve in \mathbb{R}^{2}, a level surface in \mathbb{R}^{3}, and more generally a hypersurface of dimension $n-1$ in \mathbb{R}^{n}.

Theorem 18. If $f \in \mathcal{C}^{1}(D)$, then the gradient $\nabla f(x)$ is orthogonal to the level set $L_{c}(f)$ at $x \in D$.

The gradient descent method is an iterative method that compute approximations to a local minimum of (19.1), by searching for the next iterate in a direction orthogonal to the level set $L_{c}(f)$ in which the objective function decreases, the direction of steepest descent, with a step length α.

```
Algorithm 18: Method of steepest descent
    Start from \(x^{(0)} \quad \triangleright\) initial approximation
    for \(k=1,2, \ldots\) do
        \(x^{(k+1)}=x^{(k)}-\alpha^{(k)} \nabla f\left(x^{(k)}\right) \quad\) Step with length \(\alpha^{(k)}\)
    end
```


Newton's method

For $f \in \mathcal{C}^{1}(D)$ we know by Taylor's formula that,

$$
\begin{equation*}
f(x) \approx f(y)+\nabla f(y) \cdot(x-y)+\frac{1}{2}(x-y)^{T} H f(y)(x-y) \tag{19.7}
\end{equation*}
$$

for $x, y \in D$, with the symmetric Hessian defined by

$$
H f=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \tag{19.8}\\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right] .
$$

Newton's method to find a local minimum in the form of a stationary point is based on (19.7) with $x=x^{(k+1)}, y=x^{(k)}$ and $\Delta x=x^{(k+1)}-x^{(k)}$, for which we seek the stationary point, by

$$
\begin{aligned}
0 & =\frac{d}{d(\Delta x)}\left(f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right) \cdot \Delta x+\frac{1}{2} \Delta x^{T} H f\left(x^{(k)}\right) \Delta x\right) \\
& =\nabla f\left(x^{(k)}\right)+H f\left(x^{(k)}\right) \Delta x,
\end{aligned}
$$

which gives Newton's method as an iterative method with increment

$$
\begin{equation*}
\Delta x=-\left(H f\left(x^{(k)}\right)\right)^{-1} \nabla f\left(x^{(k)}\right) . \tag{19.9}
\end{equation*}
$$

```
Algorithm 19: Newton's method for finding a stationary point
    Start from \(x^{(0)}\)
        \(\triangleright\) initial approximation
    for \(k=1,2, \ldots\) do
        \(H f\left(x^{(k)}\right) \Delta x=-\nabla f\left(x^{(k)}\right) \quad \triangleright\) Solve linear system for \(\Delta x\)
        \(x^{(k+1)}=x^{(k)}+\Delta x \quad \triangleright\) Update approximation
    end
```


19.2 Linear system of equations

We now revisit the problem to find a solution $x \in \mathbb{R}^{n}$ to the system of linear equations

$$
\begin{equation*}
A x=b, \tag{19.10}
\end{equation*}
$$

with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, with $m \geq n$.

Least square method

The linear system of equations $A x=b$ can be solved by minimzation algorithms, for example, in the form a least squares problem,

$$
\begin{equation*}
\min _{x \in D} f(x), \quad f(x)=\|A x-b\|^{2} \tag{19.11}
\end{equation*}
$$

with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, and $m \geq n$. The gradient is computed as,

$$
\begin{aligned}
\nabla f(x) & =\nabla\left(\|A x-b\|^{2}\right)=\nabla\left((A x)^{T} A x-(A x)^{T} b-b^{T} A x+b^{T} b\right) \\
& =\nabla\left(x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b\right)=A^{T} A x+x^{T} A^{T} A-2 A^{T} b \\
& =A^{T} A x+A^{T} A x-2 A^{T} b=2 A^{T}(A x-b),
\end{aligned}
$$

which gives the following gradient descent method

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-\alpha^{(k)} 2 A^{T}\left(A x^{(k)}-b\right) \tag{19.12}
\end{equation*}
$$

Quadratic forms

We consider the minimization problem,

$$
\begin{equation*}
\min _{x \in D} f(x) \tag{19.13}
\end{equation*}
$$

where $f(x)$ is the quadratic form

$$
\begin{equation*}
f(x)=x^{T} A x-b^{T} x+c, \tag{19.14}
\end{equation*}
$$

with $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$ and $n \in \mathbb{R}$, with a stationary point given by

$$
\begin{equation*}
0=\nabla f(x)=\nabla\left(\frac{1}{2} x^{T} A x-b^{T} x+c\right)=\frac{1}{2} A x+\frac{1}{2} A^{T} x-b, \tag{19.15}
\end{equation*}
$$

which in the case A is a symmetric matrix corresponds to the linear system of equations,

$$
\begin{equation*}
A x=b . \tag{19.16}
\end{equation*}
$$

To prove that the solution $x=A^{-1} b$ is the solution of the minimization problem, study the error $e=u-y$, with $y \in D$, for which we have that

$$
\begin{aligned}
f(x+e) & =\frac{1}{2}(x+e)^{T} A(x+e)-b^{T}(x+e)+c \\
& =\frac{1}{2} x^{T} A x+e^{T} A x+\frac{1}{2} e^{T} A e-b^{T} x-b^{T} e+c \\
& =\left(\frac{1}{2} x^{T} A x-b^{T} x+c\right)+\frac{1}{2} e^{T} A e+\left(e^{T} b-b^{T} e\right) \\
& =f(x)+\frac{1}{2} e^{T} A e .
\end{aligned}
$$

We find that if A is a positive definite matrix $x=A^{-1} b$ is a global minimum, and thus any system of linear equations with a symmetric positive definite matrix may be reformulated as minimization of the associated quadratic form.

If A is not positive definite, it may be negative definite with minimum being $-\infty$, singular with non unique minima, or else the quadratic form $f(x)$ has a saddle-point.

Gradient descent method

To solve the minimization problem for a quadratic form, we may use a gradient descent method for which the gradient gives the residual,

$$
\begin{equation*}
-\nabla f\left(x^{(k)}\right)=b-A x^{(k)}=r^{(k)}, \tag{19.17}
\end{equation*}
$$

that is,

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)=x^{(k)}+\alpha r^{(k)} . \tag{19.18}
\end{equation*}
$$

To choose a step length α that minimizes $x^{(k+1)}$, we compute the derivative

$$
\frac{d}{d \alpha} f\left(x^{(k+1)}\right)=\nabla f\left(x^{(k+1)}\right)^{T} \frac{d}{d \alpha} x^{(k+1)}=\nabla f\left(x^{(k+1)}\right)^{T} r^{(k)}=-\left(r^{(k+1)}\right)^{T} r^{(k)}
$$

which gives that α should be chosen such that the successive residuals are orthogonal, that is

$$
\begin{equation*}
\left(r^{(k+1)}\right)^{T} r^{(k)}=0 \tag{19.19}
\end{equation*}
$$

which gives that

$$
\begin{aligned}
\left(r^{(k+1)}\right)^{T} r^{(k)} & =0 \\
\left(b-A x^{(k+1)}\right)^{T} r^{(k)} & =0 \\
\left(b-A\left(x^{(k)}+\alpha r^{(k)}\right)\right)^{T} r^{(k)} & =0 \\
\left(b-A\left(x^{(k)}\right)^{T} r^{(k)}-\alpha\left(A r^{(k)}\right)^{T} r^{(k)}\right. & =0 \\
\left(r^{(k)}\right)^{T} r^{(k)} & =\alpha\left(A r^{(k)}\right)^{T} r^{(k)}
\end{aligned}
$$

so that

$$
\begin{equation*}
\alpha=\frac{\left(r^{(k)}\right)^{T} r^{(k)}}{\left(A r^{(k)}\right)^{T} r^{(k)}} . \tag{19.20}
\end{equation*}
$$

```
Algorithm 20: Steepest descent method for \(A x=b\)
    Start from \(x^{(0)} \quad \triangleright\) initial approximation
    for \(k=1,2, \ldots\) do
        \(r^{(k)}=b-A x^{(k)}\)
        \(\alpha=\left(r^{(k)}\right)^{T} r^{(k)} /\left(A r^{(k)}\right)^{T} r^{(k)} \quad\) Compute step length \(\alpha^{(k)}\)
        \(x^{(k+1)}=x^{(k)}+\alpha^{(k)} r^{(k)} \quad \triangleright\) Step with length \(\alpha^{(k)}\)
    end
```


Conjugate gradient method revisited

We now revisit the conjugate gradient (CG) method in the form of a method for solving the minimization of the quadratic form corresponding to a linear system of equations with a symmetric positive definite matrix.

The idea is to formulate a search method,

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}+\alpha^{(k)} d^{(k)}, \tag{19.21}
\end{equation*}
$$

with a set of orthogonal search directions $\left\{d^{(k)}\right\}_{k=0}^{n-1}$, where the step length $\alpha^{(k)}$ is determined by the condition that $e^{(k+1)}=x-x^{(k+1)}$ should be A orthogonal, or conjugate, to $d^{(k)}$, thus

$$
\begin{aligned}
\left(d^{(k)}\right)^{T} A e^{(k+1)} & =0 \\
\left(d^{(k)}\right)^{T} A\left(e^{(k)}-\alpha^{(k)} d^{(k)}\right) & =0
\end{aligned}
$$

so that

$$
\begin{equation*}
\alpha=\frac{\left(d^{(k)}\right)^{T} A e^{(k)}}{\left(d^{(k)}\right)^{T} A d^{(k)}}=\frac{\left(d^{(k)}\right)^{T} r^{(k)}}{\left(d^{(k)}\right)^{T} A d^{(k)}} . \tag{19.22}
\end{equation*}
$$

To construct the orthogonal search directions $d^{(k)}$ we can use the GramSchmidt iteration, whereas if we choose the search direction to be the residual we get the steepest descent method.

19.3 Constrained minimization

The constrained minimization problem

We now consider the constrained minimization problem,

$$
\begin{align*}
& \min _{x \in D} f(x) \tag{19.23}\\
& g(x)=c, \tag{19.24}
\end{align*}
$$

with the objective function $f: D \rightarrow \mathbb{R}$, and the constraints $g: D \rightarrow \mathbb{R}^{m}$, with $x \in D \subset \mathbb{R}^{n}$ and $c \in \mathbb{R}^{m}$.

We define the Lagrangian $\mathcal{L}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\mathcal{L}(x, \lambda)=f(x)-\lambda \cdot(g(x)-c), \tag{19.25}
\end{equation*}
$$

with the dual variables, or Lagrangian multipliers, $\lambda \in \mathbb{R}^{m}$, from which we obtain the optimality conditions,

$$
\begin{align*}
& \nabla_{x} \mathcal{L}(x, \lambda)=\nabla f(x)-\lambda \cdot \nabla g(x)=0, \tag{19.26}\\
& \nabla_{\lambda} \mathcal{L}(x, \lambda)=g(x)-c=0 \tag{19.27}
\end{align*}
$$

that is, $n+m$ equations from which we can solve for the unknown variables $(x, \lambda) \in \mathbb{R}^{n+m}$.

Example in \mathbb{R}^{2}

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $c=0$, the lagrangian takes the form

$$
\begin{equation*}
\mathcal{L}(x, \lambda)=f(x)-\lambda g(x), \tag{19.28}
\end{equation*}
$$

with the optimality conditions

$$
\begin{align*}
& \nabla_{x} \mathcal{L}(x, \lambda)=\nabla f(x)-\lambda \nabla g(x)=0, \tag{19.29}\\
& \nabla_{\lambda} \mathcal{L}(x, \lambda)=g(x)=0, \tag{19.30}
\end{align*}
$$

so that $\nabla f=\lambda \nabla g(x)$, which corresponds to the curve defined by the constraint $g(x)=0$ being parallel to a level curve of $f(x)$ in $\bar{x} \in \mathbb{R}^{2}$, the solution to the constrained minimization problem.

Optimal control

We now consider the constrained minimization problem,

$$
\begin{align*}
& \min _{x \in D} c^{T} x \tag{19.31}\\
& A x=b, \tag{19.32}
\end{align*}
$$

with $x, b, c \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n \times n}$.
We define the Lagrangian $\mathcal{L}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\mathcal{L}(x, \lambda)=c^{T} x-\lambda^{T}(A x-b), \tag{19.33}
\end{equation*}
$$

with $\lambda \in \mathbb{R}^{n}$, from which we obtain the optimality conditions,

$$
\begin{align*}
& \nabla_{x} \mathcal{L}(x, \lambda)=c+A^{T} \lambda=0 \tag{19.34}\\
& \nabla_{\lambda} \mathcal{L}(x, \lambda)=A x-b=0 \tag{19.35}
\end{align*}
$$

