Chapter 19

Minimization problems

19.1 Unconstrained minimization

The minimization problem
Find x € D C R", such that
f(z) < f(z), VzeD, (19.1)

with D C R" the search space, & € D the optimal solution, and f: D — R
the objective function (or cost function).

A stationary point, or critical point, T € D is a point for which the
gradient of the objective function is zero, that is,

V(&) =0, (19.2)
and we refer to z* € D as a local minimum if there exists 6 > 0, such that,
fx*) < f(z), Va:lz—2a* <4 (19.3)

If the minimization problem is convez, an interior local minimum is a
global minimum, where in a convex minimization problem tthe search space
is convex, i.e.

(1-t)x+tye D, (19.4)

and the objective function is convex, i.e.

(1= 0)f(@) +tf(y) < F((L -t +ty), (19.5)

for all z,y € D and t € [0, 1].
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Gradient descent method
The level set of the function f : D — R" is defined as
L(f)={z € D: f(z) =c}, (19.6)

where we note that L.(f) represents a level curve in R?, a level surface in
R3, and more generally a hypersurface of dimension n — 1 in R”.

Theorem 18. If f € C!(D), then the gradient V f(x) is orthogonal to the
level set L.(f) at x € D.

The gradient descent method is an iterative method that compute ap-
proximations to a local minimum of (19.1), by searching for the next iterate
in a direction orthogonal to the level set L.(f) in which the objective func-
tion decreases, the direction of steepest descent, with a step length «.

Algorithm 18: Method of steepest descent
0)

Start from z(
for k=1,2,...do

|2t = 2 — WY £ (2 0) > Step with length ¥
end

> initial approximation

Newton’s method

For f € C*(D) we know by Taylor’s formula that,

F@) = f@) 4+ V) - (=) + 5=y Hi@) @ —y), (97

for z,y € D, with the symmetric Hessian defined by

o’f ... _9f
Ox10x1 0x10xn
oy ... 9
O0zn0z1 0TnO0xp

Newton’s method to find a local minimum in the form of a stationary
point is based on (19.7) with z = 2*+1 ¢ = 2 and Az = 2+ — 2*)
for which we seek the stationary point, by

0 = ﬁ (f(x(k)) + VW) Az + %AxTHf(x(k))Ax)

= V(™) + Hf(aW)Ax,
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which gives Newton’s method as an iterative method with increment

Az = —(Hf(zW) IV f(z®). (19.9)

Algorithm 19: Newton’s method for finding a stationary point

Start from z(®) > initial approximation
for k=1,2,...do
Hf(z) Az = -V f(z®) > Solve linear system for Ax
g+ = 2 4 Ag > Update approximation
end

19.2 Linear system of equations

We now revisit the problem to find a solution € R"™ to the system of linear
equations

Az = b, (19.10)

with A € R™*™ and b € R™, with m > n.

Least square method

The linear system of equations Ax = b can be solved by minimzation algo-
rithms, for example, in the form a least squares problem,

min f(z), f(z)=|Az —b|? (19.11)

zeD

with A € R™*™ and b € R™, and m > n. The gradient is computed as,

Vfx) = V(|Az —b]*) = V((Az)T Az — (Az)Tb — b Az + b7b)
= V(2TAT Az — 227 ATb 4+ b7b) = AT Az + 27 ATA — 247D
= ATAx + AT Az — 2ATb = 2AT (Ax — 1),

which gives the following gradient descent method

2D — (k) _ a(k)ZAT(Ax(k) —b) (19.12)
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Quadratic forms

We consider the minimization problem,

min f(x), (19.13)

zeD

where f(x) is the quadratic form
f(z)=a2"Az — bz +c, (19.14)

with x € R", A € R"™" and n € R, with a stationary point given by
1 1 1
0=Vf(z)= V(EITAx —br4c) = §A:1: + §ATx — b, (19.15)

which in the case A is a symmetric matrix corresponds to the linear system
of equations,

Az =b. (19.16)

To prove that the solution x = A~'b is the solution of the minimization
problem, study the error e = u — y, with y € D, for which we have that

1
flx+e) = §(x+e)TA(x+e) — b (z4e)+e
1 1
= ExTAI +ef Az + §eTAe —blz—blete

1 1
= (ngAa: — b +c)+ §eTAe + (T —be)
1
= f(z)+ §eTAe.

We find that if A is a positive definite matrix x = A~'b is a global
minimum, and thus any system of linear equations with a symmetric posi-
tive definite matrix may be reformulated as minimization of the associated
quadratic form.

If A is not positive definite, it may be negative definite with minimum
being —oo, singular with non unique minima, or else the quadratic form
f(z) has a saddle-point.

Gradient descent method

To solve the minimization problem for a quadratic form, we may use a
gradient descent method for which the gradient gives the residual,

~Vf(a®) =b— Az® =¥ (19.17)
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that is,
g* ) = 20 _ oV f(2®) = 2™ 4 ar®), (19.18)
To choose a step length o that minimizes z**+1 we compute the deriva-
tive
d

d
%f(l‘(lﬁ—l)) _ Vf(l‘(k+1))T%l’(k+l vf( (k+1) )Tr(k) _ —(T(k+1))TT(k),

which gives that « should be chosen such that the successive residuals are

orthogonal, that is
(rED)T (k) — (19.19)

which gives that

( AZE (k+1)\T (k
(b—A(z® + ar k))
(b— A(z®)Tr® — ( (k)

~— — — ~— ~—
’ﬂ

B

o o O O

oz(Ar(k))Tr(k)

so that
a=——"—" (19.20)

Algorithm 20: Steepest descent method for Ax =0

Start from z(©) > initial approximation
for k=1,2,... do
k) = p — Az®) > Compute residual 7
a = (rENTrE) /(ApE)T k) > Compute step length a(*)
) = (B 4 oF)p(k) > Step with length a(*)
end

Conjugate gradient method revisited

We now revisit the conjugate gradient (CG) method in the form of a method
for solving the minimization of the quadratic form corresponding to a linear
system of equations with a symmetric positive definite matrix.

The idea is to formulate a search method,

2D — 0B 4 o ®) k) (19.21)
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with a set of orthogonal search directions {d(’“}}j;g, where the step length

a® is determined by the condition that e**) = 2 — 2 +1) should be A-
orthogonal, or conjugate, to d® | thus

(d(k))TAe(k-‘rl) _
(A9 A(e® — ok = o,

e}

so that
(YT 4 k) (B)\T ()
o= ) Ao (d) (19.22)
(dP)TAZD ~ (d®)TAdP

To construct the orthogonal search directions d*) we can use the Gram-
Schmidt iteration, whereas if we choose the search direction to be the resid-
ual we get the steepest descent method.

19.3 Constrained minimization

The constrained minimization problem

We now consider the constrained minimization problem,

gneig f(x) (19.23)
g(x) =<, (19.24)

with the objective function f : D — R, and the constraints g : D — R™,
with x € D C R" and ¢ € R™.
We define the Lagrangian £ : R"*™ — R, as

L(e,N) = f@) = A- (g(x) - o). (19.25)

with the dual variables, or Lagrangian multipliers, A € R™, from which we
obtain the optimality conditions,

V.L(x,\) =Vf(x)— X Vg(x) =0, (19.26)
ViL(z,\) =g(x) —c=0, (19.27)

that is, n+m equations from which we can solve for the unknown variables
(x,\) € R,
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Example in R?

For f:R? - R, g:R? = R and ¢ = 0, the lagrangian takes the form
L(z,\) = f(z) — A\g(x), (19.28)

with the optimality conditions

V.L(x,\) =Vf(x)—AVg(z) =0, (19.29)
ViL(z,A) = g(x) =0, (19.30)

so that Vf = AVg(x), which corresponds to the curve defined by the con-
straint g(z) = 0 being parallel to a level curve of f(z) in T € R? the
solution to the constrained minimization problem.

Optimal control

We now consider the constrained minimization problem,

min ¢’z (19.31)
€D
Az = b, (19.32)

with z,b,c € R", and A € R"*",
We define the Lagrangian £ : R*" — R, as

L(z,\) =c'z — \'(Az —b), (19.33)
with A € R", from which we obtain the optimality conditions,

V.L(r,\) =c+ ATA =0, (19.34)
ViL(x,\) = Az —b=0. (19.35)



