
Chapter 19

Minimization problems

19.1 Unconstrained minimization

The minimization problem

Find x̄ 2 D ⇢ Rn, such that

f(x̄)  f(x), 8x 2 D, (19.1)

with D ⇢ Rn the search space, x̄ 2 D the optimal solution, and f : D ! R
the objective function (or cost function).

A stationary point, or critical point, x̂ 2 D is a point for which the
gradient of the objective function is zero, that is,

rf(x̂) = 0, (19.2)

and we refer to x⇤ 2 D as a local minimum if there exists � > 0, such that,

f(x⇤)  f(x), 8x : kx� x⇤k  �. (19.3)

If the minimization problem is convex, an interior local minimum is a
global minimum, where in a convex minimization problem tthe search space
is convex, i.e.

(1� t)x+ ty 2 D, (19.4)

and the objective function is convex, i.e.

(1� t)f(x) + tf(y)  f((1� t)x+ ty), (19.5)

for all x, y 2 D and t 2 [0, 1].
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Gradient descent method

The level set of the function f : D ! Rn is defined as

L
c

(f) = {x 2 D : f(x) = c}, (19.6)

where we note that L
c

(f) represents a level curve in R2, a level surface in
R3, and more generally a hypersurface of dimension n� 1 in Rn.

Theorem 18. If f 2 C1(D), then the gradient rf(x) is orthogonal to the
level set L

c

(f) at x 2 D.

The gradient descent method is an iterative method that compute ap-
proximations to a local minimum of (19.1), by searching for the next iterate
in a direction orthogonal to the level set L

c

(f) in which the objective func-
tion decreases, the direction of steepest descent, with a step length ↵.

Algorithm 18: Method of steepest descent

Start from x(0) . initial approximation

for k = 1, 2, ... do
x(k+1) = x(k) � ↵(k)rf(x(k)) . Step with length ↵(k)

end

Newton’s method

For f 2 C1(D) we know by Taylor’s formula that,

f(x) ⇡ f(y) +rf(y) · (x� y) +
1

2
(x� y)THf(y)(x� y), (19.7)

for x, y 2 D, with the symmetric Hessian defined by

Hf =

2
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Newton’s method to find a local minimum in the form of a stationary
point is based on (19.7) with x = x(k+1), y = x(k) and �x = x(k+1) � x(k),
for which we seek the stationary point, by

0 =
d

d(�x)

✓
f(x(k)) +rf(x(k)) ·�x+

1

2
�xTHf(x(k))�x

◆

= rf(x(k)) +Hf(x(k))�x,
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which gives Newton’s method as an iterative method with increment

�x = �(Hf(x(k)))�1rf(x(k)). (19.9)

Algorithm 19: Newton’s method for finding a stationary point

Start from x(0) . initial approximation

for k = 1, 2, ... do
Hf(x(k))�x = �rf(x(k)) . Solve linear system for �x
x(k+1) = x(k) +�x . Update approximation

end

19.2 Linear system of equations

We now revisit the problem to find a solution x 2 Rn to the system of linear
equations

Ax = b, (19.10)

with A 2 Rm⇥n and b 2 Rm, with m � n.

Least square method

The linear system of equations Ax = b can be solved by minimzation algo-
rithms, for example, in the form a least squares problem,

min
x2D

f(x), f(x) = kAx� bk2, (19.11)

with A 2 Rm⇥n and b 2 Rm, and m � n. The gradient is computed as,

rf(x) = r(kAx� bk2) = r((Ax)TAx� (Ax)T b� bTAx+ bT b)

= r(xTATAx� 2xTAT b+ bT b) = ATAx+ xTATA� 2AT b

= ATAx+ ATAx� 2AT b = 2AT (Ax� b),

which gives the following gradient descent method

x(k+1) = x(k) � ↵(k)2AT (Ax(k) � b) (19.12)
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Quadratic forms

We consider the minimization problem,

min
x2D

f(x), (19.13)

where f(x) is the quadratic form

f(x) = xTAx� bTx+ c, (19.14)

with x 2 Rn, A 2 Rn⇥n and n 2 R, with a stationary point given by

0 = rf(x) = r(
1

2
xTAx� bTx+ c) =

1

2
Ax+

1

2
ATx� b, (19.15)

which in the case A is a symmetric matrix corresponds to the linear system
of equations,

Ax = b. (19.16)

To prove that the solution x = A�1b is the solution of the minimization
problem, study the error e = u� y, with y 2 D, for which we have that

f(x+ e) =
1

2
(x+ e)TA(x+ e)� bT (x+ e) + c

=
1

2
xTAx+ eTAx+

1

2
eTAe� bTx� bT e+ c

= (
1

2
xTAx� bTx+ c) +

1

2
eTAe+ (eT b� bT e)

= f(x) +
1

2
eTAe.

We find that if A is a positive definite matrix x = A�1b is a global
minimum, and thus any system of linear equations with a symmetric posi-
tive definite matrix may be reformulated as minimization of the associated
quadratic form.

If A is not positive definite, it may be negative definite with minimum
being �1, singular with non unique minima, or else the quadratic form
f(x) has a saddle-point.

Gradient descent method

To solve the minimization problem for a quadratic form, we may use a
gradient descent method for which the gradient gives the residual,

�rf(x(k)) = b� Ax(k) = r(k), (19.17)
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that is,
x(k+1) = x(k) � ↵rf(x(k)) = x(k) + ↵r(k). (19.18)

To choose a step length ↵ that minimizes x(k+1), we compute the deriva-
tive

d

d↵
f(x(k+1)) = rf(x(k+1))T

d

d↵
x(k+1) = rf(x(k+1))T r(k) = �(r(k+1))T r(k),

which gives that ↵ should be chosen such that the successive residuals are
orthogonal, that is

(r(k+1))T r(k) = 0, (19.19)

which gives that

(r(k+1))T r(k) = 0

(b� Ax(k+1))T r(k) = 0

(b� A(x(k) + ↵r(k)))T r(k) = 0

(b� A(x(k))T r(k) � ↵(Ar(k))T r(k) = 0

(r(k))T r(k) = ↵(Ar(k))T r(k)

so that

↵ =
(r(k))T r(k)

(Ar(k))T r(k)
. (19.20)

Algorithm 20: Steepest descent method for Ax = b

Start from x(0) . initial approximation

for k = 1, 2, ... do
r(k) = b� Ax(k) . Compute residual r(k)

↵ = (r(k))T r(k)/(Ar(k))T r(k) . Compute step length ↵(k)

x(k+1) = x(k) + ↵(k)r(k) . Step with length ↵(k)

end

Conjugate gradient method revisited

We now revisit the conjugate gradient (CG) method in the form of a method
for solving the minimization of the quadratic form corresponding to a linear
system of equations with a symmetric positive definite matrix.

The idea is to formulate a search method,

x(k+1) = x(k) + ↵(k)d(k), (19.21)
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with a set of orthogonal search directions {d(k)}n�1
k=0 , where the step length

↵(k) is determined by the condition that e(k+1) = x � x(k+1) should be A-
orthogonal, or conjugate, to d(k), thus

(d(k))TAe(k+1) = 0

(d(k))TA(e(k) � ↵(k)d(k)) = 0,

so that

↵ =
(d(k))TAe(k)

(d(k))TAd(k)
=

(d(k))T r(k)

(d(k))TAd(k)
. (19.22)

To construct the orthogonal search directions d(k) we can use the Gram-
Schmidt iteration, whereas if we choose the search direction to be the resid-
ual we get the steepest descent method.

19.3 Constrained minimization

The constrained minimization problem

We now consider the constrained minimization problem,

min
x2D

f(x) (19.23)

g(x) = c, (19.24)

with the objective function f : D ! R, and the constraints g : D ! Rm,
with x 2 D ⇢ Rn and c 2 Rm.

We define the Lagrangian L : Rn+m ! R, as

L(x,�) = f(x)� � · (g(x)� c), (19.25)

with the dual variables, or Lagrangian multipliers, � 2 Rm, from which we
obtain the optimality conditions,

r
x

L(x,�) = rf(x)� � ·rg(x) = 0, (19.26)

r
�

L(x,�) = g(x)� c = 0, (19.27)

that is, n+m equations from which we can solve for the unknown variables
(x,�) 2 Rn+m.
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Example in R2

For f : R2 ! R, g : R2 ! R and c = 0, the lagrangian takes the form

L(x,�) = f(x)� �g(x), (19.28)

with the optimality conditions

r
x

L(x,�) = rf(x)� �rg(x) = 0, (19.29)

r
�

L(x,�) = g(x) = 0, (19.30)

so that rf = �rg(x), which corresponds to the curve defined by the con-
straint g(x) = 0 being parallel to a level curve of f(x) in x̄ 2 R2, the
solution to the constrained minimization problem.

Optimal control

We now consider the constrained minimization problem,

min
x2D

cTx (19.31)

Ax = b, (19.32)

with x, b, c 2 Rn, and A 2 Rn⇥n.
We define the Lagrangian L : R2n ! R, as

L(x,�) = cTx� �T (Ax� b), (19.33)

with � 2 Rn, from which we obtain the optimality conditions,

r
x

L(x,�) = c+ AT� = 0, (19.34)

r
�

L(x,�) = Ax� b = 0. (19.35)


