
Chapter 10

Function approximation

We have studied methods for computing solutions to algebraic equations
in the form of real numbers or finite dimensional vectors of real numbers.
In contrast, solutions to di↵erential equations are scalar or vector valued
functions, which only in simple special cases are analytical functions that
can be expressed by a closed mathematical formula.

Instead we use the idea to approximate general functions by linear com-
binations of a finite set of simple analytical functions, for example trigono-
metric functions, splines or polynomials, for which attractive features are
orthogonality and locality. We focus in particular on piecewise polynomi-
als defined by the finite set of nodes of a mesh, which exhibit both near
orthogonality and local support.

10.1 Function approximation

The Lebesgue space L2(I)

Inner product spaces provide tools for approximation based on orthogonal
projections on subspaces. We now introduce an inner product space for
functions on the interval I = [a, b], the Lebesgue space L2(I), defined as the
class of all square integrable functions f : I ! R,

L2(I) = {f :

Z
b

a

|f(x)|2 dx < 1}. (10.1)

The vector space L2(I) is closed under the basic operations of pointwise
addition and scalar multiplication, by the inequality,

(a+ b)2  2(a2 + b2), 8a, b � 0, (10.2)

which follows from Young’s inequality.
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Theorem 17 (Young’s inequality). For a, b � 0 and ✏ > 0,

ab  1

2✏
a2 +

✏

2
b2 (10.3)

Proof. 0  (a� ✏b)2 = a2 + ✏2b2 � 2ab✏.

The L2-inner product is defined by

(f, g) = (f, g)
L

2(I) =

Z
b

a

f(x)g(x) dx, (10.4)

with the associated L2 norm,

kfk = kfk
L

2(I) = (f, f)1/2 =

✓Z
b

a

|f(x)|2 dx
◆1/2

, (10.5)

for which the Cauchy-Schwarz inequality is satisfied,

(f, g)  kfkkgk. (10.6)

Approximation of functions in L2(I)

We seek to approximate a function f in a vector space V by a linear com-
bination of functions �

j

2 V , that is

f(x) ⇡ f
n

(x) =
nX

j=1

↵
j

�
j

(x), (10.7)

with ↵
j

2 R. If linearly independent, the set {�
j

}n
j=1 spans a subspace

S ⇢ V , that is

S = {f
n

2 V : f
n

=
nX

j=1

↵
j

�
j

(x), ↵
j

2 R}, (10.8)

with the set {�
j

}n
j=1 a basis for S. For example, in a Fourier series the basis

functions �
j

are trigonometric functions, in a power series monomials.
The question is now how to determine the coordinates ↵

j

so that f
n

(x)
is a good approximation of f(x) in the subspace S. One approach to the
problem is to use the techniques of orthogonal projections previously studied
for vectors in Rn, an alternative approach is interpolation, where ↵

j

are
chosen such that f

n

(x
i

) = f(x
i

), in a set of nodes x
i

, for i = 1, ..., n. If we
cannot evaluate the function f(x) in arbitrary points x, but only have access
to a set of sampled data points {(x

i

, f
i

)}m
i=1, with m > n, we can formulate

a least squares problem to determine the coordinates ↵
j

that minimize the
error f(x

i

)� f
i

, in a suitable norm.
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L2 projection

The L2 projection Pf , onto the subspace S ⇢ V , defined by (10.8), of a
function f 2 V , with V = L2(I), is the orthogonal projection of f on S,
that is,

(f � Pf, s) = 0, 8s 2 S, (10.9)

which corresponds to,

nX

j=1

↵
j

(�
i

,�
j

) = (f,�
i

), 8i = 1, ..., n. (10.10)

By solving the matrix equation Ax = b, with a
ij

= (�
i

,�
j

), x
j

= ↵
j

,
and b

i

= (f,�
i

), we obtain the L2 projection as

Pf(x) =
nX

j=1

↵
j

�
j

(x). (10.11)

We note that if �
i

(x) has local support, that is �
i

(x) 6= 0 only for a
subinterval of I, then the matrix A is sparse, and for {�

i

}n
i=1 an orthonormal

basis, A is the identity matrix with ↵
j

= (f,�
j

).

Interpolation

The interpolant ⇡f 2 S, is determined by the condition that ⇡f(x
i

) = f(x
i

),
for n nodes {x

i

}n
i=1. That is,

f(x
i

) = ⇡f(x
i

) =
nX

j=1

↵
j

�
j

(x
i

), i = 1, ..., n, (10.12)

which corresponds to matrix equation Ax = b, with a
ij

= �
j

(x
i

), x
j

= ↵
j

,
and b

i

= f(x
i

).
The matrix A is an identity matrix under the condition that �

j

(x
i

) = 1,
for i = j, and zero else. We then refer to {�

i

}n
i=1 as a nodal basis, for which

↵
j

= f(x
j

) and we can express the interpolant as

⇡f(x) =
nX

j=1

↵
j

�
j

(x) =
nX

j=1

f(x
j

)�
j

(x). (10.13)
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Regression

If we cannot evaluate the function f(x) in arbitrary points, but only have
access to a set of data points {(x

i

, f
i

)}m
i=1, with m > n, we can formulate

the least squares problem,

min
fn2S

kf
i

� f
n

(x
i

)k = min
{↵j}nj=1

kf
i

�
nX

j=1

↵
j

�
j

(x
i

)k, i = 1, ...,m, (10.14)

which we can solve by constructing the normal equations.

10.2 Piecewise polynomial approximation

Polynomial spaces

We introduce the vector space Pq(I), defined by the set of polynomials

p(x) =
qX

i=0

c
i

xi, (10.15)

of at most order q on an interval I 2 R, with the basis functions xi and
coordinates c

i

, and the basic operations of pointwise addition and scalar
multiplication,

(p+ r)(x) = p(x) + r(x), (↵p)(x) = ↵p(x), (10.16)

for p, r 2 Pq(I) and ↵ 2 R. One basis for Pq(I) is the set of monomials
{xi}q

i=0, another is {(x� c)i}q
i=0 which gives the power series,

p(x) =
qX

i=0

a
i

(x� c)i = a0 + a1(x� c) + ...+ a
q

(x� c)q, (10.17)

for c 2 I, with a Taylor series being an example of a power series,

f(x) = f(y) + f 0(y)(x� y) +
1

2
f 00(y)(x� y)2 + ... (10.18)

Langrange polynomials

For a set of nodes {x
i

}q
i=0, we define the Lagrange polynomials {�}q

i=0, by

�
i

(x) =
(x� x0) · · · (x� x

i�1)(x� x
i+1) · · · (x� x

q

)

(x
i

� x0) · · · (xi

� x
i�1)(xi

� x
i+1) · · · (xi

� x
q

)
=

Y

i 6=j

x� x
j

x
i

� x
j

,
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that constitutes a basis for Pq(I), and we note that

�
i

(x
j

) = �
ij

, (10.19)

with the Dirac delta function defined as

�
ij

=

(
1, i = j

0, i 6= j
(10.20)

so that {�}q
i=0 is a nodal basis, which we refer to as the Lagrange basis. We

can express any p 2 Pq(I) as

p(x) =
qX

i=1

p(x
i

)�
i

(x), (10.21)

and by (10.13) we can define the polynomial interpolant ⇡
q

f 2 Pq(I),

⇡
q

f(x) =
qX

i=1

f(x
i

)�
i

(x), x 2 I, (10.22)

for a continuous function f 2 C(I).

Piecewise polynomial spaces

We now introduce piecewise polynomials defined over a partition of the
interval I = [a, b],

a = x0 < x1 < · · · < x
m+1 = b, (10.23)

for which we let the mesh T
h

= I
i

denote the set of subintervals I
j

=
(x

i�1, xi

) of length h
i

= x
i

� x
i�1, with the mesh function,

h(x) = h
i

, for x 2 I
i

. (10.24)

We now define two vector spaces of piecewise polynomials, the discon-
tinuous piecewise polynomials on I, defined by

W (q)
h

= {v : v|
Ii 2 Pq(I

i

), i = 1, ...,m+ 1}, (10.25)

and the continuous piecewise polynomials on I, defined by

V (q)
h

= {v 2 W (q)
h

: v 2 C(I)}. (10.26)
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The basis functions for W (q)
h

can be defined in terms of the Lagrange
basis, with for example

�
i,0(x)

x� x
i

x
i�1 � x

i

�
i,1(x)

x� x
i�1

x
i

� x
i�1

, (10.27)

defining the basis functions for W (1)
h

, by

�
i,j

(x) =

(
0, x 6= [x

i�1, xi

],

�
i,j

, x 2 [x
i�1, xi

],
(10.28)

for i = 1, ...,m+ 1, and j = 0, 1. For V (q)
h

we need to construct continuous
basis functions, for example,

�
i

(x) =

8
><

>:

0, x 6= [x
i�1, xi+1],

�
i,1, x 2 [x

i�1, xi

],

�
i+1,0, x 2 [x

i

, x
i+1],

(10.29)

which we also refer to as hat functions.

x1	 x2	 xi-1	 xm	x0=a	
x	

xm+1=b	xi	 xi+1	

φi,1(x)	

x1	 x2	 xi-1	 xm	x0=a	
x	

xm+1=b	xi	 xi+1	

φi(x)	

Figure 10.1: Illustration of a mesh T
h

= I
i

, with subintervals I
j

= (x
i�1, xi

)

of length h
i

= x
i

� x
i�1, and �

i

(x) a basis function for W (1)
h

(left) and V (1)
h

(right).


