
Chapter 5

Linear system of equations

In this chapter we study methods for solving linear systems of equations.
That is, we seek a solution in terms of a vector x that satisfies a set of linear
equations that can be formulated as a matrix equation Ax = b.

For a square non-singular matrix A, we can construct direct solution
methods based on factorization of the matrix A into a product of matrices
that are easy to invert. In the case of a rectangular matrix A we formulate a
least squares problem, where we seek a solution x that minimizes the norm
of the residual b� Ax.

5.1 Linear system of equations

A linear system of equations can be expressed as the matrix equation

Ax = b, (5.1)

with A a given matrix and b a given vector, for which x is the unknown
solution vector. Given our previous discussion, b can be interpreted as the
image of x under the linear transformation A, or alternatively, x can be
interpreted as the coe�cients of b expressed in the column space of A.

For a square non-singular matrix A the solution x can be expressed in
terms of the inverse matrix as x = A�1b. For some matrices the inverse
matrix A�1 is easy to construct, such as in the case of a diagonal matrix
D = (d

ij

), for which d
ij

= 0 for all i 6= j. Here the inverse is directly
given as D�1 = (d�1

ij

). Similarly, for an orthogonal matrix Q the inverse is
given by the transpose Q�1 = QT . On the other hand, for a general matrix
A, computation of the inverse is not straight forward. Instead we seek to
transform the general matrix into a product of matrices that are easy to
invert.

41



42 CHAPTER 5. LINEAR SYSTEM OF EQUATIONS

We will introduce two factorizations that can be used for solving Ax = b,
in the case of A being a general square non-singular matrix; QR factor-
ization and LU factorization. Factorization followed by inversion of the
factored matrix is an example of a direct method for solving Ax = b. We
note that to solve the equation we do not have to construct the inverse
matrix explicitly, instead we only need to compute the action of matrices
on a vector, which is important in terms of the memory footprint of the
algorithms.

Apart from diagonal and orthogonal matrices, triangular matrices are
easy to invert, by backward and forward substitution.

Triangular matrices

We distinguish between two classes of triangular matrices: a lower trian-
gular matrix L = (l

ij

), with l
ij

= 0 for i < j, and an upper triangular
matrix U = (u

ij

), with u
ij

= 0 for i > j. The product of lower triangular
matrices is lower triangular, and the product of upper triangular matrices
is upper triangular. Similarly, the inverse of a lower triangular matrix is
lower triangular, and the inverse of an upper triangular matrix is upper
triangular.

The equations Lx = b and Ux = b, take the form
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solved by forward substitution and backward substitution, respectively,
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where both algorithms correspond to O(n2) operations.
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5.2 QR factorization

Classical Gram-Schmidt orthogonalization

For a square matrix A 2 Rn⇥n we denote the successive vector spaces
spanned by its column vectors a

j

as

ha1i ✓ ha1, a2i ✓ ha1, a2, a3i ✓ ... ✓ ha1, ..., ami. (5.2)

Assuming that A has full rank, for each such vector space we construct an
orthonormal basis q

j

, such that hq1, ..., qji = ha1, ..., aji, for all j  n.
Given a

j

, we can successively construct vectors v
j

that are orthogonal
to the spaces hq1, ..., qj�1i, since by (2.25) we have that

v
j

= a
j

�
j�1X

i=1

(a
j

, q
i

)q
i

, (5.3)

for all j = 1, ..., n, where each vector is then normalized to get q
j

= v
j

/kv
j

k.
This is the classical Gram-Schmidt iteration.

Modified Gram-Schmidt orthogonalization

If we let Q̂
j�1 be an n ⇥ (j � 1) matrix with the column vectors q

i

, for
i  j � 1, we can rewrite (5.3) in terms of an orthogonal projector P

j

,
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with Q̂
j�1Q̂T

j�1 an orthogonal projector onto range(Q̂
j�1), the column space

of Q̂
j�1. The matrix P

j

= I�Q̂
j�1Q̂T

j�1 is thus an orthogonal projector onto

the space orthogonal to range(Q̂
j�1), with P1 = I. Thus the Gram-Schmidt

iteration can be expressed in terms of the projector P
j

as q
j

= P
j

a
j

/kP
j

a
j

k,
for j = 1, ..., n.

Alternatively, P
j

can be constructed by successive multiplication of pro-
jectors P?qi = I � q

i

qT
i

, orthogonal to each individual vector q
i

, such that

P
j

= P?qj�1 · · ·P?q2P?q1 . (5.4)

The modified Gram-Schmidt iteration corresponds to instead using this
formula to construct P

j

, which leads to a more robust algorithm than the
classical Gram-Schmidt iteration.
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Algorithm 1: Modified Gram-Schmidt iteration

for i = 1 to n do
v
i
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end
for i = 1 to n do
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end

QR factorization

By introducing the notation r
ij

= (a
j

, q
i

) and r
ii

= ka
j

� P
j�1
i=1 (aj, qi)qik,

we can rewrite the classical Gram-Schmidt iteration (5.3) as

a1 = r11q1
a2 = r12q1 + r22q2 (5.5)

...

a
n

= r1nq1 + ...+ r2nqn

which corresponds to the QR factorization A = QR, with a
j

the column
vectors of the matrix A, Q an orthogonal matrix and R an upper triangular
matrix, that is
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Existence and uniqueness of the QR factorization of a non-singular matrix
A follows by construction from Algorithm 1.

The modified Gram-Schmidt iteration of Algorithm 1 corresponds to
successive multiplication of upper triangular matrices R

k

on the right of
the matrix A, such that the resulting matrix Q is an orthogonal matrix,

AR1R2 · · ·Rn

= Q, (5.6)

and with the notation R�1 = R1R2 · · ·Rn

, the matrix R = (R�1)�1 is also
an upper triangular matrix.
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Householder QR factorization

Whereas Gram-Schmidt iteration amounts to triangular orthogonalization
of the matrix A, we may alternatively formulate an algorithm for orthogonal
triangularization, where entries below the diagonal of A are zeroed out by
successive application of orthogonal matrices Q

k

, so that

Q
n

...Q2Q1A = R, (5.7)

where we note that the matrix product Q = Q
n

...Q2Q1 also is orthogonal.
In the Householder algorithm, orthogonal matrices are chosen of the

form

Q
k

=


I 0
0 F

�
, (5.8)

with I the (k � 1)⇥ (k � 1) identity matrix, and with F an (n� k + 1)⇥
(n� k + 1) orthogonal matrix. Q

k

is constructed to successively introduce
n � k zeros below the diagonal of the kth column of A, while leaving the
upper k � 1 rows untouched, thus taking the form

Q
k

Â
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�
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with Â
k�1 = Q

k�1 · · ·Q2Q1A, and with Â
ij

representing the sub-matrices,
or blocks, of Â

k�1 with corresponding block structure as Q
k

.
To obtain a triangular matrix, F should introduce zeros in all subdi-

agonal entries of the matrix. We want to construct F such that for x an
n� k + 1 column vector, we get

Fx =

2

6664

±kxk
0
...
0

3

7775
= ±kxke1, (5.10)

with e1 = (1, 0, ..., 0)T a standard basis vector.
Further, we need F to be an orthogonal matrix, which we achieve by

formulating F in the form of a reflector, so that Fx is the reflection of x in
a hyperplane orthogonal to the vector v = ±kxke1 � x, that is

F = I � 2
vvT

vTv
. (5.11)

We now formulate the full algorithm for QR factorization based on this
Householder reflector, where we use the notation A

i:j,k:l for a sub-matrix
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Figure 5.1: Householder reflectors across the two hyperplanes H+ and H�.

Algorithm 2: Householder QR factorization

for k = 1 to n do
x = A

k:n,k

v
k

= sign(x1)kxk2e1 + x
v
k

= v
k

/kv
k

k
A

k:n,k:n = A
k:n,k:n � 2v

k

(vT
k

A
k:n,k:n)

end

with a row index in the range i, ..., j, and column index in the range k, ..., l.

We note that Algorithm 2 does not explicitly construct the matrix Q,
although from the vectors v

k

we can compute the matrix-vector product
with Q = Q1Q2 · · ·Qn

or QT = Q
n

· · ·Q2Q1.

5.3 LU factorization

Similar to Householder triangulation, Gaussian elimination transforms a
square n ⇥ n matrix A into an upper triangular matrix U , by successively
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inserting zeros below the diagonal. In the case of Gaussian elimination, this
is done by adding multiples of each row to the other rows, which corresponds
to multiplication by a sequence of triangular matrices L

k

from the left, so
that

L
n�1 · · ·L2L1A = U. (5.12)

By setting L�1 = L
n�1 · · ·L2L1, we obtain the factorization A = LU ,

with L = L�1
1 L�1

2 · · ·L�1
n�1.

The kth step in the Gaussian elimination algorithm involves division
by the diagonal element u

kk

, and thus for stability of the algorithm in
finite precision arithmetics it is necessary to avoid a small number in that
position, which is achieved by reordering the rows, or pivoting. With a
permutation matrix P , the LU factorization with pivoting may be expressed
as PA = LU .

Algorithm 3: Gaussian elimination with pivoting
Starting from the matrices U = A, L = I, P = I
for k = 1 to n� 1 do

Select i � k to maximize |u
ik

|
Interchange the rows k and i in the matrices U,L, P
for j = k + 1 to n do

l
jk

= u
jk

/u
kk

u
j,k:n = u

j,k:n � l
jk

u
k,k:n

end
end

Cholesky factorization

For the case of a symmetric positive definite matrix, A can be decomposed
into a product of a lower triangular matrix L and its transpose LT , which
is referred to as the Cholesky factorization,

A = LLT . (5.13)

In the Cholesky factorization algorithm, symmetry is exploited to per-
form Gaussian elimination from both the left and right of the matrix A at
the same time, which results in an algorithm at half the computational cost
of LU factorization.
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5.4 Least squares problems

We now consider a system of linear of equations Ax = b, for which we have
n unknowns but m > n equations, that is x 2 Rn, A 2 Rm⇥n and b 2 Rm.

There exists no inverse matrix A�1, and if the vector b /2 range(A) we
say that the system is overdetermined, and thus no exact solution x exists
to the equation Ax = b. Instead we seek the solution x 2 Rn that minimizes
the l2-norm of the residual b � Ax 2 Rm, which is referred to as the least
squares problem

min
x2Rn

kb� Axk2. (5.14)

A geometric interpretation is that we seek the vector x 2 Rn such that
the Euclidian distance between Ax and b is minimal, which corresponds to

Ax = Pb, (5.15)

where P 2 Rm⇥m is the orthogonal projector onto range(A).

b 

Ax=Pb 

range(A) 

r=b-Ax 

Figure 5.2: Geometric interpretation of the least squares problem.

Thus the residual r = b�Ax is orthogonal to range(A), that is (Ay, r) =
(y, AT r) = 0, for all y 2 Rn, so that (5.14) is equivalent to

AT r = 0, (5.16)
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which corresponds to the n⇥ n system

ATAx = AT b, (5.17)

referred to as the normal equations.
The normal equations thus provide a way to solve them⇥n least squares

problem by solving instead a square n ⇥ n system. The square matrix
ATA is nonsingular if and only if A has full rank, for which the solution is
given as x = (ATA)�1AT b, where the matrix (ATA)�1AT is known as the
pseudoinverse of A.

5.5 Exercises

Problem 18. Prove that the product of lower triangular matrices is lower
triangular, and the product of upper triangular matrices is upper triangular.

Problem 19. Try out the algorithms for QR and LU factorization for a
3⇥ 3 matrix A.

Problem 20. Implement the algorithms for QR and LU factorization, and
test the computer program for n⇥ n matrices with n large.

Problem 21. Derive the normal equations for the system
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